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Abstract

Low-rank representation based on tensor-Singular Value De-
composition (t-SVD) has achieved impressive results for
multi-view subspace clustering, but it does not well deal with
noise and illumination changes embedded in multi-view data.
The major reason is that all the singular values have the same
contribution in tensor-nuclear norm based on t-SVD, which
does not make sense in the existence of noise and illumina-
tion change. To improve the robustness and clustering per-
formance, we study the weighted tensor-nuclear norm based
on t-SVD and develop an efficient algorithm to optimize
the weighted tensor-nuclear norm minimization (WTNNM)
problem. We further apply the WTNNM algorithm to multi-
view subspace clustering by exploiting the high order corre-
lations embedded in different views. Extensive experimental
results reveal that our WTNNM method is superior to sev-
eral state-of-the-art multi-view subspace clustering methods
in terms of performance.

Introduction

Multi-view learning has been an active topic in artificial
intelligence and data analysis due to the facts that multi-
view data are ubiquitous in real applications and help pro-
vide more complementary and discriminative information,
compared with single view data (Liu and Tsang 2017; Liu,
Tsang, and Müller 2017). Multi-view learning, mainly in-
cluding multi-view clustering and classification, aims to find
meaningful groups of data, are of great importance to vari-
ous real-world applications (Wang, Nie, and Huang 2013;
Cao et al. 2015b; Wang et al. 2018). For a comprehensive re-
view of multi-view learning, please refer to (Yang and Wang
2018). We herein focus on multi-view subspace clustering
which achieves impressive results by exploiting the high or-
der correlation embedded in different views.

Multi-view subspace clustering learns affinity matrix or
coefficient representation, which is used to adaptively con-
struct graph, by exploiting high order information embedded
in data, and then performs spectral clustering on the learned
graph. Low-rank representation (LRR) is one of the most
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widely used techniques to learn graph for subspace cluster-
ing (Guangcan et al. 2013). Inspired by the impressive re-
sults of LRR for subspace clustering, Zhang et al. (Zhang
et al. 2015) adaptively learned graph, which is shared by
different views, by minimizing the nuclear norm of tensor-
unfolding matrices that are constructed by affinity matri-
ces, and developed low-rank tensor constrained multi-view
subspace clustering (LT-MSC) method. Compared with the
aforementioned nuclear norm, tensor nuclear norm based on
t-SVD has been proven to be an effective convex relaxation
of �1-norm (Zhang et al. 2014) and achieved impressive per-
formance for image denoising, video completion, and multi-
view subspace clustering (Lu et al. 2016; Yuan et al. 2018;
Wu, Lin, and Zha 2019; Hu et al. 2017).

Although t-SVD based tensor nuclear norm has the
promising preliminary results for multi-view clustering, it
still has some limitations to learn graph. First, it regu-
larizes each singular value equally and employs the soft-
thresholding function to shrink all singular values with the
same parameter. This, however, ignores the prior knowledge
of singular values of the matrix. For example, given an arbi-
trary image, there is a large difference between its non-zero
singular values, especially between the first several large sin-
gular values and the last several small singular values, and
the larger singular values are generally associated with some
salient parts (main information) in the image. Thus, to pre-
serve the salient parts, we should make the large singular
values shrink less, which was unfortunately not taken into
account in the existing tensor nuclear norm minimization.
Second, the existing TNNM tends to preserve some large
singular values but discard small singular values. Doing so
implies that the larger singular values are considered to be
important while the smaller singular values are unimportant.
However, such an assumption may not always be true in re-
ality and the larger singular values may carry undesirable
information. For example, given an image having large il-
lumination variation in contents, the first a few large singu-
lar values contain somewhat illumination information (Bel-
humeur, Hespanha, and Kriegman 1997), which actually has
nothing to do with the content of the image.

The aforementioned facts motivate us to investigate how
to leverage the prior information of singular values when us-
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ing tensor nuclear norm, such that the learned graph well
exploits high order information embedded in multi-view
data. Inspired by t-SVD based nuclear norm, we develop
the t-SVD based weighted tensor nuclear norm (WTNN)
and study the minimization problem of WTNN (WTNNM).
After that, we apply WTNNM to learn graph, which is
shared by different views, and develop an enhanced t-SVD
based multi-view subspace clustering method. the proposed
method well characterizes both the high order information
and complementary information embedded in multi-view
data. The main contributions of our work are summarized
as follows:
• We study the t-SVD based WTNNM which explicitly

considers the prior information of singular values, and
solve WTNNM with an efficient algorithm which has
good convergence. Given the generalization of our model,
the existing t-SVD based tensor nuclear norm is a special
case of our model. Moreover, our proposed algorithm can
also be used to solve the standard matrix nuclear norm
minimization.

• We apply our WTNNM to multi-view subspace clustering
and develop an enhanced t-SVD based multi-view sub-
space clustering model. Our method well exploits the high
order correlation embedded in multi-view data due to the
fact that it well preserves major information of data.

• Our proposed WTNNM can also be applied to other ar-
eas in machine learning such as image denoising, matrix
completion, and so on.

Multi-view subspace clustering

Multi-view clustering has attracted tremendous attention
in machine learning and artificial intelligence (Cao et al.
2015a; Wang et al. 2015; Nie, Cai, and Li 2017). Being the
most successful multi-view technique, multi-view subspace
clustering aims to learn a new coefficient representation or
affinity matrix which is shared by different views. The most
representative multi-view subspace model is

min
Z∈C

V∑
k=1

∥∥Xk −XkZk
∥∥
l
+ λΩ(Z1,Z2, . . . ,ZV ), (1)

where Xk (k = 1 . . . V ) denotes the data matrix from the kth
view. λ is trade-off between the loss function (the first term)
and the regularization for coefficient representation (the sec-
ond term), C denotes the constraint set on Zk, and ‖•‖l rep-
resents a proper norm. By employing different norms for
loss function and regularization term Ω (Z), many subspace
clustering methods have been developed. For example, using
squared F-norm to measure loss function, Gao et al. (Gao et
al. 2015) developed a novel multi-view subspace clustering
(MVSC) method. MVSC performed spectral clustering on
each view coefficient matrix to achieve a common indica-
tor which characterizes the common cluster structure among
different views; To well exploit the correlation consensus
among multi-views, Wang et al. (Wang et al. 2015) lever-
aged nuclear and angular regularization to enhance the cor-
relation between the cross-view coefficients within the same
subspace to replace the second term in the model (1). To well

exploit both the sparseness of coefficients and complemen-
tary information among different views, Wang et al. (Wang
et al. 2017) proposed exclusivity-consistency multi-view
subspace clustering by imposing sparse constraint on both
coefficients and loss function with �1-norm.

Apart from the squared F-norm and �1-norm, nuclear
norm is also a useful measurement and has been proven
to be useful in characterizing the spatial structure of data
for multi-view subspace clustering. Wang et al. (Wang et
al. 2016) proposed a multi-graph laplacian regularized low-
rank representation to characterize its local manifold struc-
ture, and minimized the divergence between coefficient ma-
trices of different views. Luo et al. (Luo et al. 2018) divided
self-representation coefficient matrix of each view into con-
sistency, which has a low-rank structure and is shared dif-
ferent views, and specificity which characterizes the inher-
ent difference in each view, and then proposed consistency-
specificity multi-view subspace clustering (CSMSC).

Although the aforementioned multi-view subspace clus-
tering methods have achieved good performance, they ig-
nore the high order correlation underlying multi-view data.
Thus, they cannot well exploit the complementary infor-
mation which is important for clustering. To handle this
problem, Zhang et al. (Zhang et al. 2015) proposed a low-
rank tensor constrained multi-view subspace clustering (LT-
MSC) method which is based on the Tucker tensor decom-
position. However, the obtained solution is not a tight convex
relaxation of the Tucker rank. To handle this disadvantage,
motivated by t-SVD which is an effective convex relaxation,
Xie et al. (Yuan et al. 2018) proposed t-SVD based multi-
view subspace clustering (t-SVD-MSC). Wu et al. (Wu, Lin,
and Zha 2019) employed transition probability matrices cor-
responding to different views as the tensor input and devel-
oped a new method for multi-view clustering (ETLMSC)
which is an extension of robust multi-view spectral clus-
tering (RMSC) (Xia et al. 2014). Although the aforemen-
tioned tensor nuclear norm based multi-view subspace meth-
ods have achieved impressive results, all of them leverage
the soft-thresholding function to shrink each singular values
with the same parameter. Thus, the prior knowledge of ma-
trix singular values, which is important for clustering, is not
in use. To handle this problem, we study the t-SVD based
weighted tensor nuclear norm minimization which shrinks
singular values with different parameters and describe an ef-
ficient algorithm for multi-view subspace clustering which
well captures the high order correlation underlying multi-
view data.

Notations and preliminaries

For convenience, we first introduce the notations and defi-
nitions used throughout the paper. We use bold calligraphy
letters for tensors, e.g., A ∈ R

n1×n2×n3 , bold upper case
letters for matrices, e.g., A, bold lower case letters for
vectors, e.g., a, and lower case letters such as aijk for the
entries of A. Moreover, we denote A(i) by the i-th frontal
slice of A and A the discrete Fast Fourier transform (FFT)
of A along the third dimension i.e., A = fft(A, [], 3).
Similarly, thus A can be obtained by inverse FFT (IFFT) of
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A along the third dimension, i.e., A = ifft(A, [], 3).

Definition 1 (Kilmer and Martin 2011) For a 3-way ten-
sor A ∈ R

n1×n2×n3 , the Frobenius norm of A is

‖A‖F =
√∑

ijk |aijk|2, and conjugate transpose of A ∈
R

n1×n2×n3 is AT ∈ R
n2×n1×n3 .

Definition 2 (Kilmer et al. 2013) For a 3-way tensor A ∈
R

n1×n2×n3 , we denote A as a block diagonal matrix with
each block on diagonal as the frontal slice A

(i)
of A. A has

the following form:

A = bdiag(A) =

⎡
⎢⎢⎢⎢⎣

A
(1)

A
(2)

. . .

A
(n3)

⎤
⎥⎥⎥⎥⎦ . (2)

Definition 3 (Kilmer et al. 2013) For a 3-way tensor A ∈
R

n1×n2×n3 , its block circulant matrix is a matrix of n1n3 ×
n2n3 having the following form:

bcirc(A) =

⎡
⎢⎢⎢⎣

A(1) A(n3) ... A(2)

A(2) A(1) ... A(3)

...
...

. . .
...

A(n3) A(n3−1) ... A(1)

⎤
⎥⎥⎥⎦ . (3)

Definition 4 (Kilmer et al. 2013) For a tensor
A∈ R

n1×n2×n3 , we have

unfold(A) =
[
A(1);A(2); · · · ;A(n3)

]
,

fold(unfold(A)) = A.
(4)

Definition 5 (Kilmer et al. 2013) (t-product) Let A ∈
R

n1×n2×n3 and B ∈ R
n2×l×n3 , then the t-product between

them is E ∈ R
n1×l×n3 , i.e.,

E = A ∗B = fold(bcirc(A)·unfold(B)), (5)

t-product between A and B can be computed efficiently by

1. Calculate A = fft(A, [], 3) and B = fft(B, [], 3);
2. Multiply the each pair of the frontal slices of Ā and B̄ to

obtain Ē ;
3. Calculate E = ifft(Ē , [], 3);
Definition 6 (Kilmer et al. 2013) A tensor is called f-
diagonal if each of its frontal slices is diagonal matrix.

Theorem 1 (Kilmer et al. 2013). Block-circulant matrix
can be block-diagonalized by

(Fn3 ⊗ In1)·bcirc(A)·(Fn3

−1 ⊗ In2) = A, (6)

where ⊗ denotes the Kronecker product, Fn3
is the n3 ×

n3 Discrete Fourier Transform (DFT) matrix, In1
and In2

denote n1 × n1 and n2 × n2 identity matrices, respectively.

Theorem 2 (Kilmer et al. 2013) (T-SVD). Let A ∈
R

n1×n2×n3 , then A can be factored as

A = U ∗ S ∗ VT , (7)

where U ∈ R
n1×n1×n3 and V ∈ R

n2×n2×n3 are orthogo-
nal, S ∈ R

n1×n2×n3 is a f-diagonal tensor.

Definition 7 (Zhang et al. 2014) (tensor nuclear norm).
Given A ∈ R

n1×n2×n3 , its nuclear norm is

‖A‖� =
∑n3

i=1

∥∥∥A(i)
∥∥∥
∗
, (8)

where
∥∥∥A(i)

∥∥∥
∗

is nuclear norm of A
(i)

, which is the sum of

all singular values of A
(i)

.

WTNNM

Problem Formulation and objective

In real applications (Lu et al. 2016; Yuan et al. 2018;
Wu, Lin, and Zha 2019; Hu et al. 2017), most existing t-
SVD based tensor low-rank approximation methods involve
to solve the following tensor nuclear norm minimization:

argmin
X

1

2
‖X −A‖2F + τ‖X‖�. (9)

The optimization solution of model (9) can be obtained
by solving n3 independent optimization problems. Denote
by r the number of singular values of A

(i)
, the i-th (i =

1, 2, · · · , n3) optimization problem is

argmin
X

(i)

1
2

∥∥∥X(i) −A
(i)
∥∥∥2
F
+

r∑
j=1

τ ∗ σj(X̄
(i)). (10)

The most low rank matrix X
(i)∗

in the model (10) can
well be recovered by soft-thresholding of singular values of
A

(i)
with the same parameter τ . As the aforementioned in

Section 1, this is not very reasonable since different singular
values may have different importance and hence they should
be treated differently. It indicates that the model (9) may
not work well in real applications. To this end, we propose
the following weighted tensor nuclear norm minimization
(WTNNM) problem

argmin
X

1

2
‖X −A‖2F + τ‖X‖ω,�, (11)

where ‖X‖ω,� is called the weighted nuclear norm of tensor
X ∈ n1×n2×n3 , which is defined

‖X‖ω,� =

n3∑
i=1

‖X̄(i)‖ω,∗ =

n3∑
i=1

min(n1,n2)∑
j=1

ωj ∗ σj

(
X̄(i)

)
,

(12)
where, σj(X̄

(i)) denotes the j largest singular value of X̄(i),
ωj denotes the j element of vector ω.

It can be seen that, when tensor X ∈ n1×n2×n3 becomes
a 2-order matrix X (n3 = 1), we have X = X̄(1), then the
model (12) becomes

‖X‖ω,∗ =

min(n1,n2)∑
i=1

ωiσi(X),

which is called weighted nuclear norm. It indicates that our
WTNNM can also be applied to matrix nuclear norm min-
imization. Moreover, when ∀ i, ωi = 1, WTNNM becomes
the existing tensor nuclear norm minimization which has
been widely used in multi-view subspace clustering, image
denoising, and matrix completion. Thus, WTNNM can also
be used in the aforementioned areas.
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Optimization

For solving the weighted tensor nuclear norm minimization,
i.e., the model (11), we first introduce the following two
Theorems.
Theorem 3 Let Y = UY ∗ DY ∗ VT

Y be the SVD of
Y ∈ R

m×n, τ > 0, l = min(m,n), the standard weighted
nuclear norm minimization is

argmin
X

1

2
‖X−Y‖2F + τ‖X‖ω,∗. (13)

Then, the optimal solution of the model (13) is (Chen, Dong,
and Chan 2013)

Γτ∗ω[Y] = UY Pτ∗ω(Y)VT
Y , (14)

where,
Pτ∗ω(Y) = diag(γ1, γ2, · · · , γl),

γi = sign(σi(Y))max(σi(Y)− τ ∗ ωi, 0).

Theorem 4 For A ∈ R
n1×n2×n3 , l = min(n1, n2), let

A = U ∗ S ∗ VT . For

argmin
X

1

2
‖X −A‖2F + τ‖X‖ω,�, (15)

then, the optimal solution is
X ∗ = Γτ∗ω(A) = U ∗ ifft(Pτ∗ω(A)) ∗ VT , (16)

where, Pτ∗ω(A) is a tensor, Pτ∗ω(A
(i)
) is the i-th frontal

slice of Pτ∗ω(A).
Proof: In Fourier domain, the optimization problem can

be reformulated as:

X ∗
= argmin

X

1

2

∥∥X −A∥∥2
F
+

n3∑
i=1

l∑
j=1

τ ∗ ωj ∗ σj(X̄
(i)).

(17)
According to Definition 1, we have

argmin
X

n3∑
i=1

( 12

∥∥∥X(i) −A
(i)
∥∥∥2
F
+

l∑
j=1

τ ∗ ωj ∗ σj(X̄
(i))),

(18)
where, X

(i)
is the i-th frontal slice of X , σj(X̄

(i)) denotes
the j largest singular value of X̄(i), ωj is the weighted coef-
ficient of σj(X̄

(i)).

In Eq. (18), each variable X
(i)

is independent. Thus, it
can be divided into n3 independent subproblems. For the i-
th (i = 1, 2, · · · , n3) subproblem, we have

X
(i)∗

= argmin
X

(i)

1
2

∥∥∥X(i) −A
(i)
∥∥∥2
F
+

l∑
j=1

τ ∗ ωj ∗ σj(Ā
(i)).

(19)

According to Theorem 3, the solution of Eq. (19) is
X

(i)∗
= Γτ∗ω[A

(i)
] = Ū(i)Pτ∗ω(A

(i)
)V̄(i)T , which is the

i-th frontal slice of X ∗
. According to Definition 5, we can

easily get
X ∗ = Γτ∗ω[A] = U ∗ ifft(Pτ∗ω

(A)
) ∗ VT , (20)

where U = ifft(U , [], 3) and U(i) is the i-th frontal slice
of U , V = ifft(V , [], 3) and V(i) is the i-th frontal slice of
V .

Figure 1: Tensor Z Construction.

Multi-view Clustering based on WTNNM
Tensor nuclear norm minimization has been widely used
in multi-view clustering and obtains impressive experimen-
tal results (Yuan et al. 2018; Wu, Lin, and Zha 2019;
Hu et al. 2017). However, none of the existing multi-view
clustering methods, which are based on tensor low-rank con-
straint, takes into account the prior knowledge of matrix
singular values, which is important for clustering. To han-
dle this limitation, we proposed a new Multi-view Subspace
Clustering by WTNNM. The objective function is

min
Z(v),E(v)

λ‖E‖2,1 + ‖Z‖ω,�

s.t. X(v) = X(v)Z(v) +E(v), v = 1, ..., V
Z = Φ(Z(1),Z(2), ...,Z(V )),
E = [E(1);E(2); ...;E(V )],

(21)

where the function Φ(•) constructs the tensor Z by merging
different representation Z(v) to a 3-way tensor, and then ro-
tate its dimensionality to N × V ×N (See Figure 1). Thus,
we have

Φ−1
(v)(Z) = Z(v), (22)

where Φ−1(•) denotes the inverse function of Φ(•), and its
subscript (v) means to extract the v-th frontal slice.

The above optimization problem can be solved by using
the Augmented Lagrange Multiplier (ALM). To adopt alter-
nating direction minimizing strategy to the model (21), we
introduce an auxiliary tensor variable J and rewrite it as
minimizing the following unconstrained problem.

L(Z(1),Z(2), ...,Z(V );E(1);E(2); ...;E(V );J )
= λ‖E‖2,1 + ‖J ‖ω,�
+ 〈W ,Z −J 〉+ ρ

2 ‖Z −J ‖2F
+

V∑
v=1

〈
Yv,X

(v) −X(v)Z(v) −E(v)
〉

+
V∑

v=1

μ
2

∥∥X(v) −X(v)Z(v) −E(v)
∥∥2
F
.

(23)

where the matrix Yv and tensor W represent two Lagrange
multipliers, μ and ρ are actually the penalty parameters.

The alternative minimization scheme is adopted for up-
dating Z(v), E(v) and J , respectively. The main procedure
can be partitioned into the following three steps.

Z(v)-subproblem (variables E and J are fixed):
Since Φ−1

(v)(J ) = J(v), Φ−1
(v)(W) = W(v), the model (23)

becomes
min
Z(v)

〈
Yv,X

(v) −X(v)Z(v) −E(v)
〉

+μ
2

∥∥X(v) −X(v)Z(v) −E(v)
∥∥2
F

+
〈
W(v),Z(v) − J(v)

〉
+ ρ

2

∥∥Z(v) − J(v)
∥∥2
F
.

(24)
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By setting the derivative of Eq. (24) to zero, we have

Z(v)∗= (I+μ
ρX

(v)TX(v))
−1

(
(X(v)TYv + μX(v)TX(v)

− μX(v)TE(v) −W(v))/ρ+ J(v)
)
.

(25)
E(v)-subproblem (other variables Z(v) and J are fixed):

In this case, the model (23) becomes

argmin
E

λ‖E‖2,1 +
V∑

v=1

〈
Yv,X

(v) −X(v)Z(v) −E(v)
〉

+
V∑

v=1

μ
2

∥∥X(v) −X(v)Z(v) −E(v)
∥∥2
F

= argmin
E

λ
μ‖E‖2,1 + 1

2 ‖E−D‖2F .

(26)
The optimal solution is (Guangcan et al. 2013)

E∗
:,i =

{ ‖D:,i‖2−λ
μ

‖D:,i‖2
D:,i ‖D:,i‖2 > λ

μ

0 otherwise
(27)

where D:,i denotes the i-th column of D = [D1; · · · ;DV ],
Dj = X(j) −X(j)Z(j)+ 1

μYj , j = 1, · · · , V .
J -subproblem (Variables Z(v) and E are fixed):

In this case, the model (23) becomes

J ∗ = argmin
1

ρ
J

‖J ‖ω,� +
1

2

∥∥∥∥J − (Z +
1

ρ
W)

∥∥∥∥
2

F

.

(28)
According to Theorem 4, the solution is

J ∗=Γτ∗ω(Z +
1

ρ
W). (29)

Additionally, Lagrange multipliers Yv and W need to be
updated as follows:

Y∗
v = Yv + μ(X(v) −X(v)Z(v) −E(v)), (30)

W∗ = W + ρ(Z − G). (31)

Finally, we summarize the pseudo code in Algorithm 1.

Experimental Results and Analysis

Database and Competitors

Database We use five common databases, which involve
different clustering tasks, including digit clustering, face
clustering, scene clustering. We briefly introduce these
databases as follows. (1) Yale1 face database has 165
grayscaling images of 15 persons. Each subject includes 11
different images about expression and configuration. Just
as (Luo et al. 2018), we extract three types of features: 4096
dimensions intensity feature, 3304 LBP feature, and 6750
dimensions Gabor feature. (2) Notting-Hill video based
face dataset (Zhang et al. 2009) is constructed from the
movie ’Notting Hill’, where the faces of 5 main casts are
collected, including 4660 face in 76 tracks. We randomly
choose 110 images of each cast, and extract LBP, Gabor and

1http://vision.ucsd.edu/content/yale-face-database

Algorithm 1 WTNNM for Multi-view clustering

Input: Multi-view feature matrices: X(1), X(2), ... ,
X(V ), λ, ω, and cluster number K
Output: Clustering result C
Initialized: Z(v) = 0, E(v) = 0, Yv = 0, i = 1, ..., V ,
J = W = 0, μ = 10−5, ρ = 10−4, η = 2, μmax =
ρmax = 1010, ε = 10−7

while not converge do
(1) Update Zk+1 by Eq. (25)
(2) Update E by solving Eq. (26)
(3) Update Yk+1 by Eq. (30)

(4) Obtain Zk+1 = Φ(Z
(1)

k+1,Z
(2)
k+1, ...,Z

(V )

k+1)
(5) Update J k+1 by solving Eq. (29)
(6) Update Wk+1 by solving Eq. (31)
(7) Update parameters μk+1 and ρk+1 : μk+1 =
min(ημk, μmax), ρk+1 = min(ηρk, ρmax)

(8) Obtain (J
(1)

k+1,J
(2)
k+1, ...,J

(V )

k+1) = Φ−1(J k+1)
(9) Check the convergence conditions:∥∥∥X(v)

k+1 −X
(v)
k+1Z

(v)
k+1 −E

(v)
k+1

∥∥∥
∞

< ε∥∥∥Z(v)
k+1 − J

(v)
k+1

∥∥∥
∞

< ε

end
(10) Obtain the affinity matrix by

S = 1
V

V∑
v=1

∣∣Z(v)
∣∣+ ∣∣∣Z(v)T

∣∣∣
(11) Obtain the clustering result C using the spectral clus-
tering method with the affinity matrix S.

intensity features following the work in (Luo et al. 2018).
(3) Caltech-101 database2 contains 8677 images of ob-
jects belonging to 101 categories, with about 40 to 800 im-
ages per category. In the experiments, we select the widely
used 7 classes, i.e. Face, Motorbikes, Dolla-Bill, Garfield,
Snoopy, Stop-sign and Windsor-Chair, leading to 1474 im-
ages, and extract 620 dimension HOG feature, 1160 dimen-
sion LBP feature and 2560 dimension Sift feature. (4) UCI-
Digits (Asuncion and Newman 2007) consists of 2000 digits
images corresponding to 10 classes. There are three differ-
ent views. (5) Scene-15 has 15 natural scene categories with
both indoor and outdoor environments, including industrial,
store, bedroom, kitchen and so on. There are 4485 images
features and three different views (Yuan et al. 2018).

Competitors To evaluate and compare the performance
of our work on the mentioned five databases, we choose
the following clustering algorithms as competitors: (1) Best
Single View (termed as SC): Choosing the best result as fi-
nal result among all results which can be obtained by using
spectral clustering with a single view of data respectively.
(2) Feature Concatenation (Feature): Performing the spec-
tral clustering on the new feature representation constructed
by concatenating the feature of each view. (3) RMSC (Xia
et al. 2014). (4) CSMSC (Luo et al. 2018). (5) MLAN (Nie,
Cai, and Li 2017).(6) t-SVD-MSC (Yuan et al. 2018). (7)

2http://www.vision.caltech.edu/Image Datasets/Caltech101/
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Table 1: Experimental results on the Yale, the Notting-Hill, the Caltech-101, the UCI-Digits and Scene-15.
Dataset Metric SC Feature MLAN RMSC CSMSC t-SVD-MSC ETLMSC Our work

Yale

ACC 0.556±0.044 0.539±0.043 0.498±0.003 0.703±0.037 0.750±0.002 0.874±0.013 0.659±0.043 0.979±0.000
NMI 0.592±0.034 0.588±0.026 0.567±0.003 0.723±0.020 0.783±0.002 0.918±0.010 0.697±0.038 0.975±0.000

Purity 0.567±0.044 0.551±0.038 0.521±0.004 0.709±0.035 0.750±0.002 0.883±0.012 0.659±0.043 0.979±0.000
F-Score 0.403±0.042 0.391±0.035 0.312±0.003 0.563±0.029 0.639±0.001 0.834±0.020 0.533±0.049 0.958±0.000
Recall 0.427±0.038 0.413±0.034 0.438±0.016 0.592±0.029 0.671±0.004 0.865±0.018 0.550±0.048 0.959±0.000

AR 0.362±0.045 0.349±0.038 0.253±0.004 0.533±0.031 0.615±0.001 0.823±0.022 0.501±0.053 0.955±0.000

Notting-Hill

ACC 0.837±0.057 0.725±0.080 0.720±0.064 0.818±0.027 0.927±0.000 0.965±0.000 0.942±0.000 0.984±0.000
NMI 0.715±0.016 0.615±0.065 0.707±0.058 0.763±0.034 0.832±0.000 0.919±0.000 0.902±0.000 0.956±0.000

Purity 0.852±0.025 0.756±0.049 0.768±0.064 0.842±0.014 0.927±0.000 0.965±0.000 0.942±0.000 0.984±0.000
F-Score 0.770±0.047 0.675±0.076 0.720±0.059 0.807±0.046 0.883±0.000 0.935±0.000 0.905±0.000 0.973±0.000
Recall 0.766±0.037 0.673±0.072 0.835±0.012 0.805±0.054 0.880±0.000 0.922±0.000 0.887±0.000 0.968±0.000

AR 0.706±0.061 0.585±0.099 0.626±0.085 0.754±0.058 0.850±0.000 0.918±0.000 0.879±0.000 0.966±0.000

Caltech-101

ACC 0.545±0.030 0.558±0.004 0.587±0.000 0.529±0.029 0.567±0.000 0.556±0.000 0.642±0.000 0.830±0.000
NMI 0.441±0.019 0.438±0.009 0.492±0.000 0.371±0.012 0.480±0.000 0.512±0.000 0.610±0.000 0.880±0.000

Purity 0.624±0.022 0.624±0.012 0.655±0.000 0.565±0.015 0.633±0.000 0.649±0.000 0.739±0.000 0.909±0.000
F-Score 0.498±0.017 0.484±0.007 0,475±0.000 0.432±0.024 0.495±0.000 0.498±0.000 0.617±0.000 0.861±0.000
Recall 0.540±0.020 0.511±0.009 0.592±0.000 0.461±0.052 0.498±0.000 0.509±0.000 0.638±0.000 0.834±0.000

AR 0.390±0.024 0.376±0.012 0.347±0.000 0.313±0.022 0.395±0.000 0.396±0.000 0.539±0.000 0.835±0.000

UCI-Digits

ACC 0.680±0.040 0.541±0.029 0.970±0.000 0.892±0.053 0.927±0.000 0.995±0.000 0.994±0.000 0.998±0.000
NMI 0.641±0.012 0.555±0.014 0.934±0.000 0.842±0.020 0.855±0.000 0.986±0.000 0.985±0.000 0.993±0.000

Purity 0.686±0.032 0.570±0.022 0.970±0.000 0.898±0.040 0.927±0.000 0.995±0.000 0.994±0.000 0.998±0.000
F-Score 0.576±0.022 0.451±0.013 0.941±0.000 0.828±0.036 0.862±0.000 0.990±0.000 0.988±0.000 0.995±0.000
Recall 0.587±0.016 0.468±0.013 0.942±0.000 0.837±0.027 0.865±0.000 0.990±0.000 0.988±0.000 0.995±0.000

AR 0.529±0.025 0.388±0.015 0.934±0.000 0.809±0.040 0.847±0.000 0.989±0.000 0.987±0.000 0.994±0.000

Scene-15

ACC 0.680±0.040 0.312±0.016 0.340±0.031 0.519±0.000 0.509±0.000 0.892±0.000 0.871±0.000 0.904±0.000
NMI 0.456±0.012 0.288±0.006 0.486±0.029 0.488±0.000 0.564±0.000 0.919±0.000 0.891±0.000 0.932±0.000

Purity 0.534±0.020 0.351±0.016 0.351±0.034 0.559±0.000 0.611±0.000 0.922±0.000 0.906±0.000 0.933±0.000
F-Score 0.374±0.015 0.214±0.005 0.262±0.033 0.402±0.000 0.433±0.000 0.883±0.000 0.853±0.000 0.901±0.000
Recall 0.372±0.014 0.217±0.004 0.740±0.043 0.399±0.000 0.489±0.000 0.892±0.000 0.863±0.000 0.916±0.000

AR 0.328±0.017 0.155±0.005 0.167±0.041 0.358±0.000 0.385±0.000 0.874±0.000 0.842±0.000 0.893±0.000

Figure 2: Confusion matrices on Yale database

ETLMSC (Wu, Lin, and Zha 2019).

Parameter Setting In our experiments, we tune the pa-
rameter λ in the range of [0.0001, 0.0005, 0.001, 0.005,
0.01, 0.05, 0.1, 0.5, 1, 5, 10, 100], and the weight ωi ∈
(0, 100] to get the best results. Specifically, λ is set to 1,
the weight vector ω is set to (1; 10; 100) on Yale dataset; λ
is set to 0.5, the weight vector ω is set to (1; 10; 100) on
Notting-Hill dataset; λ is set to 0.01, the weight vector ω is
set to (0.5; 5; 10) on Caltech-101 dataset; λ is set to 0.01, the
weight vector ω is set to (1; 10; 100) on UCI-Digits dataset;
λ is set to 0.005, the weight vector ω is set to (0.5; 1; 5) on
Scene-15 dataset. For all the compared methods, we follow
the experiments in the corresponding paper. We run each ex-
periment 10 times and report the average and standard devi-
ation.

Experimental Results and Analysis

To adequately evaluate the performance of clustering, we
use six commonly used indexes including accuracy(ACC),
normalized mutual information (NMI), purity, F-score,
Recall, and Adjusted Rand index (AR). We run each
experiment 10 times, Table 1 lists the results on all
the five datasets. From Table 1, we have the follow-
ing observations. 1) Our method achieves the best per-
formance on all the five databases. For example, on
Yale dataset, our method indicates a significant increase
of 10.5%,5.7%,9.6%,12.4%,9.4%, and 13.2% w.r.t ACC,
NMI, Purity, F-score, Recall and AR, respectively, com-
pared to the corresponding second best baseline. On Scene-
15 dataset with 4485 images in three views, our method
shows 1.2%, 1.3%,1.1%, 1.8%, 2.4%, and 1.9% of relative
improvement w.r.t ACC, NMI, Purity, F-score, Recall and
AR over the corresponding second best baseline. 2) The ten-
sor based methods, including t-SVD-MSC, ETLMSC and
our method, achieve significant improvement compared with
all other methods in most cases. This great improvement is
attributed to effectiveness of high order correlation explo-
ration. In addition, the complementary information among
different views can be explored more efficiently and thor-
oughly by the tensor based methods. 3) Multi-view meth-
ods mostly achieve superior performance gain over the stan-
dard spectral clustering method based on single view, which
demonstrates the necessity of combining multiple views for
clustering. MLAN achieves lower performance than the best
spectral clustering method on Yale database, Notting-Hill

3935



Figure 3: Convergence curves on the Caltech-101 database

database and Scene-15 database. It is probably because the
heterogeneous information underlying different views leads
to poor similarity matrix by MLAN. And feature concate-
nation performs poorly than the best single view on all the
five datasets except Caltech-101. It is mainly because fea-
ture concatenation directly concatenates all the views, but
ignores the relation between different views. This leads to
the redundancy of view features. Moreover, confusion ma-
trices performed by t-SVD-MSC and our method are shown
in Figure 2, where row and column are true and predicted
labels respectively. Here, the cluster label is predicted by
the best permutation mapping function used in the metric
of ACC. We can see that, compared with t-SVD-MSC, our
method wins in almost all categories in terms of clustering
accuracy.

Convergence analysis

It is a well-known fact that the convergence of inexact ALM
with three or more blocks variables is unclear (Eckstein and
Bertsekas 1992). Thus, it is difficult to prove the conver-
gence of Algorithm 1 in theory because there are more than
3 block variables in Algorithm 1 and the objective function
of (23) is not smooth. Fortunately, according to the theo-
retical results in (Eckstein and Bertsekas 1992), two condi-
tions are sufficient (but may not necessary) for Algorithm
1 to converge: (1) each feature matrix X(v) is of full col-
umn rank; (2) the optimality gap produced in each iteration
step is monotonically decreasing. The first condition is easy
to obey by factorizing Z(v) into H(v)Z̄(v), where H(v) can
be computed in advance by orthogonalizing the columns of
X(v)T (Guangcan et al. 2013). For the second condition,
the convexity of the Lagrangian function could guarantee its
validity to some extend according to the work of Eckstein
and Bertsekas (Eckstein and Bertsekas 1992). Therefore,
the proposed WTNNM algorithm ensures good convergence
properties. In the experiment, we show the convergence of
reconstruction error

∥∥∥X(v)
k+1 −X

(v)
k+1Z

(v)
k+1 −E

(v)
k+1

∥∥∥
∞

and

variable error
∥∥∥Z(v)

k+1 − J
(v)
k+1

∥∥∥
∞

of our algorithm on the

Figure 4: Performances vs. different weighted values on the
Scene-15 database.

Caltech-101 dataset in Figure 3. It can be seen that our
method has a good convergence and perform well in real-
ity.

Weighted values analysis

Fig. 4 shows the results by using the different weighted
values on the Scene-15 database. It can be seen that the
weighted parameter ω has a large efficiency for clustering
performance, which indicates the importance of prior knowl-
edge of singular values. Our method overall has good perfor-
mances (ACC and NMI) with ω = [0.5, 1, 5]. This is proba-
bly because that each singular value of a matrix usually has
different roles to the robustness of clustering algorithms in
the existence of illumination and noise.

Conclusion

We have studied the weighted tensor nuclear norm mini-
mization and propose an efficient iterative algorithm, which
has good convergence. Our method can also be used to solve
the matrix nuclear norm minimization, which have been
widely used in machine learning and artificial intelligence.
Moreover, applying our proposed weighted tensor nuclear
norm to multi-view clustering, we develop an novel sub-
space clustering algorithm which well captures both the high
order information and complementary information embed-
ded in multi-view data. Extensive experimental results indi-
cate that our method is superiority to state-of-the-art multi-
view subspace clustering methods.
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