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Abstract

Clustering algorithms are used in a large number of applica-
tions and play an important role in modern machine learning–
yet, adversarial attacks on clustering algorithms seem to be
broadly overlooked unlike supervised learning. In this paper,
we seek to bridge this gap by proposing a black-box adversar-
ial attack for clustering models for linearly separable clusters.
Our attack works by perturbing a single sample close to the
decision boundary, which leads to the misclustering of multi-
ple unperturbed samples, named spill-over adversarial sam-
ples. We theoretically show the existence of such adversarial
samples for the K-Means clustering. Our attack is especially
strong as (1) we ensure the perturbed sample is not an outlier,
hence not detectable, and (2) the exact metric used for clus-
tering is not known to the attacker. We theoretically justify
that the attack can indeed be successful without the knowl-
edge of the true metric. We conclude by providing empirical
results on a number of datasets, and clustering algorithms. To
the best of our knowledge, this is the first work that gener-
ates spill-over adversarial samples without the knowledge of
the true metric ensuring that the perturbed sample is not an
outlier, and theoretically proves the above.

1 Introduction

While machine learning (ML) and deep learning (DL) al-
gorithms have been extremely successful at a number of
learning tasks, (Papernot, McDaniel, and Goodfellow 2016)
(Szegedy et al. 2013) showed that supervised classification
algorithms can be easily fooled by adversarially generated
samples. An adversarial sample is generally indistinguish-
able from the original sample by a human observer. How-
ever, it is still misclassifed by the classification algorithm.
Since then, there has been a lot of research undertaken to
make supervised models resilient to adversarial samples,
and to expose vulnerabilities in existing ML/DL algorithms
(Carlini and Wagner 2017).

However, unsupervised learning algorithms, in particular
clustering algorithms, have seen little to no work that ana-
lyzes them from the adversarial attack perspective. This is
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in stark contrast to the significant role these algorithms play
in modern data science, malware detection, and computer
security (Perdisci, Ariu, and Giacinto 2013) (Pouget et al.
2006). In a lot of cases, labels for data are hard or even im-
possible to obtain, rendering classification algorithms unfit
for a large variety of learning problems.

Designing adversarial examples for clustering algorithms
is challenging because most clustering algorithms are inher-
ently ad-hoc unlike their supervised learning counterparts.
Even defining what constitutes an adversarial sample is not
trivial since the labels are absent. It is even more challeng-
ing to design a black-box attack where the adversary has no
knowledge of the clustering algorithm used.

In this paper, we seek to answer these questions by first
defining an adversarial sample for clustering, and then pre-
senting a powerful black-box adversarial attack algorithm
against clustering algorithms for linearly separable clusters.
Our attack algorithm is especially powerful because it gen-
erates an adversarially perturbed sample while ensuring that
it is not detected as an outlier, and this leads to spill-over
adversarial points. These are unperturbed samples that are
misclustered. Intuitively, the adversarial sample changes the
decision boundary so that some other points get misclus-
tered. Note it is important that the perturbed sample is not
an outlier, otherwise the defender may simply discard it. In
this way, our algorithm helps the attacker generate adversar-
ial samples without arousing the suspicion of the defender.

Spill-over adversarial attacks on clustering have a num-
ber of motivating cases in the real world. Similar to (Crus-
sell and Kegelmeyer 2015), where the authors present an at-
tack algorithm against DBSCAN clustering (Sander et al.
1998), consider the AnDarwin tool (Crussell, Gibler, and
Chen 2013) that clusters Android apps into plagiarized and
non-plagiarized clusters. If an adversary perturbs one pla-
giarized app such that it along with some other unperturbed
apps, gets misclustered, that could lead to a loss of confi-
dence in the tool as the defender is unaware of the reason
for this decreased performance.

In summary, we make the following contributions:

• We give a concise definition for the adversary’s objective
in the clustering setting (Section 3).

• We propose a black-box attack algorithm (Section 3) that
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perturbs a single sample while ensuring that it is not an
outlier, which can then lead to additional samples be-
ing misclustered without adding any perturbation at all
to those samples. To the best of our knowledge, this is
the first work in the clustering domain where additional
adversarial samples can be generated without any added
noise to the corresponding data points. We name these
samples spill-over adversarial samples.

• We theoretically show (Section 4) existence of spill-
over adversarial samples for K-Means clustering (Lloyd
1982). To the best of our knowledge this is the first theo-
retical result showing the existence of spill-over adversar-
ial samples.

• We show that spill-over can happen even if the attacker
does not know the exact metric used for clustering (Sec-
tion 4). Our attack is stronger as it works with a noisy
version of the true metric. In Section 5 we show that the
attack is successful for different datasets where the true
metric is not known.

• We test our algorithm (Section 5) on Ward’s Hierarchi-
cal clustering (Ward Jr 1963), and the K-Means clustering
(Lloyd 1982) on multiple datasets, e.g., the UCI Hand-
written Digits dataset (Alpaydin and Kaynak 1995), the
MNIST dataset (LeCun 1998), the MoCap Hand Postures
dataset (Gardner et al. 2014), and the UCI Wheat Seeds
dataset (Charytanowicz et al. 2010). We find that our at-
tack algorithm generates multiple spill-over adversarial
samples across all datasets and algorithms.

The rest of the paper is structured as follows: Section 2
discusses related work, Section 3 presents the threat model,
and the proposed attack algorithm, Section 4 details the the-
oretical results, Section 5 presents the results, and Section 6
concludes the paper and discusses the scope for future work.

2 Related Work

The first works discussing clustering in an adversarial setting
were (Skillicorn 2009) and (Dutrisac and Skillicorn 2008)
where the authors discussed adversarial attacks that could
lead to eventual misclustering using fringe clusters where
adversaries could place adversarial data points very close to
the decision boundary of the original data cluster. (Biggio et
al. 2013) considered the adversarial attack on clusterings in
a more detailed manner where they described the obfusca-
tion and poisoning attack settings, and then provided results
on single-linkage hierarchical clustering. In (Biggio et al.
2014) the authors extended their previous work to complete-
linkage hierarchical clustering. (Crussell and Kegelmeyer
2015) proposed a poisoning attack specifically for DBSCAN
clustering, and also gave a defense strategy.

As can be seen, very minimal research has discussed ad-
versarial attacks on clustering. Moreover, the existing work
has focused mainly on attacks for specific clusterings, in-
stead of generalized black-box attacks as in this paper. While
(Biggio et al. 2014) and (Biggio et al. 2013) define obfusca-
tion and poisoning attacks on clustering, none of these fit the
bill in the perspective of our attack algorithm which gener-
ates spill-over adversarial samples. So we provide a simple

yet effective definition for adversarial attacks on clustering
in the next section. In the aforementioned related works the
results are not theoretically justified as well. In this paper
we prove the existence of spill-over adversarial samples for
the K-Means clustering in Section 4. We also show, unlike
(Biggio et al. 2013), that even if the adversary does not have
the exact knowledge of clustering metric, spill-over adver-
sarial samples can still exist. As discussed above, our attack
is stronger as the adversarial sample generated is guaranteed
to not be an outlier. This is not addressed in any of the previ-
ous works. We also present results on a number of different
datasets for both the K-Means and Ward’s clustering algo-
rithms in Section 5.

3 Proposed Attack Framework

3.1 Threat Model

We first define the threat model and the role of the adversary.
The main features of the threat model are as follows:

1. The adversary has no knowledge of the clustering algo-
rithm that has been used and is thus, going to carry out a
black-box attack.

2. While the adversary does not have access to the algo-
rithm, we assume that she has access to the datasets, and
a noisy version of the true metric used for clustering. This
assumption is weak as the metric can be learnt by observ-
ing the clustering outputs by the defender. For details see
(Xing et al. 2003) and the references therein. We there-
fore first present our algorithm assuming exact knowl-
edge of metric. We then show in Section 4 that, if the
noise is small enough, under certain conditions, a spill-
over adversarial sample in clustering using the noisy met-
ric will also spill-over in clustering using the true metric.

3. Once the attacker has the clusters, she can use the adver-
sarial attack algorithm provided in the subsequent sub-
section to perturb just one judiciously chosen input sam-
ple, called the target sample. The algorithm perturbs this
input data sample by iteratively crafting a precise addi-
tive noise to generate the spill-over adversarial samples.
We allow the perturbation to be different for each fea-
ture of the sample. We assume that each perturbation is
within a pre-specified threshold which is determined by
adversary’s motivation of not getting detected as an out-
lier, and/or the limited attack budget of the adversary.

The Adversary’s Objective Before stating the adver-
sary’s objective, we need to define misclustering as it is not
well-defined unlike supervised learning. The goal of the ad-
versary is to maximize the number of points which are mis-
clustered into the target cluster. Note that, perturbation of
the target sample essentially perturbs the decision boundary
which creates spill-over adversarial samples but the target
sample may not necessarily be misclustered. The adversar-
ial attack algorithm presented in this paper operates on only
two clusters at a time. This is similar to a targeted adversarial
attack on supervised learning models (Carlini and Wagner
2017).
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Table 1: Parameters and Notation

Notation Meaning
X Dataset used for clustering, X ∈ R

n×m

n Number of samples in X
m Number of features in X
C The clustering algorithm used
ki ith cluster, i = 1, 2
ni Number of samples in ith cluster, i = 1, 2
Xki

Set of data samples of X in ki, Xki
∈

R
ni×m, i = 1, 2

Y Clustering result as n × 2 matrix, Y ∈
{0, 1}n×2

xt Target sample to perturb in X
Δ Acceptable noise threshold for each feature,

Δ ∈ R
m

ε∗ Optimal additive perturbation, ε∗ ∈ R
m

δ Defined metric to measure cluster change
x′
t Target sample after perturbation

X ′ X with xt replaced by x′
t

Y ′ Clustering result after noise addition as n× 2
matrix, Y ′ ∈ {0, 1}n×2

S Set of spill-over adversarial samples
ns Number of samples in S
ci Centroid of cluster ki, i = 1, 2
DC Mahalanobis Depth for clusters
DM Coordinatewise-Min-Mahalanobis Depth for

high dimensional clusters

3.2 Problem Formulation

We list all the notation and parameters used in the rest of the
paper in Table 1. Also, the Frobenius norm of a matrix M is
denoted by ‖A‖F = (

∑
i,j A

2
ij)

1/2, and 〈·, ·〉 represents the
standard vector inner product. Let a clustering algorithm be
defined as a function C : Rn×m → {0, 1}n×k that partitions
the given dataset X ∈ R

n×m into k clusters. Since we are
only considering hard clustering problems, we can represent
the clustering result as a matrix Y ∈ {0, 1}n×k where each
row has all 0 except one 1 indicating the cluster that point
belongs to, and thus, Y = C(X). Here n refers to the num-
ber of samples in the dataset and m refers to the features.
The adversary can only perturb a single sample xt, the tar-
get sample, which lies in the dataset, that is X = {xj}nj=1.
The procedure for the selection of the target point xt by the
adversary is explained in the next section when the proposed
attack algorithm is discussed.

In this paper we consider 2-way clustering, i.e., k = 2,
with the two clusters denoted as k1 and k2. The number
of samples in each cluster are denoted as n1 and n2, re-
spectively. Now, assuming xt belongs to cluster k1, that is
Yxt,k1 = 1, the aim of the adversary then is to perturb xt

to x′
t in such a way that a subset of data points S ⊆ Xk1

change their cluster membership from k1 to k2. The new
dataset containing x′

t instead of xt is denoted as X ′. Thus, in
the resulting clustering output Y ′ = C(X ′), for all xi ∈ S,
the attack leads to Y ′

xi,k2
= 1 (and Y ′

xi,k1
= 0) whereas in

the original clustering, Yxi,k1 = 1 (and Y ′
xi,k2

= 0). The set
S is what we call the set of spill-over adversarial samples.

3.3 Proposed Black-box Attack on Clustering

Algorithm 1 Proposed Black-box Adversarial Attack
Input: X , C, Δ, Y = C(X), k1, k2, n1, n2, Xk1

,Xk2

Output: Optimal additive perturbation ε∗ ∈ R
m

1: set c2 ← 1
n2

∑
xj∈Xk2

xj

2: set xt ← argminx∈Xk1
|x− c2|

3: function f (ε)
4: set x′

t ← xt + ε
5: obtain X ′ from X by replacing xt with x′

t
6: obtain Y ′ = C(X ′)
7: set δ := −‖Y Y T − Y ′Y ′T ‖F
8: return δ
9: end function

10: minimize f(ε∗) subject to ε∗j ∈ [−Δj ,Δj ] where j =
1, 2, ...,m

11: return ε∗

The proposed algorithm is shown as Algorithm 1. The in-
puts for the algorithm are the dataset X ∈ R

n×m, the clus-
tering algorithm C, the clustering result on the original data
Y ∈ {0, 1}n×2, the data points that populate each of the
two clusters, Xk1

∈ R
n1×m and Xk2

∈ R
n2×m, and the

noise threshold Δ ∈ R
m where ki (i = {1, 2}) denotes the

clusters. Δ is the noise threshold for each of the m features,
i.e., the jth feature of the optimal perturbation will lie in the
range [−Δj ,Δj ] where j = 1, ..,m. This definition for Δ
can lead to the case where points of k2 spill-over into k1,
but since the formulation is equivalent, we consider only the
case of spill-over from k1 to k2 in the paper. Δ ensures that
the adversary does not perturb the target sample too much
to get detected by the defender as an outlier. Δ can also be
interpreted as the limited attack budget of the adversary. We
elaborate on how to choose Δ at the end of this section.
Algorithm 1 proceeds as follows: In Line 1, we find the cen-
troid of whichever cluster we want the spill-over points to
be a part of, after the attack. From here on, without loss of
generality, we assume the spill-over points belong to cluster
k1 originally, and therefore cluster centroid c2 for k2 is cal-
culated. Next, in Line 2, we select the target point xt in k1
which is closest in Euclidean distance to c2. This point is a
good target for the adversarial attack as it is the nearest point
of k1 to the decision boundary between both clusters. Lines
3-10 define the function f(ε) ∈ R which we optimize over
to find the ε that will lead to spill-over.

In Line 4 of the algorithm, we perturb the target point and
obtain x′

t, and get X ′ by replacing xt with x′
t in X . We then

find the noisy clustering result Y ′ = C(X ′). Line 5 presents
the metric δ used to measure how much the clustering result
has changed from the original clustering to after the attack
(Biggio et al. 2013):

δ := −‖Y Y T − Y ′Y ′T ‖F (1)

The ijth element of the Y Y T matrix represents whether
sample i, and j belong to the same cluster. Note that, if there
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is no change in cluster membership, δ = 0. |δ| increases
with the number of points that spill over from k1 to k2.

Line 11 is essentially the formulation of the minimiza-
tion problem. We have to find the optimal perturbation ε∗j ∈
[−Δj ,Δj ] which minimizes f , such that f(ε∗) ≤ f(ε) for
any ε ∈ [−Δj ,Δj ], j = 1, 2, · · · ,m. It is also important
to understand a few aspects about the function f , before we
get to the choice of an optimization approach. As the func-
tion is not continuous, we cannot use gradient based meth-
ods to solve the minimization problem. Instead, we require
derivative-free black-box optimization approaches to mini-
mize f while ensuring that the noise threshold constraints
on the optimal perturbation ε∗ are met. There are many pos-
sibilities for such an optimization procedure, e.g., genetic
algorithms (Goldberg 2006), and simulated annealing (Kirk-
patrick, Gelatt, and Vecchi 1983). We opt for a cubic radial
basis function (RBF) based surface response methodology
(Knysh and Korkolis 2016) for the optimization. The opti-
mization approach utilizes a modified iterative version of the
CORS algorithm (Regis and Shoemaker 2005), and uses the
Latin hypercube approach (McKay, Beckman, and Conover
2000) for the initial uniform sampling of search points re-
quired for the CORS algorithm. The CORS optimization
procedure has achieved competitive results on a number of
different test functions (Holmström, Quttineh, and Edvall
2008), (Regis and Shoemaker 2005). For our attack algo-
rithm, this optimization algorithm achieved much better re-
sults on multiple datasets as compared to methods like ge-
netic algorithm, and simulated annealing. We found that this
optimization was much less sensitive to parameter choices.
We present the results obtained in Section 5.

Choosing Δ If the adversary does not have an attack bud-
get, then Δ should only be chosen such that the adversarial
sample does not get construed as an outlier. Mahalanobis
Depth (MD) is one such measure for outlyingness:
Definition 1 (Mahalanobis Depth) Mahalanobis Depth of
a point x, D (x), with respect to a set X ⊆ R

m is defined as

D (x) =
(
1 + (x− x̄)

�
Σ̂x

−1
(x− x̄)

)−1

(2)

where x̄, and Σ̂x are the sample mean and covariance.
The smaller the value of D, the larger is outlyingness. Using
D to detect the outlyingness of a point for a dataset with clus-
ters may pose problems, e.g., for two well separated clusters
the points around the line joining the cluster means have
very small depth. But a point between two clusters which
is sufficiently far from both the clusters will clearly be in-
terpreted as an outlier. So we propose a modified measure of
depth similar in flavor to (Paindaveine and Van Bever 2013):
Definition 2 (Mahalanobis Depth for Clusters (MDC))
Let there be J clusters. Say D (x) with respect to only
cluster i is given by ti. Then Mahalanobis Depth for
clusters of x is defined as DC (x) =

∑J
i=1 ti.

For high dimensional data computing MD is difficult as
the computed covariance matrix can be singular. So for
high dimensional data we propose a new depth-based mea-
sure, Coordinate-wise Min-Mahalanobis-Depth (COMD), to
measure outlyingness:

Definition 3 (Coordinate-wise Min-Mahalanobis-Depth)
Consider x = [x1, x2, · · · , xm] ∈ X ⊆ R

n×m. Let Xi

denote the ith column of X . Let DC,i denote the MDC
depth of xi w.r.t the points Xi ⊆ R

n×1. Then Coordinate-
wise Min-Mahalanobis-Depth is defined as DM (x) =
min{DC,i}mi=1.

Intuitively COMD measures the maximum outlyingness
along all the coordinates. It is a conservative measure of out-
lyingness, and hence ensuring small value of COMD is suf-
ficient for the adversary to avoid being detected as an outlier.
After observing the clusters, the attacker forms equi-DC (x)
contours, or equi-DM (x) spaces for m ≥ 2, over the data as
we will show in the toy example in Section 4.1. Δ is chosen
such that the perturbed point is at least above 0.1 quantile of
the COMD values of the dataset.

4 Theoretical Results

In this section we theoretically study the effect of perturba-
tion, and using a noisy metric. The following theorem shows
that perturbing one sample can distort the decision boundary
in such a way that another uncorrupted point can spill-over.
Theorem 1 Say k-means clustering is used to cluster a lin-
early separable dataset. A judiciously chosen datapoint can
be perturbed by additive noise, ensuring that it does not be-
come an outlier, in such a way that there may exist another
point which changes cluster membership, i.e., one or more
spill-over point(s) may exist.
Proof Let a point x is such that 〈x − c1, c2 − c1〉 ≥ 0. In-
tuitively we select x belonging to k1 such that x− c1 forms
an acute angle with c2− c1. It is easy to see that such a point
always exists. Now, an adversary perturbs x to c2, hence en-
suring that the perturbed point is not an outlier. We will show
by contradiction that, under certain conditions, there exists
at least one other point which will spill over to k2.
Let us assume that k1 remain unchanged after the perturba-
tion except that x moves to c2. Because of this perturbation
the mean and composition of the k2 does not change. Let the
mean of the k1 be c′1 after the perturbation. We have,
c1 − c′1 = c1 − n1c1−x

n1−1 = x−c1
n1−1 . Say there is a point y such

that 〈x−c1, y−c1〉 ≥ 0, and ‖y−c2‖2 = ‖y−c1‖2+α with
α ≥ 0 . Consequently, 〈y−c1, c1−c′1〉 = 〈y−c1, x−c1

n1−1 〉 ≥ 0.
Now we have,

‖y − c′1‖2
=‖y − c1 + c1 − c′1‖2
=‖y − c2‖2 + ‖c1 − c′1‖2 + 2〈y − c1, c1 − c′1〉 − α

The second and third term in the above expression is non-
negative. If α ≤ ‖c1 − c′1‖2 + 2〈y − c1, c1 − c′1〉, then the
point y is closer to c2 and should be in k2. Contradiction!

As discussed above, we assume that the adversary has ac-
cess to a noisy version of the true metric. In the following
theorem we show that a spill-over adversarial sample under
noisy metric will spill-over under clustering with true metric
under certain conditions.
Theorem 2 Let there be a point y which spilled over from
k1 to k2 of the dataset X due to a attack following Algo-
rithm 1 with distance metric d′ : X ×X → R

+. If the true
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(a) (b) (c) (d)

Figure 1: Results on toy data after using Algorithm 1 for spill-over attack

distance metric d : X ×X → R
+ used for clustering by the

defender satisfies

max{0, d(u, v)− ζ} ≤ d′(u, v) ≤ d(u, v) + ζ (3)

∀(u, v) ∈ X , and ζ ≥ 0, then, under certain conditions, y
will spill-over in the clustering using metric d as well.

Proof Let the cluster centers for d (d′) be c1 (c
′
1) and

c2 (c
′
2), and the clusters be k1 (k

′
1), and k2 (k

′
2). We assume

that the attacker can query to find out which point of k′1 is
closest to c2. We use the attack used to prove Theorem 1,
i.e., the attacker perturbs a point x from k′1, to the center of
k′2. Consequently, c′1 becomes c̄1′, c′2 remains the same, and
another point y spills-over from k′1 to k′2.

Say, after the attack, in the actual clustering using d, the
centers are represented by c̄1 and c̄2. We will show that y
will spill-over in the actual clustering using d as well, under
certain conditions. Now, we have before the attack:

d′(y, c′2) > d′(y, c′1) (4)

Using the triangle inequality twice on (4) we can write:

d′(y, c′2) > d′(y, c̄1′)− d′(c̄1′, c′1)

d′(y, c̄2) + d′(c̄2, c′2) > d′(y, c̄1)− d′(c̄1′, c̄1)− d′(c̄1′, c′1)

Let γ = d′(c̄1′, c′1) + d′(c̄1′, c̄1) + d′(c̄2, c′2) ≥ 0, and using
(3) we can write:

d′(y, c̄2)− d′(y, c̄1) > −γ
d(y, c̄2)− d(y, c̄1) > −γ − 2ζ (5)

If d(y, c̄2) − d(y, c̄1) < 0 then point y has spilled-over
in the actual clustering too, and we can see that the lower
bound in (5) is negative as both ζ and γ are non-negative.
Therefore, this ensures that d(y, c̄2) − d(y, c̄1) is negative
for a range of values of y.

4.1 Toy Example

In this subsection we present the working of our attack al-
gorithm consistent with the assumptions in Theorem 1. We
create 2-dimensional Gaussian clusters with standard devi-
ations of 1.45 and 0.75, and cluster centroids at (1, 0) and
(5, 0), respectively. Using Algorithm 1 we find the target
point xt to perturb which is originally in k1. The clusters k1
and k2 generated along with xt are shown in Fig. 1(a). The
first cluster k1, the second cluster k2, and the target sample
xt are shown in red, green, and blue respectively.

It is important to note that the assumption taken in The-
orem 1 regarding the target sample also holds true as 〈xt −
c1, c2 − c1〉 = 5.0511, where c1 and c2 denote the cluster
centroids of k1 and k2. Next, using the optimization proce-
dure outlined in Algorithm 1, we perturb xt in such a way so
as to lead to spill-over. Figure 1(b) shows that the perturbed
xt has changed cluster membership, and there is one spill-
over adversarial sample. Figure 1 also shows the equi-DC

contours with depth decreasing by 0.1, away from the clus-
ter centers. The contours in Fig. 1 show that the adversarial
sample is not an outlier. Figure 1(a)-(c) show the equi-DC

contours, and Fig. 1(d) shows the equi-DM contours. Note
that DC correctly prescribes more outlyingness for points
that lie between two clusters, which do not belong to either
cluster, as compared to points which belong to one of the
clusters. The spill-over adversarial sample has been high-
lighted in orange in Fig. 1(c). We find that the spill-over ad-
versarial sample y satisfies the condition stated in Theorem
1, i.e., 〈xt − c1, y − c1〉 = 1.2872 ≥ 0.

5 Results
In this section, we present the results obtained when we use
Algorithm 1 to generate spill-over adversarial samples for
Ward’s Hierarchical clustering and K-Means clustering on
a number of different datasets. The cubic RBF surface re-
sponse method used for the gradient-free optimization of
our objective function in Algorithm 1 is based off the open-
source implementation of (Knysh and Korkolis 2016) that
is available on GitHub (Knysh 2016) which we have slightly
modified programmatically so that it can handle high dimen-
sional data for optimization. We have also open-sourced the
code used to generate all results using our proposed attack
algorithm on GitHub (Chhabra 2019). We use the K-means
clustering and Ward’s clustering implementation as avail-
able in the Scikit-learn package (Pedregosa et al. 2011).

5.1 Ward’s Hierarchical Clustering

UCI Handwritten Digits Dataset The UCI Digits dataset
(Alpaydin and Kaynak 1995) consists of 8 × 8 images of
handwritten digits from 0 to 9. In these images each pixel is
an integer between 0, and 16. Each image can be represented
by feature vectors of length 64. We test Ward’s clustering
for this dataset since it clusters the digits well. We use these
images as inputs to the clustering algorithm.

We apply Ward’s clustering on two clustering problems:
For clustering Digits 1 and 4 images, and clustering Dig-
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Table 2: UCI Handwritten Digits Dataset results (Ward’s Clustering)

Digit clusters k1 k2 n1 n2 # Misclustered samples DM (x′
t) DM (X) quantile

Digit 1 & 4 Digit 4 Digit 1 181 182 24 0.061 0.10
Digit 8 & 9 Digit 9 Digit 8 164 190 21 0.114 0.285

Figure 2: Misclustered images that switched clusters from
the Digit 4 to the Digit 1 cluster (adversarially perturbed
sample shown with red border)

Figure 3: Misclustered images that switched clusters from
the Digit 9 to the Digit 8 cluster (adversarially perturbed
sample shown with red border)

its 8 and 9 images. For each case, the cluster information,
parameter details, total misclustered samples, DM (x′

t), and
the quantile of DM (x′

t) with respect to DM (X), are listed
in Table 2. Algorithm 1 starts with the target sample from
k1, and generates spill-over adversarial samples that switch
cluster membership from k1 to k2. For the Digits 1 and 4
clusters the spill-over adversarial images are shown in Fig.
2, and for Digits 8 and 9, they are shown in Fig. 3. For both
the clustering problems, the DM (X) quantile above which
DM (x′

t) lies, indicates that it cannot be an outlier.

MNIST Dataset To show the performance of Algorithm 1
we use the MNIST dataset (LeCun 1998) which is an image
dataset. We utilize small subsets of the original digit images,
and use 200 images for each digit. The digit images here are
28 × 28 grayscale images of digits from 0 to 9. For inputs
to the clustering, we flatten each image sample and get a
feature vector of length m = 784.

We apply Ward’s clustering on two clustering problems:
For clustering Digits 1 and 4 images, and clustering Digits
2 and 3 images. For each of these, the cluster information,
parameter details, total misclustered samples, the perturbed
target sample depth DM (x′

t), and the quantile of DM (x′
t)

with respect to DM (X), are listed in Table 3. The attack
algorithm starts with the target sample from the k1 cluster
and then generates spill-over adversarial samples that switch
cluster membership from k1 to k2. For the Digits 1 and 4
clusters the spill-over adversarial images are shown in Fig.

Figure 4: Misclustered MNIST images that switched clus-
ters from the Digit 4 to the Digit 1 cluster (adversarially
perturbed sample shown with red border)

Figure 5: Misclustered MNIST images that switched clus-
ters from the Digit 3 to the Digit 2 cluster (adversarially
perturbed sample shown with red border)

4, and for Digits 2 and 3 clusters they are shown in Fig.
5. Here too, the DM (X) quantile range that DM (x′

t) lies
in ensures that the perturbed adversarial sample cannot be
detected as an outlier.

5.2 K-Means Clustering

UCI Wheat Seeds Dataset The UCI Wheat Seeds dataset
(Charytanowicz et al. 2010) contains measurements of ge-
ometric properties of three different varieties of wheat ker-
nels: Kama, Rosa, and Canadian, with 70 samples for each
seed variety. Each sample has the following 7 features:
Area of the kernel A, perimeter of the kernel P , compact-
ness C = 4πA/P 2, kernel length, kernel width, asymme-
try coefficient, and length of kernel groove. We use the K-
Means clustering for clustering Kama and Rosa wheat ker-
nels. Cluster sizes for Rosa is n1 = 79, and for Kama is
n2 = 61. The noise threshold Δ is selected using the outlier
depth methodology described in the previous sections. Algo-
rithm 1 starts with the target sample in the Rosa cluster and
generates 2 adversarial spill-over adversarial samples which
have switched cluster labels from the Rosa cluster (or cluster
k1) to the Kama (or cluster k2) cluster including the target
sample. The original clustering with the target sample se-
lected is shown in Fig. 6, and is plotted in 3D using the area,
perimeter, and compactness features. Here DM (x′

t) = 0.33
which is the 0.28 quantile of DM (X) which ensures that it
will not be an outlier.

MoCap Hand Postures Dataset The MoCap Hand Pos-
tures dataset (Gardner et al. 2014) consists of 5 types of hand
postures/gestures from 12 users recorded in a motion capture
environment using 11 unlabeled markers attached to a glove.
We only use a small subset of the data with 200 samples for
each cluster. For clustering, the possible features are each of
the 11 markers’ X,Y, Z coordinates. However, we only use
the first 3 markers’ recorded X,Y, Z coordinates because
due to resolution and occlusion, missing values are common
in the other markers’ data. Thus, we have a total of 9 fea-
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Table 3: MNIST Dataset results (Ward’s Clustering)

Digit clusters k1 k2 n1 n2 # Misclustered samples DM (x′
t) DM (X) quantile

Digit 1 & 4 Digit 4 Digit 1 192 208 11 0.067 0.49
Digit 2 & 3 Digit 3 Digit 2 176 224 2 0.13 0.828

Figure 6: Kama and Rosa wheat kernel clusters (target sam-
ple to be adversarially perturbed in red) visualized using the
area, perimeter, and compactness wheat seed features

Figure 7: Point1 and Grab pose clusters (target sample
to be adversarially perturbed in red) visualized using the
Z1, Z2, Z3 marker position features

tures: Xi, Yi, Zi for each ith marker, where i = 1, .., 3. We
use the K-Means clustering for clustering the Point1 pos-
ture and the Grab posture. Cluster size for Grab posture is
n1 = 209, and for Point1 posture is n2 = 191. Algorithm 1
starts with the target sample in the Grab posture cluster, and
generates 5 adversarial spill-over adversarial samples which
have switched cluster labels from the Grab cluster (k1) to the
Point1 (k2) cluster including the target sample. The original
clustering with the target sample selected is shown in Fig.
7, and is plotted in 3D using the Z1, Z2, Z3 marker coordi-
nates features. Here DM (x′

t) = 0.325 is the 0.27 quantile of
DM (X). This indicates that x′

t is not an outlier.

6 Conclusion and Future Work

In this paper, we propose a black-box adversarial attack al-
gorithm which shows that clustering algorithms are vulner-
able to adversarial attack even against a fairly constrained

adversary. Our contributions are as follows:

• Our attack algorithm creates spill-over adversarial sam-
ples by perturbing one sample, and consequently perturb-
ing the decision boundary between clusters. To the best
of our knowledge, this is the first work in the field which
generates additional adversarial samples without adding
noise to those samples. (Section 3)

• We provide theoretical justification for existence of spill-
over adversarial samples for K-Means clustering. We be-
lieve this is the first theoretical result showing the exis-
tence of spill-over adversarial samples (Section 4).

• We theoretically show that misclustering can happen us-
ing the spill-over adversarial attack even when the at-
tacker does not have access to the true metric used for
the clustering, but uses a noisy metric to cluster the data.
This makes our attack especially powerful (Section 4).

• Our attack algorithm allows for the adversary to choose
the noise threhsold Δ such that the perturbed adversarial
sample does not become an outlier. We accomplish this
by proposing the notion of Mahalanobis Depth for Clus-
ters (DC), and Coordinatewise-Min-Mahalanobis Depth
for high dimensional clustered data (DM ).

• We test the attack algorithm on Ward’s Hierarchical
clustering, and the K-Means clustering on a number of
datasets, e.g., the UCI Handwritten Digits dataset, the
MNIST dataset, the MoCap Hand Postures dataset, and
the UCI Wheat Seeds dataset. We successfully carry out
adversarial attacks on the clustering algorithms for all
datasets even though true metric is unknown (Section 5).

In future, we will provide theoretical results for Ward’s Hi-
erarchical clustering, since empirically the attack algorithm
is successful in generating adversarial samples against it.
Improving the optimization approach, and substituting the
black-box heuristic optimization approaches with a more ro-
bust procedure that has provable convergence guarantees is
also a promising direction. Much like supervised learning
algorithms, we find that clustering algorithms are also vul-
nerable to powerful black-box adversarial attacks, making it
imperative to design robust clustering approaches.
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