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Abstract

While recent advances in machine learning put many focuses
on fairness of algorithmic decision making, topics about fair-
ness of representation, especially fairness of network rep-
resentation, are still underexplored. Network representation
learning learns a function mapping nodes to low-dimensional
vectors. Structural properties, e.g. communities and roles,
are preserved in the latent embedding space. In this paper,
we argue that latent structural heterogeneity in the observa-
tional data could bias the classical network representation
model. The unknown heterogeneous distribution across sub-
groups raises new challenges for fairness in machine learn-
ing. Pre-defined groups with sensitive attributes cannot prop-
erly tackle the potential unfairness of network representation.
We propose a method which can automatically discover sub-
groups which are unfairly treated by the network represen-
tation model. The fairness measure we propose can evalu-
ate complex targets with multi-degree interactions. We con-
duct randomly controlled experiments on synthetic datasets
and verify our methods on real-world datasets. Both quanti-
tative and quantitative results show that our method is effec-
tive to recover the fairness of network representations. Our
research draws insight on how structural heterogeneity across
subgroups restricted by attributes would affect the fairness of
network representation learning.

1 Introduction

There are increasing demands for machine learning on di-
verse real-world applications such as policing (Brennan,
Dieterich, and Ehret 2009), lending (Mahoney and Mohen
2007) and credit scoring (Khandani, Kim, and Lo 2010).
Fair decision making has become more and more impor-
tant for machine learning research. Several notions have
been defined for algorithmic fairness (Dwork et al. 2012;
Hardt et al. 2016; Zafar et al. 2015). Among these methods,
fairness is measured for individuals or pre-defined groups
based on statistical quantities like false positive / negative
rates or classification rates. Recently, more and more pa-
pers notice that the fairness of decision making process is
highly dependent on biases which already exist in data col-
lection process (Chen, Johansson, and Sontag 2018). In par-
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allel, fairness of representation learning receives a lot of
attentions (Edwards and Storkey 2015; Song et al. 2018;
Madras et al. 2018). Among these methods, people are try-
ing to learn similar representations for different groups, to
ensure that the consequent decision making is independent
of group attributes (Zhao and Gordon 2019).

Despite the recent research focus on fair machine learn-
ing, the study of fair representation in networks still lacks
exploration. Comparing with existing work, the challenges
are two-fold: on the one hand, unlike statistical quantities
of single decision variables, fairness of network representa-
tion requires to compare multi-degree interactions between
nodes. We need to develop a new statistical measure to
evaluate the differences between node representations. On
the other hand, as pointed out by some research, when we
only ensure fairness for some small amount of pre-defined
subgroups, it might actually increase rather than decrease
model discrimination (Kearns et al. 2017). In order to pre-
vent this problem, we propose to investigate the fairness of
network representation by generating subgroups with regard
to any combinations of attributes. Computational cost would
be very high due to the exponentially increasing amount
of subgroups. We tackle this problem by employing ex-
ceptional model mining (Duivesteijn, Feelders, and Knobbe
2016), a framework of generating and evaluating subgroups
by heuristically exploring the attribute space.

Before discussing fairness of network representation, we
firstly focus on structural heterogeneity in networks. Un-
known heterogeneity across the data can lead a model to be
very effective for some subpopulations and ineffective for
some other subpopulations (Pearl 2017). We argue in this
paper that the potential unfairness of network representation
is associated with the structural heterogeneity in networks.
In Figure 1, we demonstrate a toy example of structural het-
erogeneity and show how it can affect the network represen-
tation. As we can see, the network structure in subgroups
‘x = 1’ and ‘x = 0’ are very different from each other. A
random walk based neighborhood function will generate dif-
ferent distributions of nodes in neighborhoods conditioned
on different attributes. The classical network representation
model could be biased. These biased representations might
lead to unfairness of consequential decision making models.
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Figure 1: Toy example: dashed lines represent edges with
attribute x = 0, solid lines represent edges with attribute
x = 1. Obviously, the distributions of nodes in neighbor-
hoods conditioned on different attributes (P (N(Vo)|x = 1),
P (N(Vo)|x = 0)) are different. This can lead to very differ-
ent representation functions.

The study of fair machine learning should prevent the prop-
agation of bias from the data to modeling results (Madras et
al. 2019).

In this paper, we propose to analyze the latent structural
heterogeneity across subgroups and discuss its effects on the
fairness of network representations. Top-Q subgroups with
highest measurement scores are reported to recover the fair-
ness of a network representation model. In order to inves-
tigate whether the reported subgroups represent significant
signals in the data, we conduct hypothesis testing against
random noise.

1.1 Main Contributions

• We study the problem of fairness in terms of the latent
structural heterogeneity across subgroups in networks. As
far as we know, this is the first work which considers
structural heterogeneity to measure the fairness of net-
work representation.

• We propose a new measurement, mean latent similarity
discrepancy (MLSD) to quantify the differences between
node representations. MLSD can calculate the statistical
discrepancy between node representations which is sensi-
tive to structural heterogeneity.

• We conduct hypothesis testing to verify the significance of
fairness score, distinguishing structural discrepancy from
randomized noise. We design a series of randomized ex-
periments on synthetic and real-world datasets to evaluate
our method qualitatively and quantitatively.

2 Related Work

Previous work on fair machine learning mainly focuses on
the level of a group or individual. Pre-defined sensitive at-
tributes are required, which is not applicable in many real-
world applications (Kearns et al. 2017). Fairness on groups
is normally measured by statistical parity, which requires
positive / negative rate to be equal across groups with re-
gard to sensitive variables (Hardt et al. 2016). Fairness on
individuals requires similar individuals to be treated simi-
larly by the models (Dwork et al. 2012). In contrast, fairness
of network representation requires to compare more com-
plex relations rather than a single decision variable. For this
reason, we propose MLSD which focuses on measuring the
statistical discrepancy between node representations.

Representation learning is specified to learn multiple de-
grees of similarities between units (Mikolov et al. 2013b)
in large datasets. This technique is widely used to discover
word similarities known as word embedding (Mikolov et
al. 2013a) and node similarities known as graph embed-
ding (Hamilton, Ying, and Leskovec 2017). Network repre-
sentation learning enables us to learn low-dimensional vec-
tor representations for nodes from their neighborhood struc-
tures. There is a lot of work on learning vector representa-
tions of nodes in graphs (Perozzi, Al-Rfou, and Skiena 2014;
Grover and Leskovec 2016) . Most existing work on fair-
ness of representation focuses on adversely learning fair
representations across groups and preserving highly predic-
tive information for decision making (Zemel et al. 2013).
Conversely, we focus on fairness of network representation,
which requires definition of a new measurement with regard
to the structural heterogeneity in networks. Our work can
help people understand how structural heterogeneity is cor-
related with attributes and how unfairness of network repre-
sentation exists by heuristically discovering subgroups.

The aim of Subgroup Discovery (SD) (Klösgen 1996;
Wrobel 1997; Herrera et al. 2011; Atzmueller 2015) is to
find subsets restricted by descriptive attributes, in which
the distribution of one predefined target variable is substan-
tially different from the distribution in the whole dataset.
Exceptional Model Mining (EMM) (Duivesteijn, Feelders,
and Knobbe 2016) can be seen as an extension of SD, which
focuses on multiple target variables. EMM can integrate var-
ious model classes with different performance measures to
adapt to different tasks, e.g. Bayesian networks (Duivesteijn
et al. 2010). Most of the existing model classes cannot han-
dle structural properties in networks. Weighted relative ac-
curacy was introduced to evaluate characteristics in sub-
graph (Bendimerad, Plantevit, and Robardet 2016), first-
order Markov chains have been introduced as a model class
for sequential data (Lemmerich et al. 2016). However, struc-
tural properties, especially role structures (Jin, Lee, and
Hong 2011) are not considered in those methods.

In EMM, a quality measure is defined to evaluate the
differences between the target models within and outside
of the subgroup. Popular examples of quality measures in-
clude WRAcc (Todorovski, Flach, and Lavrač 2000) and
z-score (Mampaey et al. 2015). In order to compare the
network representations which preserve the structural prop-
erties, we design the Mean Latent Similarity Discrepancy
(MLSD) quality measure, based on the U-statistic (Korolyuk
and Borovskich 2013). MLSD calculates the mean discrep-
ancy between latent similarities of node vectors, reflecting
the statistical difference between network representations.

3 Problem Setup

We assume a dataset Ω: a set of M nodes v ∈ V and a bag
of N records r ∈ Ω of the form r = (x1, . . . , xk, vo, vd),
where k is a positive integer and vo, vd refer to a directed
edge from the origin vo to the destination vd (cf. Table 1).
We call x1, . . . , xk descriptive variables, and vo, vd target
variables. The descriptive variables are taken from an unre-
stricted domain A. Mathematically, we define descriptions
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Records Descriptive Variables Target Variables
r1 x11, . . . , x

1
k v1o , v

1
d

...
...

. . .
...

...
rn xn1 , . . . , x

n
k vno , v

n
d

Table 1: A network dataset of N edges over a set of nodes
V = {v1, . . . , vm} and attributes X= {x1, . . . , xk}.

as functions D : A → {0, 1}. A description D covers a
record ri if and only if D(xi1, . . . , x

i
k) = 1.

Definition 1 (Subgroup) A subgroup corresponding to a
description D is the bag of records SD ⊆ Ω that D cov-
ers, i.e.

SD =
{

ri ∈ Ω
∣∣D(xi1, . . . , x

i
k) = 1

}
.

Definition 2 (Quality Measure) A quality measure is a
function ϕ : D → R that assigns a numeric value to a de-
scription D. Occasionally, we use ϕ(S) to refer to the qual-
ity of the induced subgroup: ϕ(SD) = ϕ(D).
Typically, a quality measure assesses the subgroup at hand
based on the target variables. Hence, a description and a
quality measure interact through different partitions of the
dataset columns; the former focuses on the descriptors, the
latter focuses on the targets, and they are linked through the
subgroup.

We can model the network as GD = (V,E,X,D), where
V represents set ofM nodes, E set ofN edges,X attributes
attached on E, and D a description which is satisfied by X .
We can define the neighborhood N(vo) ⊂ V as a set of
nodes generated by a sampling strategy starting from node
vo. In this paper, we consider local community structures,
though our method can be easily extended to global role
structure (Ribeiro, Saverese, and Figueiredo 2017; Pei et
al. 2018). By defining the neighborhood function, we can
formulate a distribution of nodes in neighborhoods condi-
tioned on attributes P (N(vo)|D). If there is structural het-
erogeneity in networks, then we could have P (N(vo)|D) �=
P (N(vo)), andP (N(vo)|D1) �= P (N(vo)|D2) whenD1 �=
D2. We would use this property to build the measurement for
fairness of network representation.

By following Skip model (Mikolov et al. 2013b), we
can learn a function θ : V → R

l, which maps each
node v ∈ V to a l-dimensional vector representation.
We select θD to maximize the probability of visiting
neighborhoods ND(vo) for each node in network: θD =
argmaxθD

∏
vo∈V p(ND(vo)|θD(vo)), where θD(vo) can

be represented as uo. We can formulate the problem of fair-
ness in network representation as an optimization problem
of searching subgroups with highest quality scores:
Problem 1 Given a dataset Ω and a quality measure ϕ,
our task is to find a sequence of Q descriptions h =
{D1, . . . , DQ}, such that ∀D′ ∈ D \ h, ϕ(D′) < ϕ(D),
∀D ∈ h.

4 Methodology
Node representations preserve the structural properties from
the original networks. In order to measure the fairness across

subgroups, we would like to evaluate the difference between
node representations learned from that subgroup and learned
from the whole dataset. To realize that, at first we need to
elicit a latent similarity matrix ZD, which indicates the sim-
ilarities between each node and any other nodes:

Zij
D =

d(ui, uj)∑V
j �=i d(ui, uj)

,

where d(ui, uj) is a distance measure between node i and j
in the latent embedding space, and

∑V
j �=i d(ui, uj) is a nor-

malizer that ensures
∑V

j �=i Z
ij
D = 1. Note that we do not

consider self loop edges so we let d(ui, ui) = 0. Now we
can compare the latent similarity matrix ZD from candi-
date subgroup with ZΩ from the whole data by using U-
statistics (Korolyuk and Borovskich 2013):

ϕu(D) =
1

m(m− 1)

m∑
i=0

m∑
j �=i

|Zij
D − Zij

Ω |1.

By virtue of variance, heterogeneous structures are likely
to occur in small subsets of the dataset (Duivesteijn,
Feelders, and Knobbe 2016), which are not the results we
want. To combat this problem, we incorporate the size of
subgroups in the quality measure, by considering the entropy
of the split between the records in subgroups and the rest of
the records (Duivesteijn et al. 2010):

ϕent(D) = −|D|
n

log2

( |D|
n

)
−n− |D|

n
log2

(
n− |D|

n

)
.

The final quality measure can be derived as:

ϕMLSD(D) =
√
ϕent(D) · ϕu(D).

By this quality measure, higher ϕMLSD(D) indicates more
unfair the network representation is on that subgroup. By
applying a search method guided by ϕMLSD(D), we can de-
rive the solution for problem 1.

4.1 Statistical Test

In Problem 1, we report the top-Q subgroups with most high-
est scores calculated by quality measure. However, we do
not know whether the scores are significant enough or just
a bit of differences because of the random noises. To solve
this problem, we assume that the reported vector of top-Q
scores is a random draw from distribution P. We propose
to independently run our method several times to generate
a set of samples from P, denoted by H := {h1, · · · , hx}.
On the other hand, we randomly shuffle the original data,
by permuting the attribute vectors attached with edges in
row (Batagelj and Brandes 2005). This can break the depen-
dencies between descriptive variables and targets, and build
datasets where the descriptive variables are independent
with network structures. After that, we apply our method
on each of the shuffled datasets to generate false discover-
ies1. By doing this, we can generate a set of samples from

1Because now we already know the ground truth: the descrip-
tive variables and network structures are independent.
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the distribution of false discoveries (PDFD ) (Duivesteijn and
Knobbe 2011), denoted by H̃ := {h̃1, · · · , h̃y}. Now we
can build the null hypothesis by assuming that H and H̃ are
from the same distribution:
Hypothesis 1 H and H̃ come from the same distribution.
If the null hypothesis is rejected, then we can be confident
that the top-Q subgroups reported by our method are statis-
tically significant. We can define the problem as:

Problem 2 Let h and h̃ be random variables defined on a
topological space H, with distribution P and PDFD . H :=
{h1, · · · , hx} and H̃ := {h̃1, · · · , h̃y} are defined as inde-
pendently and identically distributed samples from P and
PDFD respectively. The problem is to establish a statisti-
cal test and conduct hypothesis testing to decide whether
P = PDFD .

The main challenge for Problem 2 is that h and h̃ are mul-
tivariate (Q-length) and we do not have any prior knowl-
edge about distribution P and PDFD . Hence, classic Stu-
dent’s t-test and Hotelling’s T 2-test are not appropriate. In-
spired by (Gretton et al. 2012), we use an integral probabil-
ity metric (Müller 1997) based on distances between Hilbert
space mean embeddings of probability distributions, termed
as maximum mean discrepancy (MMD). Let F be a family
of functions f : H → R, we have:

MMD [F , P, PDFD ] := sup
f∈F

(EP [f(h)]− EPDFD [f(h̃)]),

where h and h̃, P and PDFD follow Problem 2. Empirically,
we can derive the unbiased estimate of the squared MMD in
terms of kernel functions ψ as:

MMD2
u[F ,H, H̃] =

1

x(x− 1)

x∑
i=1

x∑
j �=i

ψ(hi, hj)+

1

y(y − 1)

y∑
i=1

y∑
j �=i

ψ(h̃i, h̃j)− 2

xy

x∑
i=1

y∑
j=1

ψ(hi, h̃j),

which is a sum of two U-statistics and a sample average. Fol-
lowing (Anderson, Hall, and Titterington 1994), we would
like to use asymptotic distribution of MMD2

u under null hy-
pothesis for the hypothesis testing, by assuming that P and
PDFD are identical. Hence if we generate two new data sam-
ples from the aggregated data samples after random shuffle,
the MMD2

u should not change. We can construct null distri-
bution by re-shuffling the aggregated data samples and re-
computing the MMD2

u a lot of times. Given a significance
level α, if MMD2

u is so large as to be outside the 1−α quan-
tile of the null distribution, we can reject the null hypothesis,
otherwise we accept it.

5 Experiments

In this section, we design synthetic and real-world exper-
iments to validate our methodology against the following
questions:
QS1 When existing latent structural heterogeneity, will the

classical network representation model like node2vec per-
form fairly across different subgroups?

QS2 Can our method effectively measure fairness of net-
work representation considering structural heterogeneity
in subgroups?

QS3 Are the fairness measurement scores reported by our
method significant enough comparing with the random
noises?
The most difficult problem for evaluating our methods is

the missing of ground truth. For an observational dataset,
we do not know whether there is structural heterogeneity
and consequently we cannot know whether we can correctly
measure the fairness. To overcome this, we design experi-
ments with regard to synthetic data generated by controlling
the dependencies between descriptive variables and the net-
work structures. By doing this, the experiments can evalu-
ate the performance of our method by comparing with the
ground truth. For real-world datasets, we will never know
the ground truth, but the statistical test can help us to eval-
uate the methods against the random baselines. Qualitative
and visual analysis can be used to show the effectiveness of
the discoveries.

5.1 Datasets

Synthetic datasets with ground truth As synthetic
datasets, we employ modified versions of the two datasets
from (Girvan and Newman 2002). The two datasets are
called Karate and Football. We keep the original nodes and
community label and drop all the connections. The gener-
ating process of the synthetic datasets is governed by fol-
lowing parameters: the number of records N , the number of
descriptive variables K, the set of nodes V , and the set of
ground truth labels Y indicating communities. We propose
a randomized technique to model the dependencies between
target variables vd, vo and descriptive variables x1, . . . , xk.
Two kinds of heterogeneous structures are generated: one
is community structure in subgroups against uniform distri-
bution of edges in global, another is core-periphery struc-
ture (Borgatti and Everett 2000). We visualize two exam-
ples ‘KarateX4n10k’ (K=4,N=10, 000, |V |=34) and ‘Foot-
ballX4n10k’ (K=4, N=10, 000, |V |=115) in Figure 2. In
Figure 2a, triangles represent the edges inside communities
and dots represent uniform sampled edges between any pair
of nodes. We can see that blue triangles distribute uniformly
except in the black rectangle. In the ground truth subgroup,
the edges only exist in the local community. In Figure 2b,
we synthesize a simple core-periphery structure. This is one
of the simplest global role structures which consists of dense
and cohesive core nodes as well as sparse and unconnected
periphery nodes.

Real-world datasets As real-world datasets, two kinds of
data are used for the experiments: (1) the original edge
connections; and (2) extra data about the contextual infor-
mation. We collect the original edge connections includ-
ing ‘New York Taxi’ (http://www.nyc.gov/html/tlc/) (K=33,
N=1, 013, 845, |V |=265) and ‘Sharing Bike’ (https://datasf.
org/opendata/) (K=27, N=983, 000, |V |=70), as well as the
contextual information, e.g. weather records (https://www.
ncdc.noaa.gov/) and taxi information. By choosing these
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(a) KarateX4n1k. (b) FootballX4n10k.

Figure 2: Randomized synthetic datasets with ground truth.
Rectangles with solid lines denote ground truth subgroups.
Rectangles with dash lines denote the subgroups reported by
our method.

two datasets, we would like to show how network represen-
tation model can be biased by attributes like weather condi-
tions. Consequently the downstream tasks (e.g. transporta-
tion prediction on specific weather conditions) could also
be biased using the representations learned from the whole
data. From these experiments we show that study for fairness
of network representation has broad application fields.

5.2 Implementation details

For the implementation of node representation learning,
we build the algorithm based on Node2vec (Grover and
Leskovec 2016). For each candidate subgroup, we construct
the graph with edges covered by that subgroup and use
random walk algorithm considering the aggregated edge
weights to generate the training labels. After getting the
node representations, we compare them with node represen-
tations learned from the whole data. To explore the attribute
space with exponential amounts of subgroups, we use beam
search guiding by the quality score heuristically. The beam
search algorithm is built based on (Duivesteijn, Feelders,
and Knobbe 2016, Algorithm 1). We set the beam width to 5
and depth to 2. All the experiments are conducted on Linux
computing clusters with CPU: 2x Intel Xeon @ 2.1GHz and
RAM: 1024GB.

5.3 Experiments on Synthetic Data

To validate our method against QS1 and QS2, we conduct
experiments on the two synthetic datasets with different set-
tings mainly by varying parameter Q, which indicates how
many subgroups we are going to report. The top-5 subgroups
are reported in Table 2. As shown in Figure 2, our algorithm
can discover the pre-imposed structures with good accuracy.

The subgroups we found cannot always be precisely the
ground truth. The rectangles with black solid lines and the
rectangles with red dot lines are slightly mismatching (cf.
Figure 2). There might be two reasons for that. On the one
hand, we employ a 8-bin equal-width binning strategy to
partition the space of descriptive variables denoted by con-
tinuous numerical values. On the other hand, we prune the
result set based on overlapping coverage to reduce redun-
dant discoveries. Hence, we plan to evaluate more about the

(a) KarateX4n10k. (b) FootballX4n10k.

Figure 3: Comparisons of quality score distributions.

(a) KarateX4n10k. Q=10. (b) FootballX4n10k. Q=10.

Figure 4: Visualization of null distribution and MMD2
u on

KarateX4n10k and FootballX4n10k datasets.

predictive ability of our method. According to the known la-
bel of each edge, we can calculate averaged number of edges
covered by discovered subgroups to build the confusion ma-
trix. We choose true positive rate (TPR) and positive predic-
tive value (PPV) as the evaluation indicators.

Table 3 displays the results; larger TPR and PPV indi-
cate better results. We can see that for the same dataset,
with the increasing of Q, MMD2

u , TPR and PPV decrease.
One reason for this phenomenon is that the forced diversity
of discovered subgroups works against identification of the
single ground truth subgroup. Another reason is that larger
Q allows for subgroups with lower qualities, so that some
records without label of ground truth are discovered by our
method. We also notice that the PPV of finding subgroups
by our method are always larger than 50%, which shows that
our method can reliably retrieve ground-truth subgroups.

In order to validate our method against QS3, we run our
algorithm on the randomly shuffled datasets for 100 times
to generate negative samples. In Figure 3, we plot the qual-
ity scores in different experiments with Q ranging from 5
to 50, as well as the quality scores from negative samples.
We can see that there is a large gap between quality scores
of reported subgroups and the false discoveries. One reason
is that with synthetic algorithm, we impose very different
structural properties. Also we noticed that there are many
low ranked subgroups dropping into the region of false dis-
coveries. The reason is that the number of pre-imposed dis-
criminated subgroups are less than the Q. Then we conduct
the hypothesis testing to investigate whether the differences
between our discoveries and the false discoveries are signif-
icant enough. In Figure 4, we visualize the null distribution
and report p-value withQ = 10 on KarateX4n10k and Foot-

3813



KarateX4n10k FootballX4n10k

D ϕMLSD(D) |D|
N D ϕMLSD(D) |D|

N

x1 ≤ 4.86 ∧ x2 ≤ 4.86 .0225 .188 x2 ≥ 6.14 ∧ x1 ≥ 4.86 .0047 0.244
x1 ≤ 3.57 ∧ x2 ≤ 4.86 .0224 .188 x2 ≥ 6.14 ∧ x1 ≥ 6.14 .0015 0.182
x1 ≤ 4.86 ∧ x2 ≤ 3.57 .0201 .128 x2 ≤ 4.86 ∧ x1 ≤ 4.86 .0015 0.182
x1 ≤ 3.57 ∧ x2 ≤ 3.57 .0196 .123 x1 ≤ 4.86 ∧ x2 ≤ 3.57 .0014 0.124
x1 ≤ 6.14 ∧ x2 ≤ 4.86 .0076 .249 x1 ≤ 3.57 ∧ x2 ≤ 4.86 .0014 0.124

Table 2: Top-5 subgroups discovered on KarateX4n10k. The higher ϕMLSD(D), the more unfair. |D|
N indicates the coverage of

subgroups.

KarateX4n10k FootballX4n10k
Q TPR PPV Q TPR PPV
5 .61 .94 5 .69 1.0
10 .40 .86 10 .53 .96
25 .36 .71 25 .44 .52
35 .36 .65 35 .28 .51
50 .33 .50 50 .28 .50

Table 3: Experimental results on synthetic datasets. The
higher TRP and PPV the better.

ballX4n10k. As we can see intuitively, the MMD2
u is far

from null distribution. We can be confident that our method
can beat false discoveries generated from random baselines.
We also noticed that based on the p-values we can reject the
null hypothesis at 1% significance level.

5.4 Experiments on Real-world Datasets

Similar experiments are conducted on the real-world
datasets, except calculating TRP and PPV due to the rea-
son that we do not know the ground truth. In Figure 5, we
plot the quality scores of discovered subgroups in differ-
ent experimental settings with Q ranging from 5 to 50. We
can see that in the real-world datasets, the quality decreases
smoothly than the synthetic. One reason might be that in the
real-world datasets, there are many kinds of combinations
between structural properties and descriptive variables. An-
other reason might be that the attribute space and number
of edges are much larger than the synthetic datasets so that
the performance of network representation models are more
diverse. As we can see in Figure 6, the MMD2

u and p-values
give us confidence to believe that there are significant dif-
ferences between the subgroups reported by our method and
the false discoveries. In Table 4, we report the top-5 sub-
groups in both datasets. We can see from the descriptions
that the weather conditions and urban regions are highly re-
lated with the heterogeneous structures. This indicates that
the decision models might be more vulnerable and discrim-
inated under such conditions.

Empirical Clustering Analysis To further explore these
results, we conduct clustering on taxi zones in New York us-
ing k-means algorithm with the learned representations from
taxi transitions. We use the discovered subgroups above and
the whole dataset as the input to train representations for

(a) Quality distribution bike. (b) Quality distribution taxi.

Figure 5: Quality score comparisons on dataset Sharing Bike
and New York Taxi.

(a) Bike. Q=10. (b) Taxi. Q=10.

Figure 6: Visualization of null distribution and MMD2
u on

bike and taxi datasets.

each taxi zone. On the one hand, we would like to see how
these clusters are different between reported subgroups and
the whole dataset. On the other hand, we would like to see
how the representations of taxi zones are changing with the
changing of descriptive variables.

To conduct this comparison, we employ the land use data
in New York (https://zola.planning.nyc.gov/) as a reference
of the ground truth. The assumption is that taxi zones with
similar land use types are similar to each other. Based on
this assumption, we count the land use types in each taxi
zone, and compute the distribution of land use types as the
representation of each taxi zone. We visualize these clus-
tering results in Figure 7. By comparing those clusters in
Figure 7a with the clusters learned on the whole dataset (cf.
Figure 7b), we found the similarities between taxi zones can
be preserved relatively well. In Figure 7c, John F. Kennedy
International Airport shows different role with nearby zones,
while it shows the same role with the Manhattan area. In
Figure 7d, we can see that for ‘passenger > 5’, many zones
that are distinguished in previous subgroups become more
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Dataset D ϕMLSD(D) |D|
N

Sharing Bike

MaxHumidity <= 74.0∧ZipCode ! = ’10010’ .01090 .194
MinTemperatureF > 50.0∧MaxTemperatureF > 70.0’ .01081 .232

MaxHumidity <= 74.0∧ZipCode ! = ’7050’ .01073 .194
MaxHumidity <= 74.0∧ZipCode ! = ’77450’ .01069 .194
MaxHumidity <= 74.0∧ZipCode ! = ’19119’ .01066 .194

New York Taxi

month > 7.0∧PaymentType <= 1.0 5.85e-4 .211
TMIN > 61.0∧PickupHour <= 14:00 5.58e-4 .126

month > 7.0∧AWND <=5.24 5.54e-4 .272
month > 7.0∧TMIN > 42.0 5.41e-4 .279
month > 7.0∧TMAX > 54.0 5.38e-4 .300

Table 4: Experiments on real-world datasets. Higher ϕMLSD(D) means more unfair.

(a) Land Use. (b) Ω. (c) D1. (d) Passenger> 5.

Figure 7: Taxi zone clusters with representations. D1:‘SNWD>0.0∧AWND≤ 7.86’.

similar. These results empirically show the structural het-
erogeneity in different subgroups. For fair decision making,
a network representation model should tackle this hetero-
geneity to learn fair as well as informative representations.

6 Conclusions

In this paper, we study an important problem: fairness in
network representation by latent structural heterogeneity in
observational data. We argue that the structural heterogene-
ity in networks can bias the network representation mod-
els across subgroups, which will prevent us from building
fair decision making models for downstream tasks like node
classification or link prediction. However, the unknown dis-
tribution of structural heterogeneity raises new challenges
for fairness measurement. Pre-defined groups with sensitive
variables are not proper for overcoming the new challenges,
and statistical parity with regard to decision variable can-
not be helpful for comparing the multi-degree interactions
between node representations. We analyze the connections
between the structural properties and the node representa-
tions in networks. Then we design a framework to compare
the node representations learned from subgroups with the
node representations learned from the whole data. The dif-
ferences between them indicate that the structural proper-
ties in subgroups are ignored by the network representation
model. The higher the difference, the more unfair the model
is on those subgroups. The discovery process is automati-
cally guided by a search algorithm defined over the descrip-

tion space, with a quality measure over the learned node
representations, called Mean Latent Similarity Discrepancy
(MLSD). We evaluate the statistical significance of the dis-
covered subgroups by applying a kernel two-sample test. To
validate the effectiveness of our method, we use randomiza-
tion techniques to generate synthetic datasets with ground
truth. This allows us to evaluate the performance of our
method quantitatively and qualitatively. In future work, we
will integrate the representation learning and subgroup dis-
covery process to generate fair and informative node repre-
sentations for downstream decision making applications.
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