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Abstract

Minimizing the discrepancy of feature distributions between
different domains is one of the most promising directions in
unsupervised domain adaptation. From the perspective of mo-
ment matching, most existing discrepancy-based methods are
designed to match the second-order or lower moments, which
however, have limited expression of statistical characteristic
for non-Gaussian distributions. In this work, we propose a
Higher-order Moment Matching (HoMM) method, and fur-
ther extend the HOMM into reproducing kernel Hilbert spaces
(RKHS). In particular, our proposed HOMM can perform
arbitrary-order moment matching, we show that the first-
order HOMM is equivalent to Maximum Mean Discrepancy
(MMD) and the second-order HOMM is equivalent to Corre-
lation Alignment (CORAL). Moreover, HOMM (order= 3)
is expected to perform fine-grained domain alignment as
higher-order statistics can approximate more complex, non-
Gaussian distributions. Besides, we also exploit the pseudo-
labeled target samples to learn discriminative representations
in the target domain, which further improves the transfer
performance. Extensive experiments are conducted, showing
that our proposed HOMM consistently outperforms the exist-
ing moment matching methods by a large margin. Codes are
available at https://github.com/chenchao666/HoMM-Master

Introduction

Convolutional neural networks (CNNs) have shown promis-
ing results on supervised learning tasks. However, the per-
formance of a learned model always degrades severely when
dealing with data from the other domains. Considering that
constantly annotating massive samples from new domains
is expensive and impractical, unsupervised domain adapta-
tion (UDA), therefore, has emerged as a new learning frame-
work to address this problem (Csurka 2017). UDA aims to
utilize full-labeled samples in source domain to annotate
the completely-unlabeled target domain samples. Thanks to
deep CNNs, recent advances in UDA show satisfactory per-
formance in several computer vision tasks (Hoffman et al.
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Figure 1: 300 points in R? and the level sets of the moment
tensor. As observed, higher-order moment tensor captures
the shape of the cloud of samples more accurately.

2018). Among them, most methods bridge the source and
target domain by learning domain-invariant features. These
dominant methods can be further divided into two cate-
gories: (1) Learning domain-invariant features by minimiz-
ing the discrepancy between different distributions (Sun and
Saenko 2016; Long et al. 2017). (2) Encouraging domain
confusion by a domain adversarial objectives whereby a dis-
criminator (domain classifier) is trained to distinguish be-
tween the source and target representations. (Ganin et al.
2016; Tzeng et al. 2017; Hoffman et al. 2018).

Most existing discrepancy-based methods in UDA are
based on Maximum Mean Discrepancy (MMD) (Long et
al. 2017) or Correlation Alignment (CORAL) (Sun and
Saenko 2016), which are designed to match the first-order
(Mean) and second-order (Covariance) statistics of differ-
ent distributions. However, for the real world applications,
the deep features are always a complex, non-Gaussian dis-
tribution, which can not be completely characterized by its
first-order or second-order statistics (Jia and Darrell 2011;
Xu et al. 2016). Therefore, aligning the second-order or
lower statistics only guarantees coarse-grained alignment
of two distributions. To address this limitation, we propose
to perform domain alignment by matching the higher-order
(mainly refer to third- and fourth-order) statistics, which
contain more discriminative information and can better rep-
resent the feature distribution. Inspired by (Pauwels and
Lasserre 2016), Fig.1 illustrates the metrics of higher-order
moment tensor, where we plot a cloud of points (consists of
three different Gaussians) and the level sets of moment ten-
sor with different order. As observed, the higher-order mo-
ment tensor characterizes the distribution more accurately.



Our contribution can be concluded as: (1) We propose a
Higher-order Moment Matching (HoMM) method to mini-
mize the domain discrepancy, which is expected to perform
fine-grained domain alignment. The HOMM integrates the
MMD and CORAL into a unified framework and generalizes
the first-order and second-order moment matching to higher-
order moment tensor matching. Without bells and whistles,
the third- and fourth-order moment matching outperform all
existing discrepancy-based methods by a large margin. (2)
Due to lack of labels in the target domain, we propose to
learn discriminative clusters in the target domain by assign-
ing the pseudo-labels for the reliable target samples, which
also improves the transfer performance.

Related Work

Learning Domain-Invariant Features To minimize the do-
main discrepancy and learn domain-invariant features, vari-
ous distribution discrepancy metrics have been introduced.
The representative ones include Maximal Mean Discrep-
ancy (MMD) (Gretton et al. 2012; Long et al. 2017), KL-
divergence, Correlation Alignment (Sun and Saenko 2016;
Chen et al. 2019) and Wasserstein distance (Lee et al. 2019).
MMD was first introduced for the two-sample tests problem
(Gretton et al. 2012), and is currently the most widely used
metric to measure the distance between two feature distribu-
tions. Specifically, Long et al. proposed DAN (Long et al.
2015) and JAN (Long et al. 2017) which perform domain
matching via multi-kernel MMD or a joint MMD criteria in
multiple domain-specific layers across domains. Sun et al.
proposed the correlation alignment (CORAL) (Sun, Feng,
and Saenko 2016; Sun and Saenko 2016) to align the sec-
ond order statistics of the source and target distributions.
Some recent work also extended the CORAL into repro-
ducing kernel Hilbert spaces (RKHS) (Zhang et al. 2018)
or deployed alignment along geodesics by considering the
log-Euclidean distance (Morerio, Cavazza, and Murino). In-
terestingly, (Li et al. 2017b) theoretically demonstrated that
matching the second order statistics is equivalent to mini-
mizing MMD with the second order polynomial kernel. Be-
sides, the approach most relevant to our proposal is the Cen-
tral Moment Discrepancy (CMD) (Zellinger et al. 2017),
which matches the higher order central moments of prob-
ability distributions. Both CMD and our HOMM propose
to match the higher-order statistics for domain alignment.
The CMD matches the higher-order central moment while
our HOMM matches the higher-order cumulant tensor. An-
other fruitful line of work tries to learn the domain-invariant
features through adversarial training (Ganin et al. 2016;
Tzeng et al. 2017). These efforts encourage domain confu-
sion by a domain adversarial objective whereby a discrim-
inator (domain classifier) is trained to distinguish between
the source and target representations. Also, recent work per-
forming pixel-level adaptation by image-to-image transfor-
mation (Hoffman et al. 2018) has achieved satisfactory per-
formance and obtained much attention. In this work, we pro-
pose a higher-order moment matching method, which shows
great superiority over existing domain matching methods.

Higher-order Statistics The statistics higher than first-order
has been successfully used in many classical and deep learn-
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ing methods (De Lathauwer, Castaing, and Cardoso 2007;
Koniusz et al. 2016; Gou, Camps, and Sznaier 2017). Es-
pecially in the field of fine-grained image/video recogni-
tion, second-order statistics such as Covariance and Gaus-
sian descriptors, have demonstrated better performance than
descriptors exploiting zeroth- or first-order statistics (Li
et al. 2017a; Wang, Li, and Zhang 2017). However, us-
ing second-order or lower statistical information might not
be enough when the feature distribution is non-Gaussian
(Gou, Camps, and Sznaier 2017). Therefore, the higher-
order (mainly refer to third-order and fourth-order) statis-
tics have been explored in many signal processing prob-
lems (Mansour and Jutten 1995; Jakubowski et al. 2002;
De Lathauwer, Castaing, and Cardoso 2007; Gou, Camps,
and Sznaier 2017). In the field of Blind Source Separa-
tion (BSS) (De Lathauwer, Castaing, and Cardoso 2007;
Mansour and Jutten 1995), for example, the fourth-order
statistics are widely used to identify different signals from
mixtures. Gou et al. utilizes the third-order statistics for
person RelD (Gou, Camps, and Sznaier 2017). Xu et al.
exploits the third-order cumulant for blind image quality
assessment (Xu et al. 2016). In (Jakubowski et al. 2002;
Koniusz et al. 2016), the authors exploit higher-order statis-
tics for image recognition and detection. Matching the sec-
ond order statistics can not ensure two distributions insepa-
rable, just as using the second order statistics can not iden-
tifies different signals from mixtures (De Lathauwer, Cas-
taing, and Cardoso 2007). That’s why we explore higher-
order moment tensor for domain matching.

Method

In this work, we consider the unsupervised domain adap-
tation problem. Let Dy, = X! y! I, denotes the source
domain with n labeled samples and D, X! it denotes
the target domain with n; unlabeled samples. Given Dy xD;,
we aim to train a cross-domain CNN classifier fg(x) which
can minimize the target risks ; = Ezep,[fo(X) = Vil
Here fo(X) denotes the outputs of the deep neural networks,
0 denotes the model parameter to be learned. Following
(Long et al. 2017; Chen et al. 2019), we adopt the two-
stream CNNs architecture for unsupervised deep domain
adaptation. As shown in Fig. 2, the two streams share the
same parameters (tied weights), operating the source and
target domain samples respectively. And we perform the do-
main alignment in the last full-connected (FC) layer (Sun
and Saenko 2016; Chen et al. 2019). According to the the-
ory proposed by Ben-David et al. (Ben-David et al. 2010), a
basic domain adaptation model should, at least, involve the
source domain loss and the domain discrepancy loss, i.e.,

C(e xs Ys Xt) = Es + d»Cd (1)
o= 23 T(a(x) ¥) @
S =1

where L, represents the classification loss in the source
domain, J( ) represents the cross-entropy loss function.
L, represents the domain discrepancy loss and 4 is the
trade-off parameter. As aforementioned, most of existing
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Figure 2: Two-stream CNNs with shared parameters are
adopted for unsupervised deep domain adaptation.

discrepancy-based methods are designed to minimize dis-
tance of the second-order or lower statistics between dif-
ferent domains. In this work, we propose a higher-order
moment matching method, which matches the higher-order
statistics of different domains.

Higher-order Moment Matching

To perform fine-grained domain alignment, we propose a
higher-order moment matching as
— 1 1 - 7 1 = i 2
Li= 1, n—Z 6 (<)) FZ o)™ 1 (3)
where n, = n; = b (b is the batch size) during the train-
ing process. ¢(X) denotes the activation outputs of the
adapted layer. As illustrated in Fig. 2, h = 4(x%) =
[hi(1) hi(2) hi(L)] R’ denotes the activation out-
puts of the i-th sample, L is the number of hidden neurons
in the adapted layer. Here, u®? denotes the p-level tensor
power of the vector u  R€. That is

u® =u+u +u RY (4)
p times

where + denotes the outer product (or tensor product). We

have u®® = 1, u®! = uand u®? = u 4 u. The 2-level

tensor product u®? R defined as

Uiuy  UU2 UL Ue
UgU1  U2UQ U2Ue
u®?=ufu= (5)
UcUl  UcU2 UcUe
when p 3, T = u® is a p-level tensor with
T g k] = wiu;  ug.

Instantiations According to Eq. (3), when p = 1, the
first-order moment matching is equivalent to the linear
MMD (Tzeng et al. 2014), which is expressed as

In,, 1.,
_*gzhi gzhi% (6)
=1 =1
When p = 2, the second—order HoMM is formulated as,
b
1 L
1T e TRt 2
Lq= L2 bZh h! Eth hi 2,
i=1 @)
1
b2L2 G(h ) G(ht) F
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Figure 3: An illustration of first-order, second-order and
third-order moments in the source domain. HoOMM matches
the higher-order (p  3) moment across different domains.

where G(h) = HTH REXL is the Gram matrix,
H = [h'; h?; h®]  RY*L, b is the batch size. There-
fore, the second-order HOMM is equivalent to the Gram ma-
trix matching, which is also widely used for cross-domain
matching in neural style transfer (Gatys, Ecker, and Bethge
2016; Li et al. 2017b) and knowledge distillation (Yim et al.
2017). Li et al. (Li et al. 2017b) theoretically demonstrate
that matching the Gram matrix of feature maps is equiva-
lent to minimize the MMD with the second order polynomial
kernel. Besides, when the activation outputs are normalized
by subtracting the mean value, the centralized Gram matrix
turns into the Covariance matrix. In this respect, the second-
order HOMM is also equivalent to CORAL, which matches
the Covariance matrix for domain matching.

As illustrated in Fig. 3, in addition to the first-order mo-
ment matching (e.g. MMD) and the second-order moment
matching (e.g. CORAL and Gram matrix matching), our
proposed HOMM can also perform higher-order moment
matching when p 3. Since higher-order statistics can
characterize the non-Gaussian distributions better, applying
higher-order moment matching is expected to perform fine-
grained domain alignment. However, the space complexity
of calculating the higher-order tensor u®? (p  3) reaches
O(LP), which makes the higher-order moment matching in-
feasible in many real-world applications. Adding bottleneck
layers to shrink the length of adaptive layer does not even
solve the problem. When L = 128, for example, the dimen-
sion of a third-order tensor still reaches ©(10°), and the di-
mension of a fourth-order tensor reaches O(10%), which is
absolutely computational-unfriendly. To address this prob-
lem, we propose two practical techniques to perform the
compact tensor matching.

Group Moment Matching. As the space complexity
grows exponentially with the number of neurons L, one
practical approach is to divide the hidden neurons in the
adapted layer into n, groups, with each group L n, neu-
rons. Then we can calculate and match the high-level tensor
in each group respectively. That is,

1 o
= - ht K ®p
»Cd b2 3 ng P I;l ; s,k

RLE/m9]) is the activation outputs of k-th
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Figure 4: 2D visualization of the deep features generated by different model on SWHWST. Red and green points in (a)
denote the source and target domain samples respectively, while each color in (b)-(e) represents different categories.
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Figure 5: Analysis of parameter sensitivity (a)-(d) and convergence analysis (e). The dash line in (b) and (d) indicate the

performance of HOMM without the clustering lokg.

when the test accuracy is not that con“dent.

Table 4: Test accuracy (%) comparison of different-order
moment matching on three transfer tasks

order 1 2 3 4 5 6 10

SN MT 719 895 965 957 948 915 586
A W 744 793 87.6 89.8 86.6 853 80.2
A P 549 58,6 60.7 635 60.9 582 573

We denote SVHN and MNIST as SN and MT respectively.

Analysis

Feature Visualization We utilize t-SNE to visualize the
deep features on the tasks SVHWINIST by ResNet-50,
KMMD, CORAL, HoOMM(p=3) and the Full Loss model. As
shown in Fig. 4, the feature distributions of the source only
model in (a) suggests that the domain shift between SVNH
and MNIST is signi“cant, which demonstrates the necessity
of performing domain adaptation. Besides, the global dis-
tributions of the source and target samples are well aligned
with the KMMD (b) and CORAL (c), but there are still many
samples being misclassi“ed. With our proposed HoMM, the

Number of Iterations (x10%)

(e) Convergence

(d)

and above moments canet be accurately estimated due to the
small sample size problem (Raudys and Jain 1991).
Parameter Sensitivity and ConvergencéVe conduct em-
pirical parameter sensitivity on SVHNMNIST and A W

in Fig. 5(a)-(d). The evaluated parameters include two trade-
off parameters., qc, the number of selected values in Ran-
dom Sampling Matching\ , and the threshold of the pre-
dicted probability. As we can see, our model is quite sensi-
tive to the change of 4. and the bellshaped curve illustrates
the regularization effect ofy and 4. The convergence per-
formance is provided in Fig. 5(e), which shows that our pro-
posal converges fastest compared with other methods. It is
worth noting that, the test error of the Full Loss model has a
obvious mutation at the.0x 10* iteration where we enable
the clustering loss 4., which also demonstrates the effec-
tiveness of the proposed discriminative clustering loss.

Conclusion

Minimizing statistic distance between source and target dis-
tributions is an important line of work for domain adapta-
tion. Unlike previous methods that utilize the second-order
or lower statistics for domain alignment, this paper exploits
the higher-order statistics for domain alignment. Speci“-

source and target samples are aligned better and categoriesally, a higher-order moment matching is presented, which

are discriminated better as well.

First/Second-order versus Higher-orderWe also provide
the performance of different order moment matching on
three typical transfer tasks. As shown in table 4, the order is
chosen fronp { 1,2,3,4,5,6,10}. The results show that
the third-order and fourth-order moment matching signi“-
cantly outperform the other order moment matching. When
p 3, the higher the order, the higher the accuracy. When

p 4, the accuracy will decrease as the order increases. Re-

garding why the “fth-order and above perform worse than
the fourth-order, one reason we believe is that the “fth-order
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integrates the MMD and CORAL into a uni“ed framework
and generalizes the existing “rst- and second-order moment
matching to arbitrary-order moment matching. We experi-
mentally demonstrate that the third- and fourth-order mo-
ment matching signi“cantly outperform the existing mo-
ment matching methods. Besides, we also extend the HOMM
into RKHS and learn the discriminative clusters in the target
domain, which further improves the adaptation performance.
The proposed HoOMM can be easily integrated into other do-
main adaptation model, and it is also expected to bene“t the
knowledge distillation and image style transfer.
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