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Abstract

In multi-view multi-label learning (MVML), each training
example is represented by different feature vectors and as-
sociated with multiple labels simultaneously. Nonetheless,
the labeling quality of training examples is tend to be af-
fected by annotation noises. In this paper, the problem of
multi-view partial multi-label learning (MVPML) is studied,
where the set of associated labels are assumed to be can-
didate ones and only partially valid. To solve the MVPML
problem, a two-stage graph-based disambiguation approach
is proposed. Firstly, the ground-truth labels of each training
example are estimated by disambiguating the candidate la-
bels with fused similarity graph. After that, the predictive
model for each label is learned from embedding features gen-
erated from disambiguation-guided clustering analysis. Ex-
tensive experimental studies clearly validate the effectiveness
of the proposed approach in solving the MVPML problem.

Introduction

The task of multi-view multi-label learning (MVML) widely
exists in real-world applications, where each object consists
of diverse representations and multiple class labels simulta-
neously (Luo et al. 2013; Liu et al. 2015; Zhu, Li, and Zhang
2016; Xing et al. 2018; Zhang et al. 2018; Zhu et al. 2018;
Wu et al. 2019). For instance, a news webpage can be repre-
sented from different views including text, image and video,
while at the same time annotated with multiple class labels
such as sports, economic, and entertainment.

In conventional MVML studies, it is commonly assumed
that all relevant labels have been precisely annotated for
each training instance. Nonetheless, in many real-world sce-
narios, precise annotations are usually difficult and costly
to be obtained. As shown in Figure 1, a news webpage with
text, image and video views might be annotated with six can-
didate labels from crowdsourced labelers, among which only
Soccer, Europa league and England are ground-truth ones.
Under these circumstances, the multiple class labels asso-
ciated with each training example are only candidate ones
which are partially valid. In this paper, we formalize the cor-
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Figure 1: An examplar multi-view partial multi-label sce-
nario. The news webpage can be represented from different
views such as text, image and video. Furthermore, among
the six candidate labels annotated by crowdsourced labelers,
only three of them are valid ones including Soccer, Europa
league and England.

responding learning task as the problem of Multi-View Par-
tial Multi-label Learning (MVPML).

LetX = R
d1×Rd2 · · ·×RdV be the feature space consist-

ing of V views, where dv (1 ≤ v ≤ V ) denotes the dimen-
sionality of the v-th view. Furthermore, let Y = {yc}qc=1 be
the label space consisting of q possible class labels. Given
the MVPML training set D = {(xi, Yi) | 1 ≤ i ≤
m}, where xi = [x1

i ,x
2
i , · · · ,xV

i ] ∈ X is the
∑V

v=1 dv-
dimensional feature vector and Yi ⊆ Y is the candidate la-
bel set associated with xi. The basic assumption of MVPML
lies in that the ground-truth labels Ỹi ⊆ Y for xi reside in
its candidate label set, i.e. Ỹi ⊆ Yi, which are not directly
accessible to the learning algorithm. The task of MVPML is
to learn a predictive model h : X → 2Y from D which can
assign a set of proper labels for the unseen instance.

Intuitively, the problem of MVPML can be solved by re-
sorting to its degenerated version. Specifically, by ignoring
labeling noises in candidate label set and thus treating all
candidate labels as ground-truth ones, the MVPML problem
will degenerate to the MVML counterpart (Liu et al. 2015;
Zhu, Li, and Zhang 2016; Xing et al. 2018; Zhang et al.

3553



2018; Wu et al. 2019). Although it is possible to directly
invoke existing techniques for MVML to solve the MVPML
problem, the resulting performance would be suboptimal
as the instrinsic properties of MVPML, i.e. multi-view and
noisy labeling, haven’t been fully considered in this way.

In this paper, a first attempt named GRADIS, i.e. GRAph-
based DISambiguation for multi-view partial multi-label
learning, is proposed to solving the MVPML problem.
Specifically, GRADIS tackles the noisy labeling of MVPML
training examples in two-stage by exploiting the multi-view
represetation. In the first stage, GRADIS disambiguates the
candidate label set of each training example by conducting
label propagation over fused similarity graph. In the second
stage, clustering analysis guided by the disambiguation re-
sults is performed to help generate embedding features for
predictive model induction. Comparative experiments over
benchmark data sets clearly validate the effectiveness of
GRADIS in learning from MVPML examples.

The rest of this paper is organized as follows. In Section
2, technical details of the proposed GRADIS approach are
presented. In Section 3, experimental results of comparative
studies are reported. In Section 4, related works on MVPML
are briefly discussed. Finally, Section 5 concludes this paper.

The Proposed Approach

To learn from MVPML examples, GRADIS works in two
stages including Candidate Labels Disambiguation and
Disambiguation-Guided Model Induction, whose technical
details are scrutinized as follows.

Candidate Labels Disambiguation

In the first stage, GRADIS aims to disambiguate the candi-
date label set of each MVPML training example by con-
ducting graph-based label propagation. Following the same
notations in previous Section, given two multi-view in-
stances xi = [x1

i ,x
2
i , ...,x

V
i ] and xj = [x1

j ,x
2
j , ...,x

V
j ], let

N (xv
i ) (1 ≤ v ≤ V ) denote the set of k-nearest neighbors

for xv
i identified in D w.r.t. the v-th view. Then, the similar-

ity between two instances w.r.t. the v-th view is calculated
as follows:1

Sv
i,j =

{
e−

||xv
i −xv

j ||2

2σ2 , if xv
j ∈ N (xv

i ) and i �= j

0, otherwise
(1)

Then, the similarity between instances xi and xj can be ob-
tained by fusing similarities from different views:

∀ 1 ≤ i, j ≤ m : Wi,j =
∑V

v=1
Sv
i,j (2)

Accordingly, a weighted directed graph G = (V,E,W) for
the MVPML training set D is formed by GRADIS. Here, the
vertex set V = {xi | 1 ≤ i ≤ m} consists of all the train-
ing instances. Furthermore, the edge set E = {(xi,xj) |
1 ≤ i, j ≤ m, i �= j} consists of directed edges be-
tween any pair of training instances, and the weight matrix
W = [Wi,j ]m×m stores the corresponding similarity values.

1In this paper, k-nearest neighbors w.r.t. v-th view are identified
using Euclidean distance. Furthermore, the parameter σ in Eq.(1)
is fixed to be 1.

Following the label propagation procedure, let H =
WD−1 be the propagation matrix by normalizing weight
matrix W in column, where D = diag[d1, d2, . . . , dm] is
the diagonal matrix with dj =

∑m
i=1 Wi,j . In addition, let

F = [fi,c]m×q denote the matrix whose entry fi,c ≥ 0 rep-
resents the labeling confidence of yc being a valid class la-
bel for xi. Specifically, the initial labeling confidence matrix
F(0) is set as:

∀ 1 ≤ i ≤ m : f
(0)
i,c =

{
1

|Yi| , if yc ∈ Yi

0, otherwise
(3)

For the t-th iteration, F is updated by propagating current
labeling confidence over H:

F(t) = α ·H�F(t−1) + (1− α) · F(0) (4)

Here, the balancing parameter α ∈ [0, 1] controls the label-
ing information inherited from iterative label propagation
and the initial labeling confidence F (0). Let F∗ be the fi-
nal labeling confidence matrix returned by the iterative label
propagation procedure2, which is further re-scaled into F̂ by
normalization w.r.t. the candidate label set:

∀ 1 ≤ i ≤ m : f̂i,c =

{
f∗
i,c∑

yl∈Yi
f∗
i,l
, if yc ∈ Yi

0, otherwise
(5)

Therefore, for each MVPML training example (xi, Yi),
its candidate label set Yi is disambiguated into Ŷi by thresh-
olding F̂ w.r.t. parameter γ ∈ (0, 1):

∀ 1 ≤ i ≤ m : Ŷi = {yc | f̂i,c > γ, 1 ≤ c ≤ q} (6)

Disambiguation-Guided Model Induction

In the second stage, GRADIS aims to induce the predictive
model by exploiting the disambiguated training set D̂ =

{(xi, Ŷi) | 1 ≤ i ≤ m}. Specifically, the relevancy of
each class label is determined by utilizing embedding fea-
tures generated via clustering analysis.

For the c-th class label yc, let I+c (I−c ) denote the index
set of training examples which have positive (negative) label
assignment w.r.t. yc:

I+c = {i | yc ∈ Ŷi, 1 ≤ i ≤ m} (7)

I−c = {i | yc /∈ Ŷi, 1 ≤ i ≤ m}
Then, GRADIS generates a feature embedding Φc : X → Zc

with Zc = Z1
c × Z2

c · · · × ZV
c for model induction w.r.t.

yc, where Zv
c (1 ≤ v ≤ V ) is instantiated by conduct-

ing clustering analysis over the positive (negative) instances
indexed by I+c (I−c ). Clustering analysis serves as a natu-
ral way to explore the underlying structure of training ex-
amples, which has been successfully utilized to help gen-
erate features with strong discriminative ability for multi-
label learning (Zhang and Wu 2015; Huang et al. 2016;
Weng et al. 2018).

2In this paper, the iterative procedure terminates when F(t)

does not change or the maximum number of iterations (i.e. 30) is
reached.
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Table 1: The pseudo-code of GRADIS.

Inputs:
D: MVPML training set {(xi, Yi) | 1 ≤ i ≤ m}

(xi ∈ X , Yi ⊆ Y,X = R
d1 × R

d2 · · · × R
dV , Y = {y1, y2, . . . , yq})

k: # nearest neighbors considered in Eq.(1)
α, γ, η: the balancing parameter (Eq.(4)), thresholding parameter (Eq.(6)), and ratio parameter (Eq.(8)) in (0,1)
B: binary training algorithm
u: unseen instance
Outputs:
Y : predicted label set for u
Process:

1: for v = 1 to V do
2: Set Sv

i,j (1 ≤ i, j ≤ m) according to Eq.(1);
3: end for
4: Form the weighted directed graph G = (V,E,W) with W = [Wi,j ]m×m and Wi,j =

∑V
v=1 S

v
i,j ;

5: Initialize labeling confidence matrix F(0) according to Eq.(3);
6: Perform iterative label propagation according to Eq.(4) and return the final labeling confidence matrix F∗;
7: Obtain the disambiguated training set D̂ = {(xi, Ŷi) | 1 ≤ i ≤ m} with Ŷi set according to Eq.(6);
8: for c = 1 to q do
9: Identify the positive and negative index sets I+c , I−c according to Eq.(7);

10: Conduct spectral clustering along with WI+
c

and WI−
c

to obtain two sets of clustering centers {p1
c ,p

2
c , . . . ,p

mc
c } and

{n1
c ,n

2
c , . . . ,n

mc
c } respectively;

11: Form the binary training set D̂c according to Eq.(11), with the feature embedding Φc generated w.r.t. Eqs.(9)-(10);
12: Induce binary classifier fc ←� B(D̂c);
13: end for
14: Return Y according to Eq.(12);

Based on the fused similarity graph G, the widely-used
spectral clustering (von Luxburg 2007) is employed to ful-
fill the clustering task. Let WI+

c
denote the weight matrix

derived from W by retaining the rows and columns speci-
fied by I+c , a set of mc clustering centers {p1

c ,p
2
c , . . . ,p

mc
c }

can be returned by invoking the spectral clustering pro-
cedure along with WI+

c
. Here, each clustering center

pk
c is a

∑V
v=1 dv-dimensional feature vector with pk

c =[
pk,1
c ,pk,2

c , . . . ,pk,V
c

]
. Similarly, another set of mc cluster-

ing centers {n1
c ,n

2
c , . . . ,n

mc
c } can be returned by invoking

the spectral clustering procedure along with WI−
c

. Follow-
ing (Zhang and Wu 2015), the number of clustering centers
mc is set as:

mc = 
η ·min
(|I+c |, |I−c |)� (8)

Here, the ratio parameter η ∈ (0, 1) controls the number of
clustering centers for embedding feature generation.

For any instance x = [x1,x2, . . . ,xV ] ∈ X , a total of
2mc embedded features can be generated by querying the
distance between x and the clustering centers on the v-th
view:

φv
c (x) =

[
d(xv,p1,v

c ), d(xv,p2,v
c ), . . . , d(xv,pmc,v

c ),

d(xv,n1,v
c ), d(xv,n2,v

c ), . . . , d(xv,nmc,v
c )

]
(9)

Here, d(·, ·) corresponds to the Euclidean distance. There-
fore, the mapping function Φc : X → Zc will embed x into

the 2mc · V feature space:

Φc(x) = [φ1
c(x), φ

2
c(x), . . . , φ

V
c (x)] (10)

To determine the relevancy of yc, one binary training set
D̂c is derived from D̂ based on Φc:

D̂c = {(Φc(xi), Ŷi(c)) | 1 ≤ i ≤ m} (11)

where Ŷi(c) =

{
+1, if yc ∈ Ŷi

−1, otherwise

Accordingly, one binary classifier fc : Zc → R is induced
by invoking binary training algorithm B on D̂c, i.e. fc ←�

B(D̂c). Given the unseen instance u ∈ X , its relevant label
set Y is predicted as:

Y = {yc | fc(Φc(u)) ≥ 0, 1 ≤ c ≤ q} (12)

Table 1 summarizes the complete procedure of GRADIS.
Firstly, the weighted graph over all training examples is
formed by fusing kNN-based similarity graphs over all
views (Steps 1-4). After that, candidate label set of each
training example is disambiguated via iterative label prop-
agation over the weighted directed graph (Steps 5-7). Based
on the disambiguated training examples, the predictive
model is induced based on embedding features generated by
exploiting clustering structure (Steps 8-13). Finally, the label
set for unseen instance is predicted by querying the induced
model (Step 14).
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Table 2: Characteristic of experimental data sets. Here, p controls the fraction of examples which are partially labeled, and r
controls the number of false positive labels which reside in the candidate label set.

Data Set |S| V (S) Dim(S) CL(S) LCard(S) Domain Controlling Parameters
Emotions 593 2 8 / 64 6 1.869 music

p ∈ {0.3, 0.5, 0.7}
r = 3

Yeast 2,417 2 24 / 79 14 4.237 biology
Corel5k 4,999 4 100 / 512 / 1,000 / 4,096 260 3.397 image
Pascal 9,963 5 100 / 512 / 1,000 / 4,096 / 804 20 1.465 image

Mirflickr 25,000 5 100 / 512 / 1,000 / 4,096 / 457 38 4.716 image
Youku25k 24,940 4 64 / 128 / 2,048 / 2,048 114 2.130 video
Youku50k 49,940 4 64 / 128 / 2,048 / 2,048 114 1.564 video

Table 3: Experimental results of each comparing approach in terms of ranking loss, where the best performance (the smaller
the better) on each data set and specific value of p is shown in bold face.

Data Set p GRADIS GRADIS-B ML-KNN LIFT LSAMML F2L21F

Emotion
0.3 0.145±0.021 0.146±0.023 0.190±0.034 0.164±0.028 0.207±0.025 0.183±0.021
0.5 0.159±0.024 0.173±0.030 0.217±0.029 0.188±0.046 0.215±0.037 0.201±0.045
0.7 0.191±0.028 0.236±0.026 0.265±0.033 0.240±0.026 0.236±0.029 0.230±0.029

Yeast
0.3 0.173±0.011 0.165±0.012 0.174±0.009 0.178±0.012 0.302±0.018 0.345±0.014
0.5 0.167±0.011 0.187±0.012 0.175±0.009 0.184±0.014 0.302±0.021 0.351±0.013
0.7 0.171±0.011 0.196±0.012 0.179±0.009 0.186±0.010 0.303±0.020 0.349±0.013

Pascal
0.3 0.122±0.006 0.123±0.009 0.267±0.002 0.134±0.005 0.251±0.006 0.235±0.003
0.5 0.130±0.005 0.139±0.006 0.272±0.006 0.148±0.008 0.254±0.007 0.249±0.005
0.7 0.143±0.007 0.148±0.011 0.273±0.006 0.157±0.005 0.258±0.004 0.271±0.010

Corel5k
0.3 0.093±0.006 0.089±0.006 0.132±0.004 0.091±0.006 0.143±0.008 0.333±0.007
0.5 0.098±0.006 0.095±0.007 0.135±0.006 0.094±0.006 0.147±0.007 0.339±0.007
0.7 0.108±0.006 0.103±0.007 0.139±0.008 0.097±0.004 0.151±0.008 0.347±0.007

Mirflickr
0.3 0.088±0.013 0.091±0.015 0.170±0.012 0.108±0.009 0.174±0.008 0.137±0.011
0.5 0.092±0.007 0.097±0.014 0.173±0.011 0.128±0.009 0.177±0.008 0.145±0.013
0.7 0.096±0.009 0.103±0.015 0.174±0.011 0.147±0.011 0.178±0.010 0.148±0.010

Youku25k
0.3 0.045±0.007 0.068±0.011 0.130±0.011 0.074±0.013 0.078±0.008 0.045±0.011
0.5 0.049±0.007 0.078±0.009 0.133±0.012 0.087±0.011 0.084±0.009 0.050±0.009
0.7 0.056±0.008 0.089±0.009 0.138±0.010 0.101±0.011 0.093±0.008 0.057±0.009

Youku50k
0.3 0.029±0.007 0.051±0.013 0.117±0.009 0.066±0.010 0.067±0.010 0.035±0.013
0.5 0.033±0.010 0.057±0.011 0.121±0.013 0.075±0.011 0.078±0.011 0.042±0.010
0.7 0.040±0.009 0.066±0.011 0.129±0.010 0.092±0.010 0.085±0.009 0.049±0.008

Experiments

Experimental Setup

Data Sets To thoroughly evaluate the performance of
comparing approaches, seven benchmark data sets are col-
lected for experimental studies including emotions (Tro-
hidis et al. 2008), yeast (Elisseeff and Weston 2002),
Corel5k (Duygulu et al. 2002), Pascal (Evering-
ham et al. 2010), Mirflickr (Huiskes and Lew 2008),
Youku25k and Youku50k (Wu et al. 2019). Table 2 sum-
marizes characteristics of each benchmark data set S , in-
cluding the # examples (|S|), # views (V (S)), dimension-
ality of each view (Dim(S)), # class labels (CL(S)), and
average # ground-truth labels per example (i.e. label cardi-
nality LCard(S)).

Following the widely-used protocal for introducing la-
beling noise (Cour, Sapp, and Taskar 2011; Liu and Diet-
terich 2012; Tang and Zhang 2017; Yu and Zhang 2017;
Chen, Patel, and Chellappa 2018), two controlling parame-
ters p and r are utilized to generate MVPML examples with
candidate label set from MVML examples. Here, p controls
the fraction of examples in the data set which are partially

labeled, i.e. with false positive labels in the associated la-
bel set. Furthermore, r controls the number of false posi-
tive labels which reside in the candidate label set. For an
MVML example (x, Ỹ ) with ground-truth label set Ỹ , an
MVPML example (x, Y ) is generated by randomly adding
r false positive labels Δr ⊆ Y \ Ỹ into Ỹ , i.e. Y = Ỹ

⋃
Δr.

In this paper, three configurations of p are considered with
p ∈ {0.3, 0.5, 0.7}. Furthermore, the number of false posi-
tive labels r is set to be 3, which is comparable to the label
cardinality of the experimental data sets shown in Table 2.

Comparing Approaches The problem of MVPML is
firstly studied in this paper, where no existing MVPML are
readily available for comparative studies.

As the MVPML problem degenerates to the MVML prob-
lem by treating all candidate labels as ground-truth ones,
two state-of-the-art MVML approaches F2L21F (Zhu, Li,
and Zhang 2016) and LSAMML (Zhang et al. 2018) are em-
ployed for performance comparison. Furthermore, other two
well-established multi-label learning approaches ML-KNN
(Zhang and Zhou 2007) and LIFT (Zhang and Wu 2015) are
also employed as comparing approaches by concatenating
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Table 4: Experimental results of each comparing approach in terms of average precision, where the best performance (the larger
the better) on each data set and specific value of p is shown in bold face.

Data Set p GRADIS GRADIS-B ML-KNN LIFT LSAMML F2L21F

Emotion
0.3 0.817±0.030 0.811±0.033 0.775±0.031 0.796±0.028 0.762±0.031 0.779±0.026
0.5 0.801±0.033 0.787±0.029 0.760±0.024 0.777±0.048 0.749±0.042 0.759±0.052
0.7 0.772±0.026 0.735±0.026 0.711±0.041 0.734±0.023 0.725±0.029 0.733±0.034

Yeast
0.3 0.763±0.011 0.765±0.013 0.757±0.012 0.756±0.018 0.432±0.016 0.606±0.016
0.5 0.761±0.015 0.755±0.011 0.756±0.011 0.751±0.019 0.442±0.022 0.601±0.013
0.7 0.757±0.014 0.750±0.013 0.752±0.012 0.748±0.013 0.423±0.019 0.601±0.015

Pascal
0.3 0.684±0.014 0.680±0.016 0.456±0.006 0.638±0.013 0.471±0.009 0.529±0.006
0.5 0.667±0.012 0.666±0.011 0.451±0.006 0.590±0.040 0.463±0.008 0.496±0.013
0.7 0.640±0.010 0.654±0.014 0.450±0.004 0.597±0.009 0.461±0.004 0.461±0.011

Corel5k
0.3 0.473±0.011 0.483±0.011 0.344±0.006 0.467±0.011 0.358±0.012 0.210±0.007
0.5 0.464±0.010 0.472±0.010 0.343±0.007 0.459±0.013 0.356±0.011 0.198±0.008
0.7 0.453±0.011 0.464±0.012 0.340±0.006 0.446±0.012 0.354±0.011 0.186±0.008

Mirflickr
0.3 0.750±0.013 0.749±0.009 0.509±0.011 0.656±0.008 0.533±0.010 0.656±0.011
0.5 0.739±0.009 0.735±0.013 0.505±0.014 0.623±0.009 0.529±0.008 0.644±0.014
0.7 0.730±0.011 0.720±0.015 0.505±0.015 0.474±0.013 0.529±0.010 0.634±0.009

Youku25k
0.3 0.680±0.008 0.657±0.09 0.473±0.008 0.550±0.009 0.551±0.010 0.654±0.009
0.5 0.675±0.009 0.633±0.010 0.468±0.010 0.504±0.009 0.546±0.010 0.646±0.009
0.7 0.664±0.008 0.618±0.010 0.460±0.010 0.474±0.011 0.539±0.011 0.633±0.008

Youku50k
0.3 0.701±0.010 0.679±0.009 0.488±0.009 0.568±0.009 0.565±0.013 0.677±0.011
0.5 0.696±0.009 0.658±0.010 0.476±0.014 0.517±0.009 0.556±0.010 0.665±0.009
0.7 0.688±0.012 0.633±0.012 0.470±0.010 0.488±0.012 0.549±0.011 0.652±0.009

the multi-view representation into a single one. A simplified
variant of GRADIS (named as GRADIS-B) is also evaluated
to show the usefulness of candidate label set disambigua-
tion. which works in the same way as GRADIS except that
the disambiguation stage is ignored from the training proce-
dure.

For the comparing approaches, parameters suggested in
respective literatures (Zhang and Zhou 2007; Zhang and Wu
2015; Zhu, Li, and Zhang 2016; Zhang et al. 2018) are used
for experimental studies. As shown in Table 1, parameters of
GRADIS are set as k = 8, α = 0.95, γ = 0.1 and η = 0.1.
For performance evaluation, six popular multi-label metrics
including hamming loss, ranking loss, one-error, coverage,
average precision and macro-averaging AUC (Zhang and
Zhou 2014) are utilized in this paper. For the first four met-
rics, the smaller the metric value the better the performance.
For the other two metrics, the larger the metric value the bet-
ter the performance.3 Ten-fold cross-validation is performed
on each data set, where the mean metric value as well as
standard deviation are recorded.

Experimental Results

Comparative Studies Tables 3 to 5 report the detailed ex-
perimental results of each comparing approach in terms of
ranking loss, average precision and macro-averaging AUC.
On each data set, the best performance of all comparing ap-
proaches w.r.t. specific value of p is shown in boldface.4

3Due to page limit, detailed definitions on the evaluation met-
rics can be found in (Zhang and Zhou 2014; Gibaja and Ventura
2015)

4Detailed experimental results in terms of the other evaluation
metrics are not reported here due to page limit while similar obser-

Furthermore, Friedman test (Demšar 2006) is employed
for statistical performance comparison among the compar-
ing approaches. At significance level 0.05, the null hypoth-
esis of equal performance among all comparing approaches
is rejected in terms of each evaluation metric. Consequently,
Bonferroni-Dunn test (Demšar 2006) is employed as the
post-hoc test to show the relative performance among com-
paring approaches by treating GRADIS as the control ap-
proach.

Figure 2 illustrates the critical difference (CD) diagrams
where the average rank of each approach is marked along the
axis with lower ranks to the right. Any approach whose av-
erage rank is within one CD with GRADIS is interconnected
to each other with a thick line. Otherwise, it is regarded to
have significantly different performance against GRADIS.

Based on the reported experimental results, it is impres-
sive to observe that:
• Out of 126 statistical tests (7 data sets × 3 configu-

rations of controlling parameter p × 6 evaluation met-
rics), GRADIS achieves better metric value than ML-KNN,
LIFT, LSAMML and F2L21F in 96.82%, 88.89%, 97.62%
and 88.10% cases. Furthermore, the simplified variant
GRADIS-B also achieves better metric value than ML-
KNN, LIFT, LSAMML and F2L21F in 94.44%, 81.75%,
91.27% and 76.98% cases.

• As shown in Figure 2, GRADIS achieves lowest (best)
average rank in terms of all evaluation metrics. In ad-
dition, GRADIS significantly outperforms ML-KNN and
LSAMML in terms of all evaluation metrics, and signif-
icantly outperforms LIFT and F2L21F in terms of ham-
ming loss, ranking loss, one-error and average precision.

vations can be made as well.
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Table 5: Experimental results of each comparing approach in terms of macro-averaging AUC, where the best performance (the
larger the better) on each data set and specific value of p is shown in bold face.

Data Set p GRADIS GRADIS-B ML-KNN LIFT LSAMML F2L21F

Emotion
0.3 0.850±0.022 0.843±0.022 0.786±0.020 0.825±0.028 0.792±0.027 0.809±0.026
0.5 0.834±0.023 0.812±0.031 0.754±0.024 0.794±0.040 0.780±0.037 0.788±0.032
0.7 0.805±0.040 0.747±0.044 0.705±0.039 0.749±0.024 0.744±0.037 0.746±0.039

Yeast
0.3 0.666±0.012 0.672±0.019 0.669±0.018 0.660±0.018 0.495±0.022 0.674±0.016
0.5 0.667±0.018 0.666±0.025 0.654±0.010 0.669±0.012 0.502±0.023 0.672±0.011
0.7 0.659±0.019 0.651±0.022 0.641±0.017 0.657±0.017 0.491±0.027 0.658±0.014

Pascal
0.3 0.832±0.015 0.834±0.011 0.601±0.014 0.828±0.005 0.658±0.007 0.707±0.011
0.5 0.805±0.011 0.801±0.013 0.581±0.004 0.812±0.008 0.655±0.005 0.694±0.002
0.7 0.793±0.011 0.788±0.013 0.585±0.010 0.794±0.008 0.645±0.005 0.673±0.011

Corel5k
0.3 0.814±0.007 0.802±0.014 0.650±0.007 0.811±0.004 0.738±0.011 0.601±0.012
0.5 0.797±0.012 0.781±0.015 0.646±0.010 0.797±0.015 0.731±0.011 0.592±0.012
0.7 0.767±0.014 0.762±0.010 0.639±0.010 0.793±0.008 0.722±0.010 0.592±0.013

Mirflickr
0.3 0.657±0.011 0.657±0.015 0.533±0.016 0.660±0.020 0.599±0.019 0.656±0.013
0.5 0.655±0.014 0.650±0.022 0.520±0.023 0.652±0.019 0.587±0.013 0.647±0.010
0.7 0.646±0.019 0.644±0.014 0.509±0.018 0.642±0.017 0.569±0.013 0.639±0.009

Youku25k
0.3 0.900±0.009 0.892±0.010 0.774±0.010 0.891±0.013 0.900±0.009 0.946±0.016
0.5 0.888±0.013 0.879±0.012 0.770±0.013 0.886±0.009 0.886±0.014 0.935±0.017
0.7 0.874±0.009 0.869±0.009 0.765±0.015 0.879±0.014 0.872±0.011 0.924±0.015

Youku50k
0.3 0.905±0.013 0.900±0.009 0.781±0.009 0.897±0.014 0.905±0.010 0.949±0.010
0.5 0.892±0.010 0.887±0.012 0.776±0.013 0.890±0.011 0.890±0.009 0.940±0.016
0.7 0.883±0.009 0.878±0.015 0.769±0.010 0.883±0.015 0.878±0.013 0.927±0.012

• As shown in Tables 3 to 5, the performance gap between
GRADIS and GRADIS-B becomes more pronounced as
the level of labeling noise (i.e. p) increases. Furthermore,
the average rank of GRADIS is smaller than GRADIS-B
in terms of all evaluation metrics. These results validate
the usefulness of the disambiguation stage employed by
GRADIS, especically when the level of labeling noise is
high.

Sensitivity Analysis As shown in Table 1, the implemen-
tation of GRADIS involves four parameters k (# nereast
neighbors), α (balancing parameter), γ (thresholding param-
eter), and η (ratio parameter). To investigate the parameter
sensitivity of GRADIS, Figure 3 gives an illustrative exam-
ple of how the performance of GRADIS (in terms of average
precision) changes as the value of each parameter varies on
the Yeast data set. Here, when the value of one parameter
varies, the values for the other parameters are fixed as k = 8,
α = 0.95, γ = 0.1 and η = 0.1.

As shown in Figure 3, it is shown that in most cases:
a) The performance of GRADIS is relatively stable when k
takes value in [5,11]; b) The performance of GRADIS is rela-
tively stable when α takes value in [0.7,0.95]; c) The perfor-
mance of GRADIS decreases as γ exceeds 0.1; d) The perfor-
mance of GRADIS decreases as η is relatively stable when η
takes value in [0.05,0.35]. In light of these observations, we
have used the parameter configuration k = 8, α = 0.95,
γ = 0.1 and η = 0.1 for GRADIS in experimental studies.

Related Work

In this paper, the problem of multi-view partial multi-label
learning is firstly studied, which is closely-related to multi-
view multi-label learning as well as partial label learning.

Multi-view multi-label learning (MVML) deals with the
problem where each example is represented by multiple
views while associated with multiple class labels. The ba-
sic assumption of MVML lies in that each of the associ-
ated labels is valid in characterizing semantics of the ex-
ample. To learn from MVML examples, most works focus
on exploiting shared subspace to enable information com-
munication and fusing from different views. In (Liu et al.
2015), a low-dimensional shared representation is learned
by enforcing the low-rank constraint which is suitable for
image classification based on matrix completion. In (Zhu,
Li, and Zhang 2016), block-wise regularization is intro-
duced to remove redundancy views and noisy features. In
(Zhan and Zhang 2017; Xing et al. 2018), the popular co-
training framework is adapted for multi-label learning by
considering the reliability of labeling information to be com-
municated among different views. In (Zhang et al. 2018;
Zhu et al. 2018), the shared subspace is learned by exploiting
multi-view correlations via Hilbert-Schmidt Independence
Criterion (HSIC) or matrix factorization. In (Wu et al. 2019),
the shared subspace as well as view-specific information ex-
traction are jointly utilized for model induction.

Partial label learning (PLL) deals with the problem where
each example is represented by a single instance while
associated with multiple candidate labels. The basic as-
sumption of PLL lies in that all the associated labels are
only candidate ones among which only one is valid. To
learn from PLL examples, most works focus on disam-
biguating the candidate label set for model induction. For
identification-based disambiguation, the ground-truth label
is treated as latent variable whose value is esitimated via
iterative procedure such as EM (Liu and Dietterich 2012;
Yu and Zhang 2017; Chen, Patel, and Chellappa 2018).
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(a) hamming loss (b) ranking loss (c) one-error

(d) coverage (e) average precision (f) macro-averaging AUC

Figure 2: Comparison of GRADIS (control approach) against other approaches with Bonferroni-Dunn test. Approaches not
connected with GRADIS in the CD diagram are considered to have significantly different performance from the control approach
(CD=1.7597).

(a) Varying k (b) Varying α (c) Varying γ (d) Varying η

Figure 3: The performance of GRADIS (in terms of average precision) changes as the value of each parameter varies. (a) k (#
nearest neighbors) increases from 5 to 11 with step-size 1; (b) α (balancing parameter) increases from 0.7 to 1 with step-size
0.05; (c) γ (thresholding parameter) increases from 0 to 0.3 with step-size 0.05; (d) η (ratio parameter) increases from 0.05 to
0.35 with step-size 0.05.

For averaging-based disambiguation, each candidate label is
treated in an equal manner whose modeling outputs are av-
eraged for final prediction (Cour, Sapp, and Taskar 2011;
Tang and Zhang 2017). Recently, studies on partial label
learning which assume non-unique ground-truth label in
candidate label set (Xie and Huang 2018; Yu et al. 2018;
Fang and Zhang 2019; Sun et al. 2019) have also been in-
vestigated.

Conclusion

In MVPML, the multi-view training example is assumed to
have multiple labeling assignments which are only partially
valid. In this paper, a two-stage approach towards MVPML
is proposed via graph-based disambiguation. Firstly, simi-
larity graph from multiple views are fused to enable candi-
date label set disambiguation via iterative label propagation.
After that, disambiguation-guided clustering analysis is per-
formed to generate embedded features for training the pre-
dictive model. Experimental studies over a number of bench-
mark data sets show that the proposed approach serves as an
effective solution to learn from MVPML examples.
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