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Abstract

We propose a general approach to fairness based on trans-
porting distributions corresponding to different sensitive at-
tributes to a common distribution. We use optimal transport
theory to derive target distributions and methods that allow us
to achieve fairness with minimal changes to the unfair model.
Our approach is applicable to both classification and regres-
sion problems, can enforce different notions of fairness, and
enable us to achieve a Pareto-optimal trade-off between accu-
racy and fairness. We demonstrate that it outperforms previ-
ous approaches in several benchmark fairness datasets.

Introduction

Data used to train machine learning systems often contain
human and societal biases that can lead to treat individ-
uals unfavorably (unfairly) on the basis of characteristics
such as race, gender, disabilities, etc. (referred to as sen-
sitive attributes). This has motivated researchers to inves-
tigate techniques for ensuring that learned models satisfy
fairness properties (Dwork et al. 2012; Feldman et al. 2015;
Goh et al. 2016; Chouldechova 2017; Corbett-Davies et al.
2017; Gajane and Pechenizkiy 2017; Kusner et al. 2017;
Cotter et al. 2018; Mitchell, Potash, and Barocas 2018;
Verma and Rubin 2018; Zhang and Bareinboim 2018; Chi-
appa and Isaac 2019; Narasimhan et al. 2020). Most of-
ten, fairness desiderata are expressed as constraints on the
lower order moments or other functions of distributions cor-
responding to different sensitive attributes. Whilst facilitat-
ing model evaluation and design, not accounting for the full
shapes of the relevant distributions can be restrictive and
problematic (Simoiu, Corbett-Davies, and Goel 2017).

In Jiang et al. (2019), we introduced an approach to fair
classification that uses optimal transport theory to match the
distributions of the model outputs corresponding to differ-
ent sensitive attributes to a common distribution. We demon-
strated that using the Wasserstein-1 barycenter as common
distribution incurs in minimal changes to the predictions ob-
tained by the unfair model. In this paper, we generalize this
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work to nonlinear models and to regression, and to transport-
ing either in the input or output space to be able to achieve
different fairness criteria. The proposed approach has three
main properties: it accounts for the full shapes of the distri-
butions, it achieves fairness through minimal deviation from
the unfair model, and it is applicable to different fairness
criteria. We evaluate its performance on several benchmark
fairness datasets.

Related Work

There has been an increasing interest in the use of optimal
transport for fairness (Black, Yeom, and Fredrikson 2019;
Del Barrio et al. 2019; Jiang et al. 2019; Johndrow and
Lum 2019; Risser et al. 2019; Wang, Ustun, and Calmon
2019). With the exception of Jiang et al. (2019) and Risser
et al. (2019), optimal transport has been used to transport
model inputs and, with the exception of Wang, Ustun, and
Calmon (2019) and Black, Yeom, and Fredrikson (2019), in
order to achieve strong demographic parity. More specifi-
cally, Del Barrio et al. (2019) consider a binary classifica-
tion/binary sensitive attribute setting, and provide an upper
bound to the difference between the minimal risks obtained
by the best classifier with original and transported model in-
puts. The work in Johndrow and Lum (2019) suggests us-
ing the Wasserstein distance to transport model inputs to a
common distribution, whose choice is left to the user. Wang,
Ustun, and Calmon (2019) show how to design target distri-
butions to achieve different fairness criteria, and use optimal
transport as a way to match to the target distribution. Instead,
our target distribution is always chosen to achieve statisti-
cal independence, but in a way that allows as little model
deviation as possible through optimal transport. Risser et
al. (2019) uses the formulation of the Wasserstein-2 dis-
tance in terms of cumulative distribution functions (as in our
geodesic method) to propose an efficient penalty method for
non-linear classifiers in the binary sensitive attribute setting.
Our penalty method is more general, as it applies to both
classifications and regression, to general cost functions, and
to non-binary sensitive attributes. Finally, Black, Yeom, and
Fredrikson (2019) uses optimal transport to create a black-
box technique for uncovering discrimination in classifiers
using the Wasserstein-1 distance.
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Fairness Criteria for Classification and

Regression

We consider the problem of learning a binary classification
or regression model from a dataset D = {(an, xn, yn)}Nn=1.
Each datapoint (an, xn, yn) contains a continuous or cat-
egorical outcome yn of an individual (or community) that
we wish to predict, a vector of attributes an ∈ A = N

k

which are considered sensitive, where element ani might cor-
respond e.g. to gender, and a vector of features xn ∈ R

d to
be used, possibly together with an, to form a prediction ŷn
of yn. Our goal is to introduce an approach to impose fair-
ness constraints on the model that is applicable to different
fairness criteria. We introduce some of them below.

To treat classification and regression, as well as proba-
bilistic and deterministic modelling, in an unified way, we
formulate classification and regression as the task of esti-
mating the probability distribution p(Y |A = an, X = xn),
where A,X and Y are the random variables corresponding
to an, xn, and yn respectively, and assume that the model
outputs the expectation

sn = Ep̄(Y |A=an,X=xn)[Y ] ,

where p̄ indicates the estimate of p (below we omit this
distinction to simplify the notation). Notice that in the
classification case sn = p(Y = 1|A = an, X = xn),
i.e. sn is the model estimated probability that individual n
belongs to class 1. A prediction ŷn of yn is then obtained
as ŷn = sn for the regression case, and as ŷn = �sn>τ for
the classification case, where �sn>τ = 1 if sn > τ for a
threshold τ ∈ [0, 1], and zero otherwise. We call the random
variable S, corresponding to sn, the output variable, and
denote with Sa the output variable restricted to the group of
individuals with sensitive attributes a, i.e. with distribution
p(Sa) = p(S|A = a).

Strong demographic parity. The simplest and most popu-
lar fairness criterion, called demographic parity, requires the
expectation of Ŷ to not depend on A, i.e.

Ep(Ŷ |A=a)[Ŷ ] = Ep(Ŷ |A=ā)[Ŷ ], ∀a, ā ∈ A .

We are interested in a similar but stronger criterion, i.e. con-
sidering the full shape of the distribution p(S|A), called
strong demographic parity (SDP) (Jiang et al. 2019). SDP
requires statistical independence between S and A, i.e.

SDP: p(Sa) = p(Sā), ∀a, ā ∈ A .

Notice that, for classification, SDP ensures that the class
prediction does not depend on the sensitive attribute regard-
less of the value of the threshold τ used.

Strong path-specific fairness. SDP requires removal of
the dependence of Y on A from the prediction Ŷ . In many
cases, we might want to remove only some of the influence
that A has on Ŷ . For example, consider a hypothetical
college admission scenario in which applicants are admitted
based on qualifications Q, choice of department D, and
gender A; and in which female applicants apply sponta-
neously more often to departments with lower admission

rates. Whilst the direct influence of A on admission Y ,
i.e. treating a female applicant and a male applicant with the
same qualifications and applying to the same department
differently, is unfair, rejecting female applicants more often
due to department choice could be considered fair with
respect to the college’s responsibility. In such a case, we
want a fairness criterion that formalizes the requirement
that only the unfair influence should be absent from the
prediction. This can be obtained using the causal Bayesian
networks framework as described below (for a more com-
plete explanation, we refer the reader to the Supplementary
Material and to Chiappa and Isaac (2019)).

Causal Bayesian Network (CBN): A CBN is a directed
acyclic graph, with nodes representing random variables
and links representing statistical dependence among them,
which describes the mechanism underlying the data genera-
tion process.
If Y is an descendant of A, i.e. if there exists a directed —
also called causal — path from A to Y (namely a sequence
of linked nodes starting at A and ending at Y where links
are directed and pointing from preceding towards following
nodes in the sequence), then A is a cause of Y .
The causal effect of A = a on Y can be seen as the con-
ditional distribution of Y given A = a restricted to causal
paths. We indicate with Y→a the random variable with such
a conditional distribution — often called the potential out-
come variable.

A Q

D Y

fair

unfair

The college admission scenario can be described by the
CBN on the left, with joint distribution p(A,Q,D, Y ) fac-
torizing as p(Y |A,Q,D)p(D|A)p(Q)p(A), and where the
direct causal path A → Y represents the direct unfair influ-
ence of gender A on admission Y , whilst the indirect causal
path A → D → Y represents the fair influence of A on Y
through department choice D.

Potential outcome variables can be used to formalize the
requirement that the influence of A along the path A → Y
should be absent from the model, by setting A to different
values along A → Y and A → D → Y . More specifically,
if we indicate with a and ā the female and male sensitive at-
tribute respectively, and with S→ā(D→a) the potential out-
come variable with distribution equal to the conditional dis-
tribution of S given A restricted to causal paths, with A = ā
along A → Y and A = a along A → D → Y , the weak
version of the requirement can be expressed as

Ep(S→ā(D→a))[S→ā(D→a)] = Ep(S→a)[S→a] ,

obtaining the path-specific fairness criterion.
The strong version of the requirement can be expressed as

SPSF: p(S→ā(D→a)) = p(S→a) .

We denote with sn→ā(D→a) the counterfactual outcome in-
dicating the model estimated probability that a female ap-
plicant {an = a, qn, dn} would have been admitted in a
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counterfactual world in which she were male along A→ Y ,
i.e.

sn→ā(D→a)=p(Y→ā(D→a)=1|A = an, Q = qn, D = dn) .

As the CBN has no descendant of A along unfair causal
paths (Q is not a descendant of A, whilst D is a descendant
of A along a fair causal path), the counterfactual outcome
reduces to

sn→ā(D→a) = p(Y = 1|A = ā, Q = qn, D = dn) ,

i.e. it is given by conditioning Y on qn, dn and, on A
with value equal to ā to account for setting A to ā along
A → Y . This gives p(S→ā(D→a)) =

∫
Q,D

p(Y = 1|A =

ā, Q,D)p(D|A = a)p(Q).
In the more general case in which a CBN contains descen-

dants of A along unfair causal paths, computing counterfac-
tual outcomes is more challenging. If, e.g., a link from A
to Q were present and considered unfair, one way to obtain
the counterfactual outcome sn→ā(Q→ā, D→a) would be to
perform a correction qnā of qn to ā, and then compute

sn→ā(Q→ā, D→a) = p(Y = 1|A = ā, Q = qnā , D = dn) ,

as explained in the next section and in the Supplementary
Material.

Path-specific counterfactual fairness. Counterfactual
outcomes can also be used to require fairness at the indi-
vidual, rather than population, level, i.e. that female appli-
cant {an = a, qn, dn} obtains the same decision ŷn as the
one that would have been taken in a counterfactual world
in which she were male along the direct path A → Y
(sn→ā(D→a) = sn→a). This criterion is called path-specific
counterfactual fairness (PSCF) (Chiappa and Isaac 2019),
and can be expressed as requiring p(Y = 1|A = ā, Q =
qn, D = dn) = p(Y = 1|A = an, Q = qn, D = dn).

Fairness with Optimal Transport

By framing a fairness task as matching empirical distribu-
tions either in the space of model outputs (output transporta-
tion) or in the space of model inputs (or latent representa-
tions of the inputs) (input transportation), we are able to
propose an approach that is applicable to different fairness
criteria or to different approaches to the same criterion. Out-
put transportation can be used to achieve SDP or SPSF. Input
transportation can be used to achieve SDP through transport-
ing the model inputs (or latent representations) — and thus
could be applied to fair representation learning (Zemel et al.
2013) — or more complex criteria such as PSCF. The use of
optimal transport theory for matching the distributions en-
ables us to ensure minimal deviation from the unfair model.

For simplicity of exposition we explain output and input
transportation in the context of SDP and PSCF respectively,
starting with some background on optimal transport theory
(Villani 2009; Peyré and Cuturi 2019).

Optimal Transport. The optimal transport problem was
originally formulated as the problem of transporting a dis-
tribution to another one incurring in minimal cost (Monge

1781). Given two probability density functions (pdfs) pX
and pY on X and Y , the set T of transportation maps from
X to Y (where each transportation map T : X → Y satisfies∫
B pY (y)dy =

∫
T−1(B)

pX(x)dx for all measurable subsets
B ⊆ Y), and a cost function C : X × Y → [0,∞], the op-
timal transport problem is that of finding the transportation
map T ∗ that minimizes the total transportation cost, i.e.

T ∗ = argmin
T∈T

∫
C(x, T (x))pX(x)dx .

As T ∗ may not always exist for arbitrary pX and pY , the
problem was later reformulated (Kantorovich 1942) as that
of finding a pdf γ∗ in the set Γ(pX , pY ) of pdfs on X × Y
with marginals pY and pX — called the optimal coupling
between pX and pY — such that

γ∗ = argmin
γ∈Γ(pX ,pY )

Eγ(X,Y )[C(X,Y )] .

Under appropriate conditions on C, WC(pX , pY ) :=
minγ∈Γ(pX ,pY ) Eγ(X,Y )[C(X,Y )] can be turned into a dis-
tance between pX and pY . Specifically, if X = Y and
C = Dp for some distance metric D : X × Y → R and
p ≥ 1, then WC(pX , pY )

1/p is a valid distance between pX
and pY . When X = Y = R

d and C(x, y) = ‖x−y‖pp, where
‖ · ‖p indicate the Lp norm, WC(pX , pY ) corresponds to the
pth power of the Wasserstein-p distance and we adopt the
shorthand Wp(pX , pY ) to denote it.

Output Transportation

In the output transportation for SDP, we would like to trans-
port the distribution pSa

of each group output variable Sa

to a common distribution pS̄ using a transportation map T ∗
a

such that T ∗
a (Sa) remains close to Sa to retain accuracy.

For regression problems this could be achieved by mini-
mizing EpSa

[(Sa − Ta(Sa))
2], which leads to the T ∗

a cor-
responding to minTa∈T (pSa ,pS̄)

∫
(s − Ta(s))

2pSa
(s)ds =

W2(pSa
, pS̄). Considering all groups, each weighted by its

probability pa = p(A = a), we obtain that the distribution
pS̄ inducing the minimal deviation from S is given by

pS̄ = argmin
p∗

∑
a∈A

paW2(pSa
, p∗) .

This distribution coincides with the Wasserstein (Wass)-2
barycenter with weights pa. For classification problems, us-
ing instead the L1 norm would give the Wass-1 barycen-
ter, which induces the minimal number of class prediction
changes in expectation (see Jiang et al. (2019)).

Input Transportation

We discuss input transportation in the PSCF context corre-
sponding to the CBN on the left, in which red links indicate
unfair influence from A. As M is a descendant of A along
an unfair causal path, whilst L is a descendant of A along
both an unfair causal pathA→M → L and fair causal path
A→ L, the counterfactual outcome of interest for individual
{an = a, cn,mn, ln} (for the classification case) is given by
sn→ā(Mā, L→a(Mā)) = p(Y→ā(Mā, L→a(Mā)) = 1|A =
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Figure 1: CBN with unfair links colored in red.

an, C = cn,M = mn, L = ln), where A is set to a counter-
factual value ā along the unfair paths A → M and A → Y
and to the factual value a along the fair path A → L. This
can be estimated as

sn→ā(Mā, L→a(Mā))

= p(Y = 1|A = ā, C = cn,M = mn
ā , L = lna (mā)) ,

where mn
ā and lna (mā) are corrected versions of mn and

ln to ā that can be computed using the procedure described
below (see the Supplementary Material for more details).

Let us first assume that mn = fM (A = a, C = cn) + εnm
for a function fM (·) and a statistically independent latent
term εnm. The corrected version of mn can be obtained as

mn
ā = fM (ā, cn) + εnm
= fM (ā, cn) +mn − fM (a, cn) .

Similarly, if ln = fL(A = a, C = cn,M = mn) + εnl , the
corrected version of ln can be obtained as

lna (mā) = fL(ā, c
n,mn

ā) + εnl
= fL(ā, c

n,mn
ā) + ln − fL(a, c

n,mn) .

For the more general case in which, e.g., mn = fM (A =
a, C = cn, εnm) for a non-linear function fM , the counter-
factual outcome can be obtained through a generalization of
this procedure which uses a Monte-Carlo approximation of
sn→ā(Mā, L→a(Mā)) based on expressing it as∫

ε

p(Y→ā(Mā, L→a(Mā) = 1|ε)p(ε|a,mn, ln) , (1)

where ε = (εm, εl) (see Chiappa and Isaac (2019) and Chi-
appa (2019)).

Crucial to the validity of this correction approach is that
εnm and εnl must be statistically independent from A. Whilst
the distributions of εm and εl satisfies p(εm|A) = p(εm)
and p(εl|A) = p(εl) by construction, due to inaccuracies,
the empirical distributions1 p̂(εm) and p̂(εl) based on the
estimates εnm, ε

n
l will most often depend on A, i.e.

p̂(εm|A = a) :=
1

Na

∑
n s.t. an=a

δεm=εnm 	= p̂(εm|A = ā) ,

where Na is he number of individuals with sensitive at-
tributes a, and similarly for εl.

A way to maintain validity of the correction is to trans-
port all p̂εa = p̂(ε|A = a) to a common distribution pS̄ . We

1Throughout the paper we use p̂(·) to indicate the empirical
counterpart of p(·).

would like to use transportation maps T ∗
a such that this pro-

cess incurs in the minimal overall deviation from S. To high-
light dependence on cn and εn, we use s(cn, εn) to indicate
the model output sn = Ep(Y |A=an,C=cn,M=mn,L=ln)[Y ].
Using a similar reasoning and notation as in the Output
Transportation Section, where the integral is approximated
with a Monte-Carlo approach due to the use of empirical
distributions, we want the T ∗

a corresponding to

min
Ta∈T (pSa ,pS̄)

1

Na

∑
ε,εn=ε

n s.t. an=a

[
s(cn, εn)− s(cn, T (εn))

]2
,

where the sum is over all different ε in group a — we in-
dicate this minimum as WCε

(p̂εa , pS̄). By considering all
groups, each weighted by its probability Na

N , we obtain

pS̄ = argmin
p̂∗

∑
a∈A

Na

N
WCε

(p̂εa , p̂
∗) .

This distribution corresponds to a barycenter with cus-
tomized cost function C(ε, T (ε)) =

∑
εn=ε

[
s(cn, εn) −

s(cn, T (εn))
]2

. The cost function aggregates over different
cn for the same value of εn, since we transport only in the ε
space R

2 (i.e. T : R2 → R
2) to avoid any transportation on

values of cn.
Since in the cases of interest s is a Lipschitz function of ε

for any fixed c, we observe that |s(cn, εn)−s(cn, T (εn))| ≤
Ls‖εn − T (εn)‖2 for some universal constant Ls. Conse-
quently |s(cn, εn)− s(cn, T (εn))|2 ≤ L2

s‖εn −T (εn)‖22 for
all εn and therefore WCε

(p̂εa , p̂
∗) ≤ L2

sW2(p̂εa , p̂
∗) for all

a ∈ A and fixed p̂∗. In our experimental results we make
use of this approximation, and use the Wass-2 barycenter as
a computationally efficient surrogate for our customized ob-
jective.

Pareto-Optimal Fairness-Accuracy Trade-Off

We have derived barycenters as target distributions to ensure
fairness whilst incurring in minimal model deviation. Given
a trained model and an estimate of a barycenter, we could
perform a post-processing operation by applying the derived
optimal transport maps on the relevant variables (such as Sa

or εa). Whilst this ensures that we retain as much accuracy as
possible, in some cases we might want to trade-off a certain
amount of fairness for higher accuracy. In the remainder of
this section, we explain how to obtain an optimal trade-off,
focusing on output transportation for SDP.

Not achieving SDP in output transportation implies that
each pSa

is transported to a distribution pS∗
a

that does not
match the barycenter pS̄ . A valid measure of deviation from
SDP is dpair =

∑
a �=ā W2(pS∗

a
, pS∗̄

a
) since dpair = 0 ⇔

pS∗
a

= pS∗̄
a
, ∀a, ā ∈ A. This measure has the additional

merit of being indifferent to the choice of the resulting
matched distribution that achieves SDP, and of being inter-
pretable. For any distribution p, by the triangle inequality
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and Young’s inequality,

dpair ≤
∑
a �=ā

(√
W2(pS∗

a
, p) +

√
W2(p, pS∗̄

a
)
)2

≤
∑
a �=ā

2
(
W2(pS∗

a
, p) +W2(p, pS∗̄

a
)
)

= 4(|A| − 1)
∑
a∈A

W2(pS∗
a
, p) .

By the definition of the barycenter pS̄ , this upper bound
reaches its minimum when p = pS̄ . We call this tightest up-
per bound pseudo-dpair and use it to derive optimal trade-off
solutions.

For any r ∈ R+, we say that pseudo-dpair satisfies the
r-fairness constraint when it is smaller than r. To reach op-
timal trade-offs, we are interested in transporting pSa to pS∗

a

under the r-fairness constraint while minimizing the model
deviation from S, minp∗

Sa

∑
a∈A paW2(pSa

, pS∗
a
) (follow-

ing the same derivation as in the Output Transportation Sec-
tion). Assuming disjoint groups, we can optimize each group
transportation in turn independently. The r-fairness con-
straint on a single group a becomes W2(pS∗

a
, pS̄) ≤ r′ − d′,

where r′ = r/(4|A|−4) and d′ =
∑

ā∈A\{a} W2(pS∗̄
a
, pS̄).

Satisfying this constraint corresponds to transporting pSa
to

the ball with center pS̄ and radius r′−d′ in the Wass-2 metric
space. To achieve the optimal trade-off, we need to transport
pSa to a destination pS∗

a
with minimal W2(pSa , pS∗

a
). Thus

we want

pS∗
a
= argmin

p∗ s.t. W2(p∗,pS̄)≤r′−d′
paW2(pSa

, p∗)

= argmin
p∗ s.t. W2(p∗,pS̄)≤r′−d′

W2(pSa , p
∗)

since pa is constant with respect to p∗. As W2(pSa
, p∗) ≥(√

W2(pSa , pS̄) −
√
W2(p∗, pS̄)

)2
by triangle inequality,

W2(pSa
, p∗) reaches its minimum if and only if p∗ lies on a

shortest path between pSa
and pS̄ . Therefore it is optimal to

transport pSa
along any shortest path between itself and pS̄

in the Wass-2 metric space.
Notice that, as the argument above only relies on W2 be-

ing the square of a distance, the same conclusion applies to
any WC that is a square of a distance metric.

Methods

In this section, we introduce specific methods for imple-
menting the fairness approach described above.

Geodesic Method. For the case of univariate Wass-p dis-
tances, we are able to propose a simple post-processing
method that achieves a Pareto-optimal trade-off between ac-
curacy and SDP by transporting pSa along any shortest path
to pS̄ based on geodesics.
Geodesic: A curve ψ : I → Ω from an interval I of
the real numbers to a metric space Ω equipped with met-
ric D is a geodesic iff there exist v ≥ 0 such that for
∀t ∈ I , there exists a neighborhood (t−, t+) of t such that

Algorithm 1 Wass-p Geodesic
Input: Dataset D = {(an, xn, yn)}Nn=1, number of bins
B, model outputs {sn}, trade-off parameter t.
Compute group datasets {Da} and barycenter dataset D̄.
Define the i-th quantile of Da, as

qDa(i) := sup

{
s :

1

Na

∑
n s.t. an=a

�sn≤s ≤
i− 1

B

}
,

and its inverse as q−1
Da

(s) := sup{i ∈ [B] : qDa(i) ≤ s} .
Define q−1

Da,t
(s) := (1− t)q−1

Da
(s) + t q−1

D̄ (s)giving

qDa,t(i) = sup{s ∈ [0, 1] : (1− t)q−1
Da

(s) + t q−1
D̄ (s) ≤ i}.

Return: {qDa,t

(
q−1
Da

(sn)
)
}.

D(ψ(t1), ψ(t2)) = v|t1 − t2| for any t1, t2 ∈ (t−, t+).
A geodesic curve in Ω is therefore everywhere locally a dis-
tance minimizer.

Let the Wass-p space Pp(R) be defined as the space of
all pdfs p(·) on the metric space R with finite2 absolute p-th
moments, i.e. Ep(s1)[|s1−s0|p] <∞ for ∀s0 ∈ R, equipped
with the Wass-p metric. As R is a geodesic space, i.e. there
exists a geodesic between every pair of points in that space,
then so is Pp(R) (Lisini 2007). Whilst geodesics are only
locally shortest paths, shortest paths are always geodesics if
they exist. In the case of Pp(R), the geodesic between pSa

and pS̄ is unique and can be parametrized by

P−1
Sa,t

= (1− t)P−1
Sa

+ tP−1
S̄
, t ∈ [0, 1] ,

where PSa and PS̄ are the cumulative distribution functions
of Sa and S̄ (Peyré and Cuturi 2019). This geodesic, by its
uniqueness, is therefore the shortest path.

An implementation of this method is described in Algo-
rithm 1, where Da = {(an, xn, yn) ∈ D s.t. an = a} de-
notes the subset of D corresponding to the group ofNa indi-
viduals with sensitive attributes a. The parameter t controls
the level to which pSa

is moved toward the barycenter pS̄ ,
with t = 1 corresponding to total matching.

Penalty Method. In the multivariate case and arbitrary
WC , the analytical geodesic computations are not feasible.
When X and Y are discrete sets of cardinality n and m (as
in our empirical approximation of pdfs), the optimal cou-
pling γ∗ can be identified with a m × n doubly stochastic
matrix whose marginals agree with pX and pY . The optimal
coupling γ∗ and WC can obtained via the following linear
program:

min Eγ(X,Y ) [C(X,Y )] , s.t. 1�
mγ = pY , γ1n = pX , (2)

where 1m ∈ R
m and 1n ∈ R

n are all-ones vectors. If
m,n are large, solving (2) can be computationally expen-
sive. This issue can be addressed by regularizing (2) by an

2This condition is satisfied as we use empirical approximations
to pdfs.
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NLSY
MSE Corr nWass2 KS

Unconstrained 1.210 1.048 4.870 1.989
Corr Penalty 1.726 0.027 0.052 0.327
Corr Lag 1.756 0.114 0.127 0.541
GF Lag 2.183 0.462 0.771 0.868
MMD Penalty 1.422 0.089 0.109 0.381
Wass-2 Geo (t=1) 1.374 0.079 0.090 0.303
Wass-2 Penalty 1.407 0.026 0.090 0.382

C&C
MSE Corr nWass2 KS

Unconstrained 0.020 2.896 51.857 11.475
Corr Penalty 0.059 0.257 2.775 2.802
Corr Lag 0.048 0.518 5.330 3.608
GF Lag 0.053 2.970 35.340 9.801
MMD Penalty 0.071 0.211 0.554 1.881
Wass-2 Geo (t=1) 0.063 0.129 0.902 1.820
Wass-2 Penalty 0.073 0.187 0.525 1.832

LSAC
MSE Corr nWass2 KS

Unconstrained 0.059 0.657 3.761 1.750
Corr Penalty 0.335 0.147 0.513 0.833
Corr Lag 1.104 0.674 3.233 1.765
GF Lag 1.153 0.092 0.382 0.861
MMD Penalty 0.215 0.092 0.276 0.533
Wass-2 Geo (t=1) 0.211 0.034 0.036 0.203
Wass-2 Penalty 0.202 0.066 0.279 0.481

Table 1: Output transportation results.

entropy term with regularization parameter λ. We denote the
optimal coupling and corresponding expected cost as γ∗λ and
Wλ

C (pX , pY ) respectively. Solving this regularized objective
can be done efficiently via the Sinkhorn algorithm (Cuturi
and Doucet 2014), which achieves a linear convergence rate
(Altschuler, Weed, and Rigollet 2017).

The optimal coupling can be used to obtain an in-
processing method that achieves a Pareto-optimal trade-off
between accuracy and fairness by approximating the short-
est paths between pSa and pS̄ with hyperparameter tuning of
a gradient descent method. As discussed above, if the trans-
portation cost gives rise to a distance squared, this procedure
is valid (we argue that this is the case for WCε

in the Supple-
mentary Material).

For output transportation, we propose to penalize the
baseline loss L(θ) (e.g. the Mean Square Error (MSE) loss
for regression problems) by enforcing the empirical group
distributions p̂Sa

to be close to the empirical barycenter p̂S̄
through the following weighted objective function:

LP (θ) = αL(θ) + β
∑
a∈A

Wλ
C (p̂Sa(θ), p̂S̄) . (3)

If pX and pY are two distributions parametrized by θ, the
gradient of Wλ

C (pX , pY ) with respect to θ, ∇θWλ
C (pX , pY ),

Figure 2: Histograms of the model outputs for two of the
eight race groups for (left) Wass-2 Geo and (right) GF Lag.

can be computed via the chain rule

∇θWλ
C (pX , pY ) = [∇θC] ·

[
∇CWλ

C (pX , pY )
]
.

The gradient of Wλ
C (pX , pY ) with respect to the cost C sat-

isfies:
Lemma 1. For any λ ≥ 0, ∇CWλ

C (pX , pY ) = γ∗λ.

Proof. The proof follows the same argument as in Theorem
3 of Arjovsky, Chintala, and Bottou (2017). As a function of
C, Wλ

C is a pointwise minimum of linear functions. A stan-
dard result of convex optimization states that for any func-
tion f defined as the pointwise minimum of a set of con-
vex functions {fi}i∈I for some possibly uncountable index
set I (in other words, if for any x in the domain f(x) =
mini∈I fi(x), for example a set of linear functions as in the
case of Wλ

C ), the subgradient at any point x contains the sub-
gradient set of the function achieving the argmin. In other
words, if i∗ = argmini∈I fi(x), then ∂f(x) ⊆ ∂fi∗(x).
In the case of differentiable functions, this is equivalent to
∇f(x) = ∇f∗(x). As a consequence of this result, it imme-
diately follows that ∇CWλ

C (pX , pY ) = γ∗λ as desired.

We therefore obtain ∇θWλ
C (pX , pY ) = [∇θC] ·γ∗λ, which

can be written as the expectation

∇θWλ
C (pX , pY ) = E(x,y)∼γ∗

λ
[∇θC(x, y)] .

Thus ∇θWλ
C (p̂Sa(θ), p̂S̄) = E(x,y)∼γ∗

p̂Sa
(θ),p̂S̄

[∇θC(x, y)].
For input transportation, in the additive ε scenario

we can replace
∑

a∈A Wλ
C (p̂Sa

(θ), p̂S̄) in Eq. (3) with∑
a∈A Wλ

Cε
(p̂εa(θ), p̂S̄). In most cases, learning the model

parameters through this penalty term could however not be
sufficient to impose independence of ε on A. In such cases,
a parametrized function for ε can be learned. An alternative,
more sound approach, is to use a latent variable approach as
in Chiappa (2019).

Experiments

We evaluated our approach on the National Longitudinal
Survey of Youth (NLSY) 1979 regression dataset, on the
UCI Communities & Crime (C&C) (Lichman 2013) regres-
sion dataset, on the Law School Admission Council (LSAC)
regression dataset, and on the UCI Adult binary classifica-
tion dataset. As sensitive attributes, for the NLSY dataset
we considered age (binned into the two categories of un-
der and over 18 years old) and binary gender (female and
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male), obtaining four groups. For the C&C dataset, we con-
sidered race (white, black, asian and hispanic), thresholded
at the median, obtaining eight groups. For the LSAC dataset,
we considered race (white and non-white) and binary gen-
der, obtaining four groups. For the Adult dataset, we consid-
ered binary gender, obtaining two groups. Details about the
datasets and the experiments are given in the Supplementary
Material.

As the baseline objective, we used maximum log-
likelihood L(θ) = log

∏N
n=1 p(y

n|an, xn; θ), obtaining the
MSE loss L(θ) = 1

N

∑N
n=1 (y

n − sn)
2 for regression (as-

suming p(Y |an, xn; θ) = N (sn, 1)), and the logistic loss
L(θ) = − 1

N

∑N
n=1 y

n log(sn)+(1−yn) log(1−sn) where
sn = p(Y = 1|an, xn; θ) for classification. For PSCF, L(θ)
was adjusted to enable learning the conditional distributions
of the CBN.

SDP through Output Transportation

We evaluated the output transportation approach for
strong demographic parity on the the regression datasets.
Table 1 shows test performance for sn = θ�(xn, an, 1)
(similar results were obtained with nonlinear models).
More specifically, we compare Wass-2 Geo (Algo-
rithm 1 with t = 1) and Wass-2 Penalty (Eq. (3) with
LP = αL + β

∑
a W2(p̂Sa

, p̂S̄)) with the following
methods:
Unconstrained: Loss L only.
Corr Penalty: LP = L + βLC where LC is the squared
correlation between sensitive attributes and predictions.
Corr Lag: Regression with constraint on LC enforced
using Lagrange multipliers.
GF Lag: Group fairness method of Berk et al. (2017) with
constraint enforced using Lagrange multipliers.
MMD Penalty: LP = αL + β

∑
aLM(p̂Sa

, p̂S) where
LM(p̂Sa

, p̂S) is the maximum mean discrepancy (MMD)
(Gretton et al. 2012) between the empirical distribution of
the model output for group a and that for the full dataset.

As evaluation metrics we used:

Corr:
∑

a∈A
∣∣ cov(S, A=a)
σ(S)σ( A=a)

∣∣, where A=a indicates a
random variable taking values an=a and σ(·) standard
deviation.

nWass2: 1
2

∑
a,ā∈A
s.t. a �=ā

W2(p̂Sa ,p̂Sā )
σ(Sa)σ(Sā)

.

KS: 1
2

∑
a,ā∈A
s.t. a �=ā

χaā, where χaā = supτ∈[0,1] |P̂Sa
(τ) −

P̂Sā
(τ)|, and P̂Sa

and P̂Sā
are the empirical cumula-

tive distribution functions for groups a and ā respectively
(Kolmogorov-Smirnov statistics).

We tuned the hyperparameters to minimize nWass2. Overall,
our methods reach higher fairness with lower loss in accu-
racy. The particularly low fairness of GF Lag on C&C is
due to shrinking of the distributions. In Fig. 2 we show the
histograms of the model outputs for two of the eight race
groups for (left) Wass-2 Geo and (right) GF Lag.

(a) NLSY (b) C&C

(c) LSAC

Figure 3: Pareto frontiers for Wass-2 Geo, Wass-2 Penalty
and MMD Penalty.

PSCF – Adult
Err-0.5 nWass2 KS

Unconstrained 0.183 N/A N/A
PSCC 0.195 0.977 0.968
PSCC WCε

Penalty 0.206 0.620 0.462

Table 2: Input transportation results.

To compare performance on fairness vs accuracy trade-
off, in Fig. 3 we plot the Pareto frontiers for Wass-2 Geo,
Wass-2 Penalty and MMD Penalty, using nWass2 and MSE.
The geodesic trade-off curve is computed by setting t =
[0, 0.1, 0.2, . . . , 1]. For Wass-2 and MMD Penalty, each dat-
apoint is computed by fixing the trade-off parameter η =
log(α/β) and averaging the nWass2 and MSE results over
all other hyperparameters swept. Each datapoint thus re-
flects average performance at a trade-off point controlled by
η. On all datasets, the Wass-2 Penalty Pareto frontier lies
on or inside the MMD Penalty Pareto frontier, demonstrat-
ing that Wass-2 Penalty achieves a more optimal trade-off
than MMD Penalty, and is close to the analytically-optimal
geodesic trade-off curve. In addition, MMD Penalty pro-
duces a wider spread of MSE while achieving similar fair-
ness levels, indicating higher sensitivity to hyperparameters.
Similar conclusions hold for KS/MSE and Corr/MSE trade-
offs.

PSCF through Input Transportation

We evaluated the input transportation approach for path-
specific counterfactual fairness on the UCI Adult dataset.

We assumed the same CBN of Fig. 1, with A correspond-
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ing to sex, C to the duple age and nationality, M to level
of education, L to the triple capital gain, capital loss, and
hours per week, and Y to income. As in Fig. 1, all causal
paths from A to Y through M , i.e. A → M → L → Y ,
A → M → Y , and the direct path A → Y were consid-
ered unfair. In Table 2, we show the results obtained with
the unconstrained model, with a baseline path-specific cor-
rection approach that does not impose independence con-
straints (PSCC), and with our penalty method (PSCC WCε

Penalty). Err-0.5 indicates classification error with thresh-
olding the model outputs at τ = 0.5.

Conclusions

We have proposed an approach to fairness based on trans-
porting distributions corresponding to different sensitive at-
tributes to a common distribution. The use of optimal trans-
port theory enabled us to devise theoretically sound methods
that can achieve fairness through minimal changes to the un-
fair model. Our approach is widely applicable to all fairness
criteria that can be framed as requiring statistical indepen-
dence with respect to sensitive attributes.
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