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Abstract

With the great success of graph embedding model on both
academic and industry area, the robustness of graph embed-
ding against adversarial attack inevitably becomes a central
problem in graph learning domain. Regardless of the fruitful
progress, most of the current works perform the attack in a
white-box fashion: they need to access the model predictions
and labels to construct their adversarial loss. However, the
inaccessibility of model predictions in real systems makes the
white-box attack impractical to real graph learning system.
This paper promotes current frameworks in a more general
and flexible sense – we demand to attack various kinds of
graph embedding model with black-box driven. To this end,
we begin by investigating the theoretical connections between
graph signal processing and graph embedding models in a
principled way and formulate the graph embedding model
as a general graph signal process with corresponding graph
filter. As such, a generalized adversarial attacker: GF-Attack
is constructed by the graph filter and feature matrix. Instead of
accessing any knowledge of the target classifiers used in graph
embedding, GF-Attack performs the attack only on the graph
filter in a black-box attack fashion. To validate the generaliza-
tion of GF-Attack, we construct the attacker on four popular
graph embedding models. Extensive experimental results val-
idate the effectiveness of our attacker on several benchmark
datasets. Particularly by using our attack, even small graph
perturbations like one-edge flip is able to consistently make
a strong attack in performance to different graph embedding
models.

Introduction
Graph embedding models (Scarselli et al. 2009; Cui et
al. 2018), which elaborate the expressive power of deep
learning on graph-structure data, have achieved promis-
ing success in various domains, such as predicting proper-
ties over molecules (Duvenaud et al. 2015), biology analy-
sis (Hamilton, Ying, and Leskovec 2017), financial surveil-
lance (Paranjape, Benson, and Leskovec 2017) and struc-
tural role classification (Tu et al. 2018). Given the increas-
ing popularity and success of these methods, a bunch of
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recent works have posed the risk of graph embedding mod-
els against adversarial attacks, just like what the researchers
are anxious for convolutional neural networks (Akhtar and
Mian 2018). A strand of research works (Dai et al. 2018;
Zügner, Akbarnejad, and Günnemann 2018; Bojchevski and
Günnemann 2019) have already shown that various kinds of
graph embedding methods, including Graph Convolutional
Networks, DeepWalk, etc., are vulnerable to adversarial at-
tacks. Undoubtedly, the potential attacking risk is rising for
modern graph learning systems. For instance, by sophisti-
cated constructed social bots and following connections, it’s
possible to fool the recommendation system equipped with
graph embedding models to give wrong recommendations.

Regarding the amount of information from both target
model and data required for the generation of adversarial
examples, all graph adversarial attackers fall into three cate-
gories (arranged in an ascending order of difficulties):

• White-box Attack (WBA): the attacker can access any
information, namely, the training input (e.g., adjacency
matrix and feature matrix), the label, the model parameters,
the predictions, etc.

• Practical White-box Attack (PWA): the attacker can any
information except the model parameters.

• Restrict Black-box Attack (RBA): the attacker can only
access the training input and limited knowledge of the
model. The access of parameters, labels and predictions is
prohibited.

Despite the fruitful results (Sun et al. 2018; Zügner, Ak-
barnejad, and Günnemann 2018; Zügner and Günnemann
2019) which absorb ingredients from exiting adversarial
methods on convolutional neural networks, obtained in at-
tacking graph embeddings under both WBA and PWA setting,
however, the target model parameter as well as the labels and
predictions are seldom accessible in real-life applications.
In the other words, the WBA and PWA attackers are almost
impossible to perform a threatening attack to real systems.
Meanwhile, current RBA attackers are either reinforcement
learning based (Dai et al. 2018), which has low computa-
tional efficiency and is limited to edge deletion, or derived
merely only from the structure information without consid-
ering the feature information (Bojchevski and Günnemann
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Figure 1: The overview of whole attack procedure of GF-Attack. Given target vertices 5 and 7, GF-Attack aims to misclassify
them by attacking the graph filter and producing adversarial edges (edge e45 deleted and edge e78 added ) on graph structure.
The common graph embedding block refers to the general target GNN model and can be any kind of potential GNN models,
illustrating the flexibility and extensibility of GF-Attack. In this vein, GF-Attack would not change the target embedding model.

2019). Therefore, how to perform the effective adversarial
attack toward graph embedding model relying on the train-
ing input, a.k.a., RBA setting, is still more challenging yet
meaningful in practice.

The core task of the adversarial attack on graph embed-
ding model is to damage the quality of output embeddings
to harm the performance of downstream tasks within the
manipulated features or graph structures, i.e., vertex or edge
insertion/deletion. Namely, finding the embedding quality
measure to evaluate the damage of embedding quality is
vital. For the WBA and PWA attackers, they have enough
information to construct this quality measure, such as the
loss function of the target model. In this vein, the attack
can be performed by simply maximize the loss function re-
versely, either by gradient ascent (Dai et al. 2018) or a sur-
rogate model (Zügner, Akbarnejad, and Günnemann 2018;
Zügner and Günnemann 2019) given the known labels. How-
ever, the RBA attacker can not employ the limited informa-
tion to recover the loss function of the target model, even
constructing a surrogate model is impossible. In a nutshell,
the biggest challenge of the RBA attacker is: how to figure
out the goal of the target model barely by the training input.

In this paper, we try to understand the graph embedding
model from a new perspective and propose an attack frame-
work: GF-Attack, which can perform adversarial attack on
various kinds of graph embedding models. Specifically, we
formulate the graph embedding model as a general graph
signal processing with corresponding graph filter which can
be computed by the input adjacency matrix. Therefore, we
employ the graph filter as well as feature matrix to construct
the embedding quality measure as a T -rank approximation
problem. In this vein, instead of attacking the loss function,
we aim to attack the graph filter of given models. It enables
GF-Attack to perform attack in a restrict black-box fashion.
Furthermore, by evaluating this T -rank approximation prob-
lem, GF-Attack is capable to perform the adversarial attack
on any graph embedding models which can be formulate to
a general graph signal processing. Meanwhile, we give the
quality measure construction for four popular graph embed-
ding models (GCN, SGC, DeepWalk, LINE). Figure 1 pro-
vides the overview of whole attack procedure of GF-Attack.
Empirical results show that our general attacking method

is able to effectively propose adversarial attacks to popular
unsupervised/semi-supervised graph embedding models on
real-world datasets without access to the classifier.

Related work

For explanation of graph embedding models, (Xu et al. 2018)
and (Qiu et al. 2018) show some insights on the under-
standing of Graph Convolutional Networks and sampling-
based graph embedding, respectively. However, they focus
on proposing new graph embedding frameworks in each type
of methods rather than building up a theoretical connection.

Only recently adversarial attacks on deep learning for
graphs have drawn unprecedented attention from researchers.
(Dai et al. 2018) exploits a reinforcement learning based
framework under RBA setting. However, they restrict their
attacks on edge deletions only for node classification, and
do not evaluate the transferability. (Zügner, Akbarnejad, and
Günnemann 2018) proposes attacks based on a surrogate
model and they can do both edge insertion/deletion in con-
trast to (Dai et al. 2018). But their method utilizes additional
information from labels, which is under PWA setting. Fur-
ther, (Zügner and Günnemann 2019) utilizes meta-gradients
to conduct attacks under black-box setting by assuming the
attacker uses a surrogate model same as (Zügner, Akbarnejad,
and Günnemann 2018). Their performance highly depends on
the assumption of the surrogate model, and also requires label
information. Moreover, they focus on the global attack set-
ting. (Xu et al. 2019) also proposes a gradient-based method
under WBA setting and overcomes the difficulty brought by
discrete graph structure data. (Bojchevski and Günnemann
2019) considers a different adversarial attack task on vertex
embeddings under RBA setting. Inspired by (Qiu et al. 2018),
they maximize the loss obtained by DeepWalk with matrix
perturbation theory while only consider the information from
adjacent matrix. In contrast, we focus on semi-supervised
learning on node classification combined with features. Re-
markably, despite all above-introduced works except (Dai
et al. 2018) show the existence of transferability in graph
embedding methods by experiments, they all lack theoreti-
cal analysis on the implicit connection. In this work, for the
first time, we theoretically connect different kinds of graph
embedding models and propose a general optimization prob-
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lem from parametric graph signal processing. An effective
algorithm is developed afterwards under RBA setting.

Preliminary

Let G(V, E) be an attributed graph, where V is a ver-
tex set with size n = |V| and E is an edge set. Denote
A ∈ {0, 1}n×n as an adjacent matrix and X ∈ R

n×l as
a feature matrix with dimension l. Dii =

∑
j Aij refers

the degree matrix. vol(G) =
∑

i

∑
j Aij =

∑
i Dii de-

notes the volume of G. For consistency, we denote the per-
turbed adjacent matrix as A′ and the normalized adjacent
matrix as Â = D− 1

2AD− 1
2 . Symmetric normalized Lapla-

cian and random walk normalized Laplacian are referred as
Lsym = In −D− 1

2AD− 1
2 and Lrw = In −D−1A.

Given a graph embedding model MΘ parameterized by Θ
and a graph G(V, E), the adversarial attack on graph aims to
perturb the learned vertex representation Z = MΘ(A,X) to
damage the performance of the downstream learning tasks.
Three components in graphs can be attacked as targets:
• Attack on V : Add/delete vertices in graphs. This operation

may change the dimension of the adjacency matrix A.
• Attack on A: Add/delete edges in graphs. This operation

would lead to the changes of entries in the adjacency matrix
A. This kind of attack is also known as structural attack.

• Attack on X: Modify the attributes attached on vertices.
Here, we mainly focus on adversarial attacks on graph struc-
ture A, since attacking A is more practical than others in real
applications (Tong et al. 2012).

Adversarial Attack Definition

Formally, given a fixed budget β indicating that the attacker
is only allowed to modify 2β entries in A (undirected), the
adversarial attack on a graph embedding model MΘ can be
formulated as (Bojchevski and Günnemann 2019):

argmax
A′

L (A′, Z) (1)

s.t. Z = MΘ(A
′, X),

Θ∗ = argmin
Θ
L(Θ;A′, X), ‖A′ −A‖ = 2β,

where Z is the embedding output of the model MΘ and
L(·, ·) is the loss function minimized by Θ. L (A′, Z) is
defined as the loss measuring the attack damage on output
embeddings, lower loss corresponds to higher quality. For
the WBA, L (A′, Z) can be defined by the minimization of
the target loss, i.e., L (A′, Z) = inf

Θ
L(A′, Z). This is a bi-

level optimization problem if we need to re-train the model
during attack. Here we consider a more practical scenario:
Θ∗ = argminΘ L(Θ;A,X) are learned on the clean graph
and remains unchanged during attack.

Methodologies

Graph Signal Processing (GSP) focuses on analyzing and
processing data points whose relations are modeled as graph
(Shuman et al. 2013; Ortega et al. 2018). Similar to Discrete
Signal Processing, these data points can be treated as signals.

Thus the definition of graph signal is a mapping from vertex
set V to real numbers x : V → R. In this sense, the feature
matrix X can be treated as graph signals with l channels.
From the perspective of GSP, we can formulate graph embed-
ding model M : (A,X) → R

n×d as the generalization of
signal processing according to graph filter H together with
feature transformation:

X̃ = H (X), X ′ = σ(X̃Θ), (2)
where H denotes a graph signal filter, σ(·) denotes the acti-
vation function, and Θ ∈ R

l×l′ denotes a convolution filter
from l input channels to l′ output channels. H can be con-
structed by a polynomial function h(x) =

∑L
i=0 aix

i ∈
R

n×n with graph-shift filter S, i.e., X̃ = h(S)X . Here, the
graph-shift filter S reflects the locality property of graphs,
i.e., it represents a linear transformation of the signals of
one vertex and its neighbors. It’s the basic building blocks
to construct H . We call this general model Graph Filter At-
tack (GF-Attack). GF-Attack introduces the trainable weight
matrix Θ to enable stronger expressiveness which can fuse
the structural and non-structural information.

Embedding Quality Measure L (A′, Z) of
GF-Attack
According to (2), in order to avoid accessing the target model
parameter Θ, we can construct the restricted black-box attack
loss L (A′, Z) by attacking the graph filter H . Recent works
(Yang et al. 2015; Nar et al. 2019) demonstrate that the output
embeddings of graph embedding models can have very low-
rank property. Since our goal is to damage the quality of
output embedding Z, we establish the general optimization
problem accordingly as a T -rank approximation problem
inspired from (Qiu et al. 2018):

L (A′, Z) = ‖h(S′)X − h(S′)TX‖2F , (3)
where h(S′) is the polynomial graph filter, S′ is the graph
shift filter constructed from the perturbed adjacency matrix
A′. h(S′)T is the T -rank approximation of h(S′). According
to low-rank approximation, L (A′, Z) can be rewritten as:

L (A′, Z) = ‖
n∑

i=T+1

λ′
iuiu

T
i X‖F ≤

n∑
i=T+1

λ′
i
2 ·

n∑
i=T+1

‖uT
i X‖22,

(4)
where n is the number of vertices. h(S′) = UΛUT is
the eigen-decomposition of the graph filter h(S′). h(S′)
is a symmetric matrix. Λ = diag(λ1, · · · , λn), U =
[uT

1 , · · · ,uT
n ] are the eigenvalue and eigenvector of graph

filter H , respectively, in order of λ1 ≥ λ2 ≥ · · · ≥ λn.
λ′
i is the corresponding eigenvalue after perturbation. While
‖∑n

i=T+1 λiuiu
T
i X‖ is hard to optimized, from (4), we can

compute the upper bound instead of minimizing the loss
directly. Accordingly, the goal of adversarial attack is to max-
imize the upper bound of the loss reversely. Thus the restrict
black-box adversarial attack is equivalent to optimize:

argmax
A′

n∑
i=T+1

λ′
i
2 ·

n∑
i=T+1

‖uT
i X‖22,

s.t. ‖A′ −A‖ = 2β. (5)
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Now our adversarial attack model is a general attacker.
Theoretically, we can attack any graph embedding model
which can be described by the corresponding graph filter
H . Meanwhile, our general attacker provides theoretical
explanation on the transferability of adversarial samples
created by (Zügner, Akbarnejad, and Günnemann 2018;
Zügner and Günnemann 2019; Bojchevski and Günnemann
2019), since modifying edges in adjacent matrix A implicitly
perturbs the eigenvalues of graph filters. In the following, we
will analyze two kinds of popular graph embedding methods
and aim to perform adversarial attack according to (5).

GF-Attack on Graph Convolutional Networks

Graph Convolution Networks extend the definition of con-
volution to the irregular graph structure and learn a repre-
sentation vector of a vertex with feature matrix X . Namely,
we generalize the Fourier transform to graphs to define the
convolution operation: gθ ∗ x = UgθU

Tx. To accelerate cal-
culation, ChebyNet (Defferrard, Bresson, and Vandergheynst
2016) proposed a polynomial filter gθ(Λ) =

∑K
k=0 θkΛ

k

and approximated gθ(Λ) by a truncated expansion concern-
ing Chebyshev polynomials Tk(x):

gθ′ ∗ x ≈
K∑

k=0

θ′kTk(L̃)x, (6)

where L̃ = 2
λmax

L− In and λmax is the largest eigenvalue of
Laplacian matrix L. θ′ ∈ R

K is now the parameter of Cheby-
shev polynomials Tk(x). K denotes the Kth order polyno-
mial in Laplacian. Due to the natural connection between
Fourier transform and single processing, it’s easy to formu-
late ChebyNet to GF-Attack:
Lemma 1. The K-localized single-layer ChebyNet with ac-
tivation function σ(·) and weight matrix Θ is equivalent
to filter graph signal X with a polynomial filter H =∑K

k=0 Tk(S) with graph-shift filter S = 2Lsym

λmax
− In. Tk(S)

represents Chebyshev polynomial of order k. Equation (2)
can be rewritten as:

X̃ =

K∑
k=0

Tk(2
Lsym

λmax
− In)X, X ′ = σ(X̃Θ).

Proof. The K-localized single-layer ChebyNet with activa-
tion function σ(·) is σ(

∑K
k=0 θ

′
kTk(2

Lsym

λmax
− In)X). Thus,

we can directly write graph-shift filter as S = 2Lsym

λmax
− In

and linear and shift-invariant filter H =
∑K

k=0 Tk(S).

GCN (Kipf and Welling 2017) constructed the layer-wise
model by simplifying the ChebyNet with K = 1 and the
re-normalization trick to avoid gradient exploding/vanishing:

X(l+1) = σ
(
D̃− 1

2 ÃD̃− 1
2X(l)Θ(l)

)
, (7)

where Ã = A+ In and D̃ii =
∑

j Ãij . Θ = {θ(l)1 , ..., θ
(l)
n }

is the parameters in the lth layer and σ(·) is an activation
function.

SGC (Wu et al. 2019) further utilized a single linear trans-
formation to achieve computationally efficient graph convo-
lution, i.e., σ(·) in SGC is a linear activation function. We
can formulate the multi-layer SGC as GF-Attack through its
theoretical connection to ChebyNet:

Corollary 2. The K-layer SGC is equivalent to the K-
localized single-layer ChebyNet with Kth order polynomials
of the graph-shift filter Ssym = 2In − Lsym. Equation (2)
can be rewritten as:

X̃ = (2In − Lsym)KX, X ′ = σ(X̃Θ).

Proof. We can write the K-layer SGC as (2In−Lsym)KXΘ.
Since Θ is the learned parameters by the neural net-
work, we can employ the reparameterization trick to use
(2In − Lsym)K to approximate the same order polynomials∑K

k=0 Tk(2In − Lsym) with new Θ̃. Then we rewrite the
K-layer SGC by polynomial expansion as

∑K
k=0 Tk(2In −

Lsym)XΘ̃. Therefore, we can directly write the graph-shift
filter Ssym = 2In − Lsym with the same linear and shift-
invariant filter H as K-localized single-layer ChebyNet.

Note that SGC and GCN are identical when K = 1. Even
though non-linearity disturbs the explicit expression of graph-
shift filter of multi-layer GCN, the spectral analysis from
(Wu et al. 2019) demonstrated that both GCN and SGC share
similar graph filtering behavior. Thus, we extend the general
attack loss from multi-layer SGC to multi-layer GCN under
non-linear activation functions scenario. Our experiments
also validate that the attack model for multi-layer SGC also
shows excellent performance on multi-layer GCN.

GF-Attack loss for SGC/GCN. As stated in Corollary 2,
the graph-shift filter S of SGC/GCN is defined as Ssym =

2In − Lsym = D− 1
2AD− 1

2 + In = Â + In, where
Â denotes the normalized adjacent matrix. Thus, for K-
layer SGC/GCN, we can decompose the graph filter H
as H sym = (Ssym)K = UÂ(ΛÂ + In)

KUT
Â

, where ΛÂ

and UÂ are eigen-pairs of Â. The corresponding adversarial
attack loss for Kth order SGC/GCN can be rewritten as:

argmax
A′

n∑
i=T+1

(λ′
Â′,i + 1)2K ·

n∑
i=T+1

‖uT
Â′,iX‖22, (8)

where λ′
Â′,i

refers to the ith largest eigenvalue of the per-

turbed normalized adjacent matrix Â′.
While each time directly calculating λ′

Â′,i
from at-

tacked normalized adjacent matrix A′ will need an eigen-
decomposition operation, which is extremely time consum-
ing, eigenvalue perturbation theory is introduced to estimate
λ′
Â′,i

in a linear time:

Theorem 3. Let A′ = A + ΔA be a perturbed version
of A by adding/removing edges and ΔD be the respective
change in the degree matrix. λÂ,i and uÂ,i are the ith eigen-

pair of eigenvalue and eigenvector of Â and also solve the
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generalized eigen-problem AuÂ,i = λÂ,iDuÂ,i. Then the

perturbed generalized eigenvalue λ
′

Â,i
is approximately as:

λ′
Â′,i ≈ λÂ,i +

uT
Â,i

ΔAuÂ,i − λÂ,iu
T
Â,i

ΔDuÂ,i

uT
Â,i

DuÂ,i

. (9)

Proof. Please kindly refer to (Zhu et al. 2018).

With Theorem 3, we can directly derive the explicit formu-
lation of λ′

Â′ perturbed by ΔA on adjacent matrix A.

GF-Attack on Sampling-based Graph Embedding

Sampling-based graph embedding learns vertex representa-
tions according to sampled vertices, vertex sequences, or
network motifs. For instance, LINE (Tang et al. 2015) with
second order proximity intends to learn two graph represen-
tation matrices X ′, Y ′ by maximizing the NEG loss of the
skip-gram model:

L =

|V|∑
i=1

|V|∑
j=1

Ai,j

(
log σ(x′T

i y′
j) + bEj′∼PN

[log σ(−x′T
i y′

j)]
)
,

(10)
where x′

i, y
′
i are rows of X ′, Y ′ respectively; σ is the sig-

moid function; b is the negative sampling parameter; PN

denotes the noise distribution generating negative samples.
Meanwhile, DeepWalk (Perozzi, Al-Rfou, and Skiena 2014)
adopts the similar loss function except that Ai,j is replaced
with an indicator function indicating whether vertices vi and
vj are sampled in the same sequence within given context
window size K.

From the perspective of sampling-based graph embed-
ding models, the embedded matrix is obtained by gener-
ating training corpus for the skip-gram model from adja-
cent matrix or a set of random walks. (Yang and Liu 2015;
Qiu et al. 2018) show that Point-wise Mutual Information
(PMI) matrices are implicitly factorized in sampling-based
embedding approaches. It indicates that LINE/DeepWalk can
be rewritten into a matrix factorization form:
Lemma 4. (Qiu et al. 2018) Given context window size K
and number of negative sampling b in skip-gram, the result
of DeepWalk in matrix form is equivalent to factorize matrix:

M = log
(vol(G)

bK
(

K∑
k=1

(D−1A)k)D−1
)
, (11)

where vol(G) =
∑

i

∑
j Aij =

∑
i Dii denotes the volume

of graph G. And LINE can be viewed as the special case of
DeepWalk with K = 1.

For proof of Lemma 4, please kindly refer to (Qiu et al.
2018). Inspired by this insight, we prove that LINE can be
viewed from a GSP manner as well:
Theorem 5. LINE is equivalent to filter a graph signal X =
1
b In with a polynomial filter H and fixed parameters Θ =

vol(G)D−1. H = S is constructed by graph-shift filter
Srw = In − Lrw. Equation (2) can be rewritten as:

X̃ =
1

b
(In − Lrw)D−1In, X ′ = log(vol(G)X̃).

Note that LINE is formulated from an optimized unsuper-
vised NEG loss of skip-gram model. Thus, the parameter Θ
and value of the NCG loss have been fixed at the optimal
point of the model with given graph signals.

We can extend Theorem 5 to DeepWalk since LINE is a
1-window special case of DeepWalk:

Corollary 6. The output of K-window DeepWalk with b
negative samples is equivalent to filtering a set of graph
signals X = 1

b In with given parameters Θ = vol(G)D−1.
Equation (2) can be rewritten as:

X̃ =
1

bK

K∑
k=1

(In − Lrw)kD−1In, X ′ = log(vol(G)X̃).

Proof of Theorem 5 and Corollary 6. With Lemma 4,
we can explicitly write DeepWalk as exp (M) =
vol(G)

b (
∑K

k=1
1
K (In − Lrw)kD−1In). Therefore, we

can directly have the explicit expression of Equation (2) on
LINE/DeepWalk.

GF-Attack loss for LINE/DeepWalk. As stated in Corol-
lary 6, the graph-shift filter S of DeepWalk is defined as
Srw = In − Lrw = D−1A = D− 1

2 ÂD
1
2 . Therefore,

graph filter H of the K-window DeepWalk can be de-
composed as H rw = 1

K

∑K
k=1(S

rw)k, which satisfies
H rwD−1 = D− 1

2UÂ(
1
K

∑K
k=1 Λ

k
Â
)UT

Â
D− 1

2 .

Since multiplying D− 1
2 in GF-Attack loss brings extra

complexity, (Qiu et al. 2018) provides us a way to well ap-
proximate the perturbed λ′

H rwD−1 without this term.
Inspired by (Qiu et al. 2018), we can find that both

the magnitude of eigenvalues and smallest eigenvalue of
H rwD−1 are always well bounded. Thus we can approxi-
mate λ′

H rwD−1 ≈ 1
dmin

λ′
UÂ( 1

K

∑K
k=1 Λk

Â
)UT

Â

. Therefore, the

corresponding adversarial attack loss of Kth order DeepWalk
can be rewritten as:

argmax
A′

n∑
i=T+1

(
1

dmin
| 1
K

K∑
k=1

λ′k
Â′,i|)2 ·

n∑
i=T+1

‖uT
Â′,iX‖22.

(12)
When K = 1, Equation (12) becomes the adversarial attack
loss of LINE. Similarly, Theorem 3 is utilized to estimate
λ′
Â′ in the loss of LINE/DeepWalk.

The Attack Algorithm

Now the general attack loss is established, the goal of our
adversarial attack is to misclassify a target vertex t from an
attributed graph G(V, E) given a downstream node classifi-
cation task. We start by defining the candidate flips then the
general attack loss is responsible for scoring the candidates.

We first adopt the hierarchical strategy in (Dai et al. 2018)
to decompose the single edge selection into two ends of this
edge in practice. Then we let the candidate set C for edge
selection contains all vertices (edges and non-edges) directly
accessary to the target vertex, i.e. C = {(v, t)|v �= t}, as (Dai
et al. 2018; Bojchevski and Günnemann 2019). Intuitively,

3393



Algorithm 1 Graph Filter Attack (GF-Attack) adversarial
attack algorithm under RBA setting

Input:
Adjacent Matrix A; feature matrix X; target vertex t;
number of top-T smallest singular values/vectors se-
lected T ; order of graph filter K; fixed budget β.

Output:
Perturbed adjacent Matrix A′.

1: Initial the candidate flips set as C = {(v, t)|v �= t},
eigenvalue decomposition of Â = UÂΛÂU

T
Â

;
2: for (v, t) ∈ C do
3: Approximate Λ′

Â
resulting by removing/inserting edge

(v, t) via Equation (9);
4: Update Score(v,t) from loss Equation (8) or Equa-

tion (12);
5: end for
6: Csel ← edge flips with top-β Score;
7: A′ ← A± Csel;
8: return A′

further away the vertices from target t, less influence they im-
pose on t. Meanwhile, experiments in (Zügner, Akbarnejad,
and Günnemann 2018; Bojchevski and Günnemann 2019)
also showed that they can do significantly more damage com-
pared to candidate flips chosen from other parts of graph.
Thus, our experiments are restricted on such choices.

Overall, for a given target vertex t, we establish the tar-
get attack by sequentially calculating the corresponding GF-
Attack loss w.r.t graph-shift filter S for each flip in candidate
set as scores. Then with a fixed budget β, the adversarial
attack is accomplished by selecting flips with top-β scores
as perturbations on the adjacent matrix A of clean graph.
Details of the GF-Attack adversarial attack algorithm under
RBA setting is in Algorithm 1.

Experiments

Datasets. We evaluate our approach on three real-world
datasets: Cora, Citeseer and Pubmed. In all three citation
network datasets, vertices are documents with correspond-
ing bag-of-words features and edges are citation links. The
data preprocessing settings are closely followed the bench-
mark setup in (Kipf and Welling 2017). Only the largest
connected component (LCC) is considered to be consistent
with (Zügner, Akbarnejad, and Günnemann 2018). For sta-
tistical overview of datasets, please kindly refer to (Zügner,
Akbarnejad, and Günnemann 2018).

Baselines. In current literatures, few of studies strictly
follow the restricted black-box attack setting. They utilize
the additional information to help construct the attackers,
such as labels (Zügner, Akbarnejad, and Günnemann 2018),
gradients (Dai et al. 2018), etc.

Hence, we compare four baselines with the proposed at-
tacker under RBA setting as follows:
• Random (Dai et al. 2018): for each perturbation, randomly

choosing insertion or removing of an edge in graph G.
We report averages over 10 different seeds to alleviate the

influence of randomness.
• Degree (Tong et al. 2012): for each perturbation, inserting

or removing an edge based on degree centrality, which is
equivalent to the sum of degrees in original graph G.

• RL-S2V (Dai et al. 2018): a reinforcement learning based
attack method, which learns the generalizable attack policy
for GCN under RBA scenario.
• Aclass (Bojchevski and Günnemann 2019): a matrix per-

turbation theory based black-box attack method designed
for DeepWalk. Then Aclass evaluates the targeted attacks
on node classification by learning a logistic regression.
Target Models. To validate the generalization ability of

our proposed attacker, we choose four popular graph embed-
ding models: GCN (Kipf and Welling 2017), SGC (Wu et
al. 2019), DeepWalk (Perozzi, Al-Rfou, and Skiena 2014)
and LINE (Tang et al. 2015) for evaluation. First two of
them are Graph Convolutional Networks and the others are
sampling-based graph embedding methods. For DeepWalk,
the hyperparameters are set to commonly used values: win-
dow size as 5, number of negative sampling in skip-gram
as 5 and top-128 largest singular values/vectors. A logistic
regression classifier is connected to the output embeddings of
sampling-based methods for classification. Unless otherwise
stated, all Graph Convolutional Networks contain two layers.

Attack Configuration. A small budget β is applied to
regulate all the attackers. To make this attacking task more
challenging, β is set to 1. Specifically, the attacker is limited
to only add/delete a single edge given a target vertex t. For our
method, we set the parameter T in our general attack model as
n−T = 128, which means that we choose the top-T smallest
eigenvalues for T -rank approximation in embedding quality
measure. Unless otherwise indicated, the order of graph filter
in GF-Attack model is set to K = 2. Following the setting
in (Zügner, Akbarnejad, and Günnemann 2018), we split
the graph into labeled (20%) and unlabeled vertices (80%).
Further, the labeled vertices are splitted into equal parts for
training and validation. The labels and classifier is invisible to
the attacker due to the RBA setting. The attack performance
is evaluated by the decrease of node classification accuracy
following (Dai et al. 2018).

Attack Performance Evaluation

In the section, we evaluate the overall attack performance of
different attackers.

Attack on Graph Convolutional Networks. Table 1 sum-
maries the attack results of different attackers on Graph Con-
volutional Networks. Our GF-Attack attacker outperforms
other attackers on all datasets and all models. Moreover, GF-
Attack performs quite well on 2 layers GCN with nonlinear
activation. This implies the generalization ability of our at-
tacker on Graph Convolutional Networks.

Attack on Sampling-based Graph Embedding. Table 1
also summaries the attack results of different attackers on
sampling-based graph embedding models. As expected, our
attacker achieves the best performance nearly on all target
models. It validates the effectiveness of our method on at-
tacking sampling-based models.

Another interesting observation is that the attack perfor-
mance on LINE is much better than that on DeepWalk. This
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Table 1: Summary of the change in classification accuracy (in percent) compared to the clean/original graph. Single edge
perturbation under RBA setting. Lower is better.

Dataset Cora Citeseer Pubmed

Models GCN SGC DeepWalk LINE GCN SGC DeepWalk LINE GCN SGC DeepWalk LINE
(unattacked) 80.20 78.82 77.23 76.75 72.50 69.68 69.68 65.15 80.40 80.21 78.69 72.12
Random -1.90 -1.22 -1.76 -1.84 -2.86 -1.47 -6.62 -1.78 -1.75 -1.77 -1.25 -1.01
Degree -2.21 -4.42 -3.08 -12.40 -4.68 -5.21 -9.67 -12.55 -3.86 -4.44 -2.43 -13.05
RL-S2V -5.20 -5.62 -5.24 -10.38 -6.50 -4.08 -12.13 -20.10 -6.40 -6.11 -6.10 -13.21
Aclass -3.62 -2.96 -6.29 -7.55 -3.48 -2.83 -12.56 -10.28 -4.21 -2.25 -3.05 -6.75

GF-Attack -7.06 -6.73 -5.31 -13.27 -7.78 -6.19 -12.50 -22.11 -7.96 -7.20 -7.43 -14.16

Figure 2: Comparison between order K of GF-Attack and number of layers in GCN/SGC on Citeseer.

Table 2: Running time (s) comparison over all baseline meth-
ods on Citeseer. We report the 10 times average running time
of processing single node for each model.

Models Random Degree RL-S2V Aclass GF-Attack
Citeseer 0.19 42.21 222.80 146.58 12.78

result may due to the deterministic structure of LINE, while
the random sampling procedure in DeepWalk may help raise
the resistance to adversarial attack. Moreover, GF-Attack on
all graph filters successfully drop the classification accuracy
on both Graph Convolutional Networks and sampling-based
models, which again indicates the transferability of our gen-
eral model in practice.

Evaluation of Multi-layer GCNs

To further inspect the transferability of our attacker, we con-
duct attack towards multi-layer Graph Convolutional Net-
works w.r.t the order of graph filter in GF-Attack model.
Figure 2 presents the attacking results on 2, 3, 4 and 5 layers
GCN and SGC with different orders, and the number fol-
lowed by GF-Attack indicates the graph-shift filter order K
in general attack loss. From Figure 2, we can observe that:
first, the transferability of our general model is demonstrated,
since all graph-shift filters in loss with different order K
can perform the effective attack on all models. Interestingly,
GF-Attack-5 achieves the best attacking performance in most
cases. It implies that the higher order filter contains higher
order information and has positive effects on attack to sim-
pler models. Second, the attacking performance on SGC is
always better than GCN under all settings. We conjecture
that the non-linearity between layers in GCN successively

adding robustness to GCN.

Evaluation under Multi-edge Perturbation Settings

In this section, we evaluate the performance of attackers with
multi-edge perturbation, i.e. β ≥ 1. The results of multi-
edge perturbations on Cora under RBA setting are reported
in Figure 3 for demonstration. Clearly, with increasing of
the number of perturbed edges, the attacking performance
gets better for each attacker. Our attacker outperforms other
baselines on all cases. It validates that our general attacker
can still perform well when fixed budget β becomes larger.

(a) GCN (b) SGC

Figure 3: Multiple-edge attack results on Cora under RBA
setting. Lower is better.

Computational Efficiency Analysis

In this section, we empirically evaluate the computational ef-
ficiency of our GF-Attack. The running time (s) comparison
of 10 times average on Citeseer is demonstrated in Table 2.
While being less efficient than two native baselines (Random
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and Degree), our GF-Attack is much faster than the devel-
oped methods RL-S2V and Aclass. Joining the performance
in Table 1, it reads that GF-Attack is not only effective in
performance but also efficient computationally.

Conclusion

In this paper, we consider the adversarial attack on different
kinds of graph embedding models under restrict black-box
attack scenario. From graph signal processing of view, we
try to formulate the graph embeddding method as a general
graph signal process with corresponding graph filter and con-
struct a restricted adversarial attacker which aims to attack
the graph filter only by the adjacency matrix and feature ma-
trix. Thereby, a general optimization problem is constructed
by measuring embedding quality and an effective algorithm
is derived accordingly to solve it. Experiments show the vul-
nerability of different kinds of graph embedding models to
our attack framework.
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