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Abstract

Conventional Neural Architecture Search (NAS) aims at find-
ing a single architecture that achieves the best performance,
which usually optimizes task related learning objectives such
as accuracy. However, a single architecture may not be rep-
resentative enough for the whole dataset with high diver-
sity and variety. Intuitively, electing domain-expert architec-
tures that are proficient in domain-specific features can fur-
ther benefit architecture related objectives such as latency. In
this paper, we propose InstaNAS—an instance-aware NAS
framework—that employs a controller trained to search for a
“distribution of architectures” instead of a single architecture;
This allows the model to use sophisticated architectures for
the difficult samples, which usually comes with large archi-
tecture related cost, and shallow architectures for those easy
samples. During the inference phase, the controller assigns
each of the unseen input samples with a domain expert ar-
chitecture that can achieve high accuracy with customized in-
ference costs. Experiments within a search space inspired by
MobileNetV2 show InstaNAS can achieve up to 48.8% la-
tency reduction without compromising accuracy on a series
of datasets against MobileNetV2.

1 Introduction

Neural Architecture Search (NAS) has become an effec-
tive and promising approach to automate the design of deep
learning models. It aims at finding the optimal model archi-
tectures based on their performances on evaluation metrics
such as accuracy (Zoph and Le 2017). One popular way to
implement NAS is to employ reinforcement learning (RL)
that trains an RNN controller (or “agent”) to learn a search
policy within a pre-defined search space. In each iteration of
the search process, a set of child architectures are sampled
from the policy, and evaluate performance on the target task.
The performance is then used as the reward to encourage
the agent to prioritize child architectures that can achieve
a higher expected reward. In the end, a single architecture
with a maximum reward will be selected and trained to be
the final solution of the task.

*indicates equal contribution.
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Figure 1: InstaNAS searches for a distribution of architec-
tures instead of a single one from conventional NAS. We
showcase a distribution of architecture latencies found by
InstaNAS for CIFAR-10. The InstaNAS controller assigns
each input instance to a domain expert architecture, which
provides customized latency for different domains of data.

Although a single architecture searched using NAS seems
to be sufficient to optimize task related metrics such as ac-
curacy, its performance is largely constrained in architec-
ture related metrics such as latency and energy. For exam-
ple in a multi-objective setting where both accuracy and la-
tency are concerned, NAS is constrained to come up with
a single model to explore the trade-off between accuracy
and latency for all samples. In practice, however, difficult
samples require complicated and usually high latency archi-
tectures whereas easy samples work well with shallow and
fast architectures. This inspires us to develop InstaNAS, a
NAS framework which searches for a distribution of archi-
tectures instead of a single one. Each architecture within the
final distribution is an expert of one or multiple specific do-
mains, such as different difficulty, texture, content style and
speedy inference. For each sample, the controller is trained
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Figure 2: InstaNAS controller (C') selects an expert child architecture (m) from the meta-graph (G) for each input instance
while considering task-dependent objectives (Or) (e.g., accuracy) and architecture-dependent objectives (0 4) (e.g., latency).

to select a suitable architecture from its distribution. With
basic components being shared across architectures, weights
can be re-used toward architectures that have never been se-
lected before. The InstaNAS framework allows samples to
have their own architectures, making it flexible to optimize
architecture related objectives.

InstaNAS is critical in many of the recently proposed
settings such as multi-objective NAS (Dong et al. 2018;
Tan et al. 2018), which optimizes not only task-dependent
metrics such as accuracy but also those metrics that are
architecture-dependent such as latency. In particular, the
controller of InstaNAS has the capability of selecting the ar-
chitectures by considering the variations among instances.
To enable effective training, we introduce a dynamic reward
function to gradually increase the difficulty of the environ-
ment, a technique commonly found in curriculum learning.

In the meanwhile, the reward interval slowly decreases
its upper bound through epochs. Note that InstaNAS also
aligns with the concept of conditional computing (i.e., mix-
ture of experts) since the instance-level architecture depends
on the given input sample. Most importantly, InstaNAS ele-
gantly combines the ideas of NAS and conditional comput-
ing which learns a distribution of architectures and a con-
troller to generate instance-level architectures.

In conclusion, the main contributions of this paper are
as the following: We propose InstaNAS , the first instance-
aware neural architecture search framework that generates
architectures for each individual sample. Instance-awareness
allows us to incorporate the variability of samples into ac-
count by designing architectures that specifically optimize
each sample. To the best of our knowledge, we are the first
work toward building NAS with instance-awareness. We
show that InstaNAS is able to out-perform MobileNetV2
dramatically in terms of latency while keeping the same
performance. Experimental results illustrate an average of
48.9%, 40.2%, 35.2% and 14.5% latency reduction with
comparable accuracy on CIFAR-10, CIFAR-100, TinyIma-
geNet and ImageNet, respectively. Further latency reduction
of 26.5% can be achieved on ImageNet if a moderate accu-
racy drop (=~ 0.7%) is allowed.
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2 Related Work

Neural Architecture Search. Neural Architecture Search
(NAS) has emerged growing interest in the field of AutoML
and meta-learning in recent years. Seminal work by (Zoph
and Le 2017) first proposed “Neural Architecture Search
(NAS)” using reinforcement learning algorithm. They intro-
duce a learnable RNN controller that generates a sequence
of actions representing a child network within a predefined
search space, while the validation performance is taken as
the reward to train the controller. Since the process of NAS
can also be framed as a natural selection problem, some
works (Real et al. 2017; 2018) propose to use evolutionary
algorithms to optimize the architecture. However, all these
works focus on optimizing model accuracy as their only ob-
jective. In real-world, these models may not be suitable for
being deployed on certain (e.g., latency-driven) applications,
such as mobile applications and autonomous car.

Multi-objective Neural Architecture Search. For bet-
ter flexibility and usability in real-world applications, sev-
eral works are dedicated to extending NAS into multiple-
objective neural architecture search, which attempts to op-
timize multiple objectives while searching for architectures.
(Elsken, Metzen, and Hutter 2018) and (Zhou et al. 2018)
use FLOPs and the number of parameters as the proxies of
computational costs; (Kim et al. 2017) and (Tan et al. 2018)
directly minimized the actual inference time; (Dong et al.
2018) proposed to consider both device-agnostic objectives
(e.g., FLOPs) and device-related objectives (e.g., inference
latency) using Pareto Optimization. However, all these algo-
rithms only consider searching for a single final architecture
achieving the best average accuracy for the given task. In
contrast, InstaNAS is an MO-NAS approach that searches
for a distribution of architectures aiming to speed up the av-
erage inference time with instance-awareness.

One-shot Architecture Search. Computational expensive
is another fundamental challenge in NAS, conventional NAS
algorithms require thousands of different child architectures
to be trained from scratch and evaluated, which is often
time costly. One-shot architecture search is an approach us-
ing share-weight across child architectures to amortize the



search cost. The concept of weight sharing has been widely
adopted by different NAS approaches with various kinds of
search strategies: with evolutionary algorithm (Real et al.
2018; 2017), reinforcement learning (Pham et al. 2018), gra-
dient descent (Liu, Simonyan, and Yang 2018), and random
search (Bender et al. 2018). Instead of training each child
architecture from scratch, they allow child architectures to
share weights whenever possible. We also adopt the similar
design principle of the one-shot architecture search to not
only accelerate InstaNAS but also to reduce the total num-
ber of parameters in InstaNAS . We will explain further de-
tail of how we leverage the one-shot architecture search to
build our meta-graph in Section 3.2.

Conditional Computation. Several conditional computa-
tion (i.e., mixture of experts) methods have been proposed
to dynamically execute different modules of a model on a
per-example basis (Shazeer et al. 2017; Bengio et al. 2015;
Liu and Deng 2017; Teja Mullapudi et al. 2018; Wu et al.
2018; Veit and Belongie 2018). More specifically, Block-
Drop(Wu et al. 2018) and ConvNet-AIG(Veit and Belongie
2018) are two state-of-the-art conditional computing meth-
ods that generate a series of decision which selectively
dropped a subset of blocks in a well-known baseline hyper-
network (e.g., ResNet) with respect to each input. However,
conditional computing is very different from NAS in many
perspectives. Conditional computing assumes whole hyper-
network typically achieves the best accuracy, and dropping
computation implies sacrificing accuracy. For InstaNAS, the
meta-graph does not achieve the best accuracy. Conditional
computing requires a human-designed hyper-network to be-
gin with the trimming process. In contrast, InstaNAS is
NAS, which only requires a manually defined set of oper-
ations to form a search space. Moreover, The total number
of unique computation configurations in conditional com-
puting is much smaller than the total number of unique ar-
chitectures in our search space. In practice, the experimental
results demonstrate that InstaNAS discovers a more diverse
and complex set of architectures.

3 InstaNAS: Instance-aware NAS

In this section, we first give the overview of InstaNAS,
specifically about the meta-graph and the controller. Then,
we describe how the meta-graph is constructed and pre-
trained. Finally in Section 3.3, we explain how to design the
multi-objective reward function for training the controller
and updating the meta-graph.

3.1 Overview

InstaNAS contains two major components: a meta-graph
and a controller. The meta-graph is a directed acyclic graph
(DAG), with one source node (where an input image is fed)
in the beginning and one sink node (where the prediction
is provided) at the end; every node between the source and
sink is a computing module such as a convolutional opera-
tion, and an edge connects two nodes meaning the output of
one node is used as the input of the other. With this meta-
graph representation, every path from source to sink can be
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treated as a valid child architecture as an image classifier.
Therefore, the meta-graph can be treated as the set contain-
ing all possible child architectures.

The other major component of InstaNAS is the controller;
it is designed and trained to be instance-aware and optimize
for multi-objective. Particularly, for each input image, the
controller selects a child architecture (i.e., a valid path in the
meta-graph) that accurately classifies that image, and at the
same time, minimizes the inference latency (or other compu-
tational costs). Therefore, the controller is trained to achieve
two objectives at the same time: maximize the classification
accuracy (referred as the task-dependent objective Q1) and
minimize the inference latency (referred as the architecture-
dependent objective O 4). Note that O 4 can also be viewed
as a constraint when optimizing for Q.

Next, the training phase of InstaNAS consists of three
stages: (a) “pre-train” the meta-graph, (b) “jointly train”
both controller and the meta-graph, and (c) “fine-tune” the
meta-graph. In the first stage, the meta-graph (denoted as
G, parametrized by ©) is pre-trained with Q. In the sec-
ond stage, a controller (denoted as C, parametrized by ¢) is
trained to select a child architecture m(z;6,) = C(z, G; ¢)
from G for each input instance . In this stage, the controller
and the meta-graph are trained in an interleaved fashion:
train the controller with the meta-graph fixed in one epoch
and vice versa in another epoch. This training procedure en-
forces the meta-graph to adapt to the distribution change of
the controller. Meanwhile, the controller is trained by policy
gradient with a reward function R which is aware of both O
and Q4. The training detail of the controller is described in
Section 3.3. In the third stage, after the controller is trained,
we fix the controller and focus on fine-tuning the meta-graph
for the task-dependent objective Q; specifically, for each
input image the controller selects a child architecture (i.e.,
a certain path in the meta-graph), and that child architecture
is trained to optimize for Q. After the child architecture is
trained, the corresponding nodes of the meta-graph are up-
dated accordingly.

During the inference phase, m(z;60,) = C(z,G;¢) is
applied to each unseen input instance x. The generated
m(x;60,) is an architecture that tailored for each x and best
trade-offs between O and O 4. Note that the latencies we
reported in Section 4 has included the controller latency,
since the controller is applied for each inference.

3.2 Meta-Graph

Meta-graph is a weight-sharing mechanism designed to rep-
resent the search space of all possible child architectures
with two important properties: (a) any end-to-end path (from
source to sink) within the meta-graph is a valid child ar-
chitecture, and (b) the performance (e.g., accuracy or la-
tency) of this child architecture, without any further train-
ing, serves as a good proxy for the final performance (i.e.,
fully-trained performance). Without using the meta-graph,
a straightforward approach of constructing instance-aware
classifier might be: train many models, then introduce a con-
troller to assign each input instance to the most suitable
model. This approach is not feasible since the total number
of parameters in the search space grows linearly w.r.t. the



number of models considered, which is usually a very large
number; for example, in this work, the search space con-
tains 102° child architectures. Therefore, InstaNAS adapts
the meta-graph to reduce the total number of parameters via
weight sharing; specifically, if two child architectures share
any part of the meta-graph, only one set of parameters re-
quired to represent the shared sub-graph.

Next, we explain how the meta-graph is pre-trained. At
the beginning of every training iteration, part of the meta-
graph is randomly zero out (also called “drop-path” in (Ben-
der et al. 2018)), and the rest of modules within the meta-
graph forms a child architecture. Then this child architec-
ture is trained to optimize O (e.g., classification accu-
racy) and updates the weights of the corresponding part of
the meta-graph. Note that the “drop-path” rate is a hyper-
parameter between [0, 1]. The drop-path rate that the meta-
graph trained with will affect how the controller explores
the search space in the early stage. In this work, we achieve
good results by linearly increasing the drop-path rate from
the middle of pre-training and eventually reach to 50%.

3.3 Controller

InstaNAS controller is different to the one in conventional
NAS that aims at training for effectively exploring in the
search space. Given an input image, the InstaNAS controller
proposes a child architecture by m(z; 6,,) = C(x; ¢). There-
fore, during the inference phase, the controller is still re-
quired, and the design principle of the controller is to be
fast since its latency is included as part of the inference pro-
cedure. The controller is responsible for capturing the low-
level representations (e.g., the overall color, texture com-
plexity, and sample difficulty) of each instance, then dis-
patches the instance to the proposed child architecture that
can be treated as the domain expert to make accurate deci-
sions. In this work, we use a three-layer convolutional net-
work with large kernels as the implementation of a InstaNAS
controller. Qualitative analysis and visualizations of how the
controller categorizes samples are provided in Section 4.3
(see Figure 6 for example).

Next, we elaborate on the exploration strategy and reward
function to train the controller.

Exploration Strategy. We formulate each architecture to
be a set of binary options indicating whether each convo-
lutional kernel within the meta-graph is selected. The con-
troller takes each input image and generates a probability
vector p indicating the probability of selecting a certain con-
volutional kernel. Then Bernoulli sampling is applied to this
probability vector for exploring the architecture space. We
adopt the entropy maximization mentioned in (Mnih et al.
2016), which improves exploration by encouraging a more
deterministic policy (either select or not select a kernel). To
further increase the diversity of sampling result during ex-
ploring the architecture space, we adopt the encouragement
parameter « described in (Wu et al. 2018) which mutates the
probability vectorby p’ = a-p+ (1 — a) - (1 — p).

The controller is trained with policy gradient. Similar
to training procedure proposed in (Zoph and Le 2017;
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Wau et al. 2018), we introduce a “self-critical” baseline (Ren-
nie et al. 2017) R(p) to reduce the variance of instance-wise
reward R(p'), where p; = 1if p > 0.5, and p; = 0 other-
wise. The policy gradient is estimated by:

VyJ =E[(R(p)) — R(§))Vs Zlog P(a;)], (1)

which ¢ is the parameters of the controller and each a; is
sampled independently by a Bernoulli distribution with re-
spect to p; € p.

Reward Function. The reward function is designed to be
multi-objective that takes both O and O 4 into account. The
reward is calculated as:

R_ {RT - R, if Ry is positive,

otherwise,

Ry 2
which Rt and R4 are obtained from O and Q4. The de-
sign of R is based on the observation that O is generally
more important and preferred than @ 4. As a result, Q4 is
only taken into account when O is secured. Otherwise,
the controller is first ensured to maximize Ry . Even for
the cases where Ry is positive, R4 is treated to be “pre-
ferred” (not enforced), which is done by normalizing R4 to
the range [0, 1] that becomes a discounting factor to Ry and
never provides negative penalties to the controller through
policy gradient.

Another observation is that optimizing O, is generally
challenging to optimize, which at times collapses the con-
troller training. One possible reason is: take Rt to be ac-
curacy and R4 to be latency as an example, architectures
with both good latency and desirable accuracy are rare.
Meanwhile, our “instance aware” setting collects reward
in a “instance-wise” manner, finding architectures with ex-
tremely low latency for all samples (trivially selecting most
simple kernels) is significantly easier than having generally
high accuracy for any sample. Therefore, in the early stage
of the controller exploration, such pattern encourages the
controller to generate shallow architectures and directly ig-
nores accuracy. Eventually, the policy collapses to a single
architecture with extremely low latency with a poor accu-
racy close to random guessing.

To address the aforementioned problem, we propose a
training framework using “dynamic reward.” Dynamic re-
ward encourages the controller to satisfy a gradually de-
creasing latency reward with bounds (upper-bound U, and
lower-bound L,, which t is the number of epochs) during
search time. The idea of dynamic reward shares a similar
concept with curriculum learning (Bengio et al. 2009), ex-
cept that we aim at gradually increasing the task difficulty to
avoid the sudden collapsing. In this work, we propose the re-
ward R 4 to be a quadratic function parametrized by U, and
L,. For each sample, we measure architecture-related perfor-
mance z, then calculate R4 = —% (z—U;) x (2—L¢), which
~ is a normalization factor that normalizes R 4 to the range
[0,1] by v = (Y:5££)2. Such a design (quadratic function)
encourages the controller to maintain the expectation of O 4
near the center of the reward interval, while still be aware of



O7. Otherwise, the child architectures may fall outside the
reward interval upon the reward interval changes.

4 Experiments

In this section, we explain and analyze the building blocks of
InstaNAS. We first demonstrate some quantitative results of
InstaNAS against other models. Then we visualize and dis-
cuss some empirical insights of InstaNAS. Throughout the
experiments, we use the same search space. For the search
objectives, we choose accuracy as our task-dependent ob-
jective and latency as the architecture-dependent objective,
which are the most influential factors of architecture choice
in real-world applications.

4.1 Experiment Setups

Search Space. We validate InstaNAS in a search space in-
spired by (Tan et al. 2018), using MobileNetV?2 as the back-
bone network. Our search space consists of a stack of 17
cells, each cell has five module choices. Specifically, we
allow one basic convolution (BasicConv) and four mobile
inverted bottleneck convolution (MBConv) layers with var-
ious kernel sizes {3, 5} and filter expansion ratios {3, 6}
as choices in the cell, which has 2° = 32 combinations.
Different from (Dong et al. 2018; Zoph et al. 2018), we
do not restrict all cells to share the same combination of
choices. Therefore, across the entire search space, there are
3217 ~ 10%® child architecture configurations.

Module Latency Profiling. In the instance-aware setting,
evaluating the latency reward is a challenging task as each
input instance is possibly assigned to different child archi-
tectures. However, measuring the latency individually for
each child architecture is considerably time costly during
training. Therefore, to accelerate training, we evaluate the
latency reward with estimated values. Specifically, we build
up module-wise look-up tables with pre-measured latency
consumption of each module. For each sampled child archi-
tecture, we look up the table of each module and accumulate
the layer-wise measurements to estimate the network-wise
latency consumption.

4.2 Quantitative Results

Experiments on CIFAR-10/100. We validate InstaNAS
on CIFAR-10/100 with the search space described in the
previous section. Across all training stages, we apply ran-
dom copping, random horizontal flipping, and cut-out (De-
Vries and Taylor 2017) as data augmentation methods. For
pre-training the meta-graph, we use Stochastic Gradient De-
scent optimizer with initial learning rate 0.1. After the joint
training ends, some controllers are picked by human prefer-
ence by considering the accuracy and latency trade-off. At
this point, the accuracy measured in the joint training stage
can only consider as a reference value, the meta-graph needs
to re-train from scratch with respect to the picked policy. We
use Adam optimizer with learning rate 0.01 and decays with
cosine annealing.

2For a fair comparison, all CPU latencies are measured in the
same work station and the same framework (PyTorch v1.0.0).

3581

Table 1: InstaNAS shows competitive latency and accu-
racy trade-off in CIFAR-10 (Krizhevsky and Hinton 2009)
against other state-of-the-art human-designed models (first
row) and NAS-found models (second row). All five In-
staNAS models are all obtained within a single search, and
the controller latency is already included in the reported la-
tency. Note that we measure the model’s error rates with our
implementation if it is not reported in the original paper. >

Model Err. (%) Latency
ResNet50 (He et al. 2016) 6.38 0.051
ResNet101 (He et al. 2016) 6.25 0.095
ShuffleNet v2 1.0x (Ma et al. 2018) 7.40 0.035
ShuffieNet v2 1.5x (Ma et al. 2018) 6.36 0.052
IGCV3-D 1.0x (Sun et al. 2018) 5.54 0.185
IGCV3-D 0.5% (Sun et al. 2018) 5.27 0.095
NASNet-A (Zoph et al. 2018) 341 0.219
DARTS (Liu, Simonyan, and Yang 2018) 2.83 0.236
DPP-Net-M obile (Dong et al. 2018) 5.84 0.062
MobileNet v2 0.4x (Sandler et al. 2018) 7.44 0.038
MobileNet v2 1.0x (Sandler et al. 2018) 5.56 0.092
MobileNet v2 1.4x (Sandler et al. 2018) 4.92 0.129
InstaNAS-C10-A 4.30 0.085
InstaNAS-C10-B 4.50 0.055
InstaNAS-C10-C 5.20 0.047
InstaNAS-C10-D 6.00 0.033
InstaNAS-C10-E 8.10 0.016

Table 1 shows the quantitative comparison with state-of-
the-art efficient classification models and NAS-found archi-
tectures. The result suggests InstaNAS is prone to find good
trade-off frontier relative to both human-designed and NAS-
found architectures. In comparison to MobileNetV2 (1.0x),
which the search space is referenced to, InstaNAS-C10-
A improves accuracy by 1.26% without latency trade-off;
InstaNAS-C10-C reduces 48.9% average latency with com-
parable accuracy, and InstaNAS-C10-F reduces 82.6% la-
tency with moderate accuracy drop. Note that these three
variances of InstaNAS are all obtained within a single
search, then re-train from scratch individually.

Our results on CIFAR-100 are shown in Table 2, which
the average latency consistently shows reduction - with
40.2% comparing to MobileNetV2, 36.1% comparing to
ShuffleNetV2. InstaNAS stably shows overall improvement
in the trade-off frontier against competitive models.

Experiments on TinyImageNet and ImageNet. To vali-
date the scalability, stability and generalization of InstaNAS,
we evaluate our approach on two more fine-grained datasets,
TinyImageNet and ImageNet. We ran the experiment using
directly the same set of hyperparameters configuration from
the CIFAR-10/100 experiment. As shown in Table 3 and Ta-
ble 4, InstaNAS comparing to MobileNetV2, again, found
accurate model with 35.2% latency reduction on TinyIma-
geNet and 14.5% on ImageNet. Furthermore, if moderate
accuracy drop (=~ 0.7%) is tolerable, InstaNAS can further
achieve 26.5% average latency reduction on ImageNet.



Table 2: InstaNAS consistently provides significant accuracy
improvement and latency reduction on CIFAR-100. Again,
all the InstaNAS variants are obtained within a single search.

Model Err. (%) Latency
ShuffleNet v2 1.0x (Ma et al. 2018) 30.60 0.035
ShuffleNet v2 1.5x (Ma et al. 2018) 28.30 0.052
ShuffleNet v2 2.0x (Ma et al. 2018) 28.88 0.072
MobileNet v2 0.4 x (Sandler et al. 2018) 30.72 0.049
MobileNet v2 1.0x (Sandler et al. 2018) 27.00 0.092
MobileNet v2 1.4 x (Sandler et al. 2018) 25.66 0.129
InstaNAS-C100-A 24.20 0.089
InstaNAS-C100-B 24.40 0.086
InstaNAS-C100-C' 24.90 0.065
InstaNAS-C100-D 26.60 0.055
InstaNAS-C100-E 27.80 0.046

Table 3: InstaNAS can generalize to larger scale dataset and
provide decent latency on TinyImageNet.

Model Err. (%) Latency
MobileNetV1 56.4 -
MobileNetV2 1.0 (Sandler et al. 2018) 48.1 0.264
MobileNetV2 1.4 (Sandler et al. 2018) 42.8 0.377
InstaNAS-Tiny-A 414 0.223
InstaNAS-Tiny-B 439 0.179
InstaNAS-Tiny-C' 46.1 0.171

Comparison with Conditional Computing methods. In
this section, we compare and show that InstaNAS outper-
forms several state-of-the-art conditional computing (i.e.,
mixture of experts) methods. Figure 3 shown that InstaNAS
significantly outperforms the two state-of-the-art conditional
computing methods, BlockDrop (Wu et al. 2018) and Con-
vNetAIG (Veit and Belongie 2018), by a large margin. This
is caused by the fundamental differences between NAS and
conditional computing as mentioned in the related work.

[-.- InstaNAS ~ =§§= BlockDrop — =je= ConvNet—AlG]
15
;\? ”\“\“
o
SLT:]‘ 10 \
5 .\.\‘\.

0.02 0.03 0.04 0.05

Avg. Latency / Instance (sec)

0.06 0.07

Figure 3: InstaNAS out-performs two state-of-the-arts con-
ditional computing methods (Veit and Belongie 2018; Wu et
al. 2018)) within MobileNetV?2 search space.

Comparison with NAS methods. Figure 4 illustrates the
best architectures found on the trade-off frontier for In-
staNAS and two state-of-the-arts NAS methods: Oneshot-
NAS (Bender et al. 2018), MNasNet (Tan et al. 2018).
For OneshotNAS, we follow the one-shot search proce-
dures (Bender et al. 2018) to sample 10,000 models from
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the meta-graph and train the trade-off frontier points from
scratch on CIFAR-10. From Figure 4, we observe that the
trade-off frontier achieved by InstaNAS is significantly bet-
ter than OneshotNAS and MNasNet, which in turn confirms
instance-awareness to be an effective characteristic for NAS.

~10 {-.— InstaNAS =@— OneshotNAS -5 MnasNetJ
X
o
o
5 ”\“\“
5 \0\ *
0.02 0.04 0.06 0.08 0.10

Avg. Latency / Instance (sec)

Figure 4: The InstaNAS trade-off frontier dominates both
OneshotNAS and MNasNet on CIFAR-10 dataset.

Table 4: InstaNAS can find model with 14.5% latency reduc-
tion without compromising accuracy on ImageNet. If mod-
erate accuracy drop (0.7%) is tolerable, InstaNAS-ImgNet-B
can further achieve 26.5% average latency reduction com-
paring to MobileNetV2 x1.0.

Model Err. (%) Latency
MNasNet x0.5 (Tan et al. 2018) 32.4 0.121
ProxylessNAS (Cai, Zhu, and Han 2018) 31.8 0.136
MobileNetV2 x 1.0 (Sandler et al. 2018) 28.2 0.257
MobileNetV2 x0.75 (Sandler et al. 2018) 30.2 0.200
InstaNAS-ImgNet-A 28.1 0.239
InstaNAS-ImgNet-B 28.9 0.189
InstaNAS-ImgNet-C 30.1 0.171

4.3 Qualitative Results

In this section, we provide a qualitative analysis on the child
architectures selected by InstaNAS for ImageNet. Figure 5
illustrates the various images of three classes (brambling,
matchstick, and dishwasher) sorted by its assigned archi-
tecture’s latency (showed as the number below each image)
normalized by the average latency—0% represents the av-
erage latency of all the architectures assigned to the images
under a certain class. The images on the left are considered
to be “simpler” (the architectures used have lower latency),
and images on the right are “complex.” Note that these lev-
els are determined by the controller, which also matches
humans’ perception on the image complexity: e.g., images
with a cluttered background, high intra-class variation, il-
lumination conditions are more complex and therefore so-
phisticated architectures (with higher latency) are assigned
to classify these complex images.

Figure 6 illustrates architecture distribution (projected
onto 2-D) with each dot representing an architecture and the
color being the corresponding latency (red represents high
latency and blue means low). We also randomly select three
architectures and highlight the images samples assigned to
them (by the controller) for making an inference. Notice that
the image samples in each box share similar low-level visual
patterns (e.g., background color, object position/orientation,
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Figure 5: InstaNAS selects architectures tailored for each image. Each row represents samples from ImageNet with the same
label; the images on the left are considered to be “simpler” and images on the right are “complex.” These levels are determined
by the controller, which also matches humans’ perception: e.g., cluttered background, high intra-class variation, illumination
conditions. The number below each image represents the relative difference on latency. 0% means the average latency of all

architectures selected for the images within certain class.
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Figure 6: Distribution of InstaNAS architectures on Ima-
geNet. Each point corresponds to an architecture probabil-
ity vector p. We adopt UMAP to project high-dimensional
p into 2D space, and color-code each architecture by its in-
ference latency: red for high latency and blue for low. We
also visualize three set of instances (in rectangle boxes) and
instances in each box share the same architecture. The con-
troller categorizes input instances base on their low-level vi-
sual characteristic, such as the background color (green),
object position/orientation (black) and texture complexity
(purple). Then the controller assigns each instance to a
down-stream expert architecture for accurate classification.

and texture complexity) that agree with humans’ perception.
Both qualitative analyses confirm InstaNAS ’s design intu-
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ition that the controller learns to discriminate each instance
based on its low-level characteristic for best assigning that
instance to the corresponding expert architecture.

5 Conclusion

In this paper, we propose InstaNAS, the first instance-aware
neural architecture search framework. InstaNAS exploits
instance-level variation to search for a distribution of ar-
chitectures; during the inference phase, for each new im-
age InstaNAS selects one corresponding architecture that
best classifies the image while using less computational re-
source (e.g., latency). The experimental results on CIFAR-
10/100, TinyImageNet, and ImageNet all confirm that bet-
ter accuracy/latency trade-off is achieved comparing to Mo-
bileNetV2, which we designed our search space against.
Qualitative results further show that the proposed instance-
aware controller learns to capture the low-level characteris-
tic of the input image, which agrees with human perception.
InstaNAS presents that instance-awareness is an important
but missing piece in multiple-objective NAS and its potential
in advancing the research in computational efficient models.
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