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Abstract

We introduce a novel event-driven continuous time Bayesian
network (ECTBN) representation to model situations where a
system’s state variables could be influenced by occurrences of
events of various types. In this way, the model parameters and
graphical structure capture not only potential “causal” dynam-
ics of system evolution but also the influence of event occur-
rences that may be interventions. We propose a greedy search
procedure for structure learning based on the BIC score for
a special class of ECTBNs, showing that it is asymptotically
consistent and also effective for limited data. We demonstrate
the power of the representation by applying it to model paths
out of poverty for clients of CityLink Center, an integrated
social service provider in Cincinnati, USA. Here the ECTBN
formulation captures the effect of classes/counseling sessions
on an individual’s life outcome areas such as education, trans-
portation, employment and financial education.

Introduction

Real-world decision situations often involve uncertainties
that interact with each other in a way that requires modeling
complex dynamic inter-dependencies. The uncertain vari-
ables of interest of a system can be modeled as state variables
whose evolution is captured by some dynamic process. In
many cases, state variables are only observed at irregular
epochs in time, unlike time series models.

A continuous-time Bayesian network (CTBN) (Nodelman,
Shelton, and Koller 2002) representation handles modeling
joint trajectories of a system’s state variables where irregu-
lar state variable transitions are modeled as homogeneous
Markov processes. While CTBNs offer a simple way to
model the dynamics of such transitions, they are only suitable
when a dynamical system is observed in an isolated context.
There are many scenarios that have the following added com-
plexity: external occurrences of events could influence the
manner in which the system evolves. In this paper, we con-
sider modeling situations where occurrences of various types
of events influence evolution of a set of state variables, or
synonymously system variables. We provide a small set of
potential applications where external events occurring irregu-
larly over time could affect the evolution of a system:
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• Health – a diabetic patient’s blood glucose level and mental
well-being are influenced by events such as insulin intake,
meals and physical activity.

• Finance – stock prices for a set of companies in an industry
are affected by natural events such as disasters or political
events such as trade deals.

• Social Impact – social services such as counseling sessions
and classes have an impact on a person’s level of education,
employment, and well-being.
Event datasets are sequences of labels on a time line where

each label indicates the type of event. For example, labeled
time stamps of medication, exercise, and meals would indi-
cate events that could be relevant for a patient’s health out-
comes. To capture the influence of events on state variables,
we introduce a new model – event-driven continuous time
Bayesian networks (ECTBNs) – where, in addition to state
variables driving transitions of other state variables, a time
stamped event history could influence the time to transition
as well as the probability of transition of state variables.

Including events in the scope of the model requires a fun-
damental extension to CTBNs and cannot be reduced to an
expanded CTBN with proxy state variables for events. This
is because the intensity function that determines time to next
transition in a CTBN only depends on the current configura-
tion of parent state variables; it does not depend on when the
configuration of these state variables attained their current
configuration. However, when event sequences influence the
intensity functions of state transitions, their previous times of
occurrence could matter, making the influence non-Markov
because it does not only depend on the current state.

As an example, consider the case where the frequency of
meals in the recent history affects transitions of a patient’s
blood sugar levels. This is illustrated in the sketch in Fig-
ure 1(a) where a blood sugar state variable with two states is
influenced by exercise and meal events. Even if the events
were modeled as state variables and the sequences of events
were tracked with memory, the intensity function would be
unable to capture the notion that only the number of meals
within a certain time window matters.

Contributions. In this paper we make three major inter-
related contributions: (1) we introduce a novel, interpretable
yet analytically sophisticated graphical model that captures
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Figure 1: (a) A sketch involving a blood sugar state variable
with two possible states (High and Low), influenced by meal
and exercise events. Three meals within a day without exer-
cise causes the blood sugar level to increase while two meals
maintains the level; (b) Illustrative ECTBN graph represent-
ing a dynamic process involving 4 state variables (X1 to X4)
and 3 event labels (E1 to E3).

joint dynamics involving both event occurrences, modeled
as a multivariate point process, and state variables, modeled
as Markov processes; (2) we propose an algorithm for learn-
ing the structure and parameters of this model from data
involving traces of events and transitions of state variables.
We prove its consistency in the asymptotic data case whilst
also demonstrating its effectiveness for limited data through
experiments with synthetic data; (3) We conduct a detailed
study applying our model to a real-world dataset pertaining
to social service. This is work in partnership with CityLink
Center – a non-profit organization in Cincinnati, USA that
works with approximately 15 on-site agencies to provide a
suite of services to help adults in poverty meet their goals in
areas such as education, employment and transportation.

Related Work

Continuous time processes model the dynamics of events
occurring irregularly over time. Conditional intensity func-
tions capture the instantaneous rate of occurrence of an
event given the history of other events. There has been
a lot of work on various parametric models for learning
conditional intensity functions for event streams. Notable
amongst them are Poisson networks (Rajaram, Graepel,
and Herbrich 2005), Poisson cascades (Simma and Jordan
2010), piecewise-constant conditional intensity models (Gu-
nawardana, Meek, and Xu 2011), forest-based point pro-
cesses (Weiss and Page 2013), etc. Recent work has also
considered neural network architectures (Du et al. 2016;
Xiao et al. 2017).

When an event’s conditional intensity depends only on
the past history of a set of parent events, this can be repre-
sented using graphical event models (GEMs) (Didelez 2008;

Meek 2014; Gunawardana and Meek 2016). These are dif-
ferent from time series graphical models (Eichler 1999;
Dahlhaus 2000) and dynamic Bayesian networks (Dean and
Kanazawa 1989; Murphy 2002) as they represent continuous
time processes.

CTBNs are closely related models that represent joint tra-
jectories of discrete variables, as opposed to models of event
streams in continuous time. In this work we introduce a
model that can be viewed as a novel combination of joint
trajectories in CTBNs and the effect of event arrivals. CTBNs
have been deployed in diverse applications, including relia-
bility analysis (Boudali and Dugan 2006), cardiogenic heart
failure (Gatti, Luciani, and Stella 2012), cybersecurity (Xu
and Shelton 2008) and gene network reconstruction (Acerbi
et al. 2014). Extensions to CTBNs have been proposed, such
as more general transition times like Erlang-Coxian distri-
butions and explicit negative evidence (Gopalratnam, Kautz,
and Weld 2005), as well as adding standard Bayesian network
static chance nodes (Portinale and Codetta-Raiteri 2009).

ECTBNs: Model Description and Learning

We introduce the ECTBN model, capturing processes involv-
ing state variables and event arrivals that combine elements
of CTBNs and GEMs in a non-trivial way. We start with a
more general formulation and then specify the case that we
use for learning and experimental investigation.

Notation

Consider a set of discrete state variables X = {Xi}Ii=1. Let
Val(Xi) be the domain of variable Xi. The states of these
variables are assumed to be known at all times between initial
time t0 = 0 to the end time T . Data about each variable is of
the form of state transitions, DXi

= (tk, xk)
Ni

k=0 where the
state at time t0 is the initial state and xk+1 �= xk ∀k, xk ∈
Val(Xi). Data for all state variables taken together is denoted
DX =

⋃
X∈X DX .

We assume there is also data about events occurring over
time, DE = (tk, ek)

NE

k=1, where tk are time stamps and ek
belong to an event label set E = {Ej}Jj=1. All the data taken
together is D = DX ∪DE . We use h(·) to denote historical
occurrences of events. hB(t) = {(tk, ek) ∈ DB : tk < t}
represents the history of events in the set B ⊂ E until time t.

Formulation

Definition 1. An ECTBN N includes:
• A directed graph G where UE ⊂ E are the parents of an

event label E and UX ⊂ {X \X}⋃ E are the parents of
a state variable X ∈ X . We decompose the latter into two
sets: parents that are state variables UX(X ) ⊆ X \X and
parents that are event labels UX(E) ⊆ E .

• An initial distribution P0
X over state variables.

• Conditional intensity matrices for every X ∈ X ,
QX|uX(X),hUX(E)

(t), which model state transitions. This
depends on the current state uX(X ) of the parents UX(X )

at time t and history of labels in UX(E) till time t, de-
noted hUX(E)

(t). A matrix Q(·) is equivalent to consider-
ing waiting times qx|uX(X),hUX(E)

(t) in state X = x before
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transitioning to some other state x′ �= x, as well as the
probabilities of transitioning from state x to state x′ at
time t, θxx′|uX(X),hUX(E)

(t).
• Conditional intensity rates for every event label E ∈ E ,

λE|hUE
(t), which model event arrivals. The history of

event labels in parent set UE at time t is denoted hUE
(t).

Figure 1(b) shows an illustrative ECTBN graph. Note that
there may be cycles and even self-loops for an event label
because its occurrence rate could depend on its own history.
State variables could have event labels as parents but not vice
versa. Our motivation here is to study situations where events
could probabilistically influence the uncertainties in a system
but not the other way around.

It should be evident from the complex inhomogeneous
history-dependence in Definition 1 that it is impractical to
consider all possible histories for modeling the influence of
events on state variables; one cannot learn arbitrary depen-
dencies with finite data as it would be difficult to generalize
for learning. We simplify the historical dependence by mak-
ing an assumption that results in an important special case,
motivated by Bhattacharjya, Subramanian, and Gao (2018):
Assumption 2. Consider a set W of time windows for every
edge from event label E directed into state variable X in
graph G, each denoted wE,X . Assume that the rates and prob-
abilities associated with state variable transitions depend
only on whether a parent event label E ∈ UX(E) occurred
at least once in some recent time window wE,X .

The above assumption is the recency or proximal assump-
tion, where recent events matter more than older ones; this
simplifies parent conditions to be binary for each parent.
Specifically, if uX(E) denotes a vector of indicators, one
each for whether an event label in UX(E) occurs or not, then
Assumption 2 simplifies the dependence of q(·) and θ(·) as:

θxx′|uX(X),hUX(E)
(t) = θxx′|uX(X),uX(E)

qx|uX(X),hUX(E)
(t) = qx|uX(X),uX(E)

(1)

The number of parameters can now be ascertained for any
state variable. As an example, for the ECTBN in Figure 1(b),
if state variable X3 has 3 values in its domain Val(X3), then
X2 has 23 ∗3 = 24 parental conditions (uX(X ),uX(E)) since
it has 3 event labels as parents, UX2(E) = {E1, E2, E3},
along with 1 state variable parent, UX2(X ) = {X3}.

We note that our work extends easily to the case where
state variable parameters are a piece-wise constant function of
the history of events. Indeed, we show in a subsequent section
that our theoretical results apply in the case of this general-
ization, where we can choose a general class of functions to
model dependence on event histories instead of a function
involving only the most recent time window (Gunawardana,
Meek, and Xu 2011). The piece-wise constant model is gen-
eral enough to approximate arbitrary histories (Gunawardana
and Meek 2016). We only consider recent windows for much
of this paper to avoid the notation from getting unwieldy. We
also highlight that the recency assumption is often suitable
in practice due to the nature of real-world causal influences,
and that the simplification avoids overfitting (Bhattacharjya,

Subramanian, and Gao 2018), which is why we make the
assumption for our experiments.

Learning ECTBNs

We pose the learning problem as: given data D about state
transitions and event occurrences and a complete set of hyper-
parameters of windows for every edge from E to X , Wc,
find the ECTBN graph G and model parameters. We focus on
learning state variable parameters here in this work as their
dependence on events is the main novelty. In the remainder
of this section, we begin with likelihood decomposition. We
show how the parameter estimation problem is similar to
a regular CTBN, given a graph, and then present a search
procedure to learn the optimal graph.

Data Likelihood and Parameter Learning. Let Q =
{q,Θ} represent the collection of q(·) and θ(·) parameters
that model the state variable transitions. Similarly, let Λ rep-
resent the the collection of λ(·) parameters for the arrival
process of events. Then, the likelihood of observed data fac-
torizes according to the graph G, given by:

L(D|Q,Λ) =

[ ∏
X∈X

L(DX |Q, DUX(X)
, DUX(E)

)

]
[∏
E∈E

L(DE |Λ, DUE
)

]
(2)

The data likelihood for a state variable X is a function of the
parameters for waiting times and probabilities of transitions.
In the general case, these depend on the history of events.
For brevity in the following equation, we use h(t) as short-
hand for the joint historical condition uX(X ), hUX(E)

(t). The
likelihood can be factored as:

L(DX |Q, DUX(X)
, DUX(E)

) =
∏

(tk,xk)∈DX

θxkxk+1|h(tk+1)

∏
(tk,xk)∈D

qxk|h(tk+1) ∗ e
(
− ∫ tk+1

tk
qxk|h(t)dt

)

(3)

The data likelihood for arrivals of an event label E depends
on the event arrival rates:

L(DE |Λ, DUE
) =

∏
(tk,E)∈DE

(
λE|hUE

(tk)∗

exp

⎛
⎝−

tk+1∫
tk

λE|hUE
(t)dt

⎞
⎠
⎞
⎠ (4)

The above expression is quite general and covers most rea-
sonable multivariate point processes (Didelez 2008). Here we
focus solely on learning state variable parameters Q given a
graph G, omitting details about learning event arrival process
parameters Λ, but we stress that any of a number of models
could be deployed for this purpose; we refer the reader to the
related work section, which describes several such temporal
event models.
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Let u be a vector that takes values in Val(uX(X )) ×
Val(uX(E)) for any X ∈ X . According to the X variable, u
vector taking appropriate values is implicit to avoid clutter in
notation. Then, we have:

L(DX |Q, DE) =

[ ∏
X∈X

L(DX |q,Θ, DUX(X)
, DUX(E)

)

]

a
=

⎡
⎣ ∏
x∈Val(X),X∈X

∏
u

q
M [x|u]
x|u e−T [x|u]qx|u

⎤
⎦

×
⎡
⎣ ∏
x∈Val(X),X∈X

∏
x′ �=x

∏
u

θ
M [x,x′|u]
xx′|u

⎤
⎦ (5)

The summary statistics for X are defined as follows:
• M [x, x′|u]: the number of times the variable transitions

from state x to state x′ and the condition u is true at those
times, i.e. when uX(X ) and uX(E) take values in u.

• M [x|u]: the number of times the variable transitions from
state x and the condition u is true at those times, i.e. when
uX(X ) and uX(E) take values in u.

• T [x|u]: the total amount of time where the variable is in
state x and the condition u is true at those times, i.e. when
uX(X ) and uX(E) take values in u.

The maximum likelihood estimates for parameters q and Θ
given the structure G are:

q̂x|u =
M [x|u]
T [x|u] ; θ̂xx′|u =

M [x, x′|u]
M [x|u] (6)

This is due to the simplification in (1) from Assumption 2
and the likelihood expression in (3).

Structure Learning. One of the main goals of modeling
with an ECTBN is to discover the (in)dependencies and
causal effects of events on state variables. Discovering the
underlying true graph would reveal information about events
that change the current state to some other state.

The structure learning problem is as follows: to find the
optimal graph G∗ = maxG s(G,D), where s(G,D) is a
scoring function that measures the goodness of fit between
any graph G and data D. We use the BIC score, adapted
to ECTBNs, defined for state variable X as: BIC(X) =

logL(DX ) −
[
log |D|

2 Dim(Q(X))
]
, where |D| is the size

of the data. Dim(Q(X)) is the dimensionality of the pa-
rameters for X , which in our case is the number of inde-
pendent parameters in q and Θ that are associated with X:
Dim(Q(X)) = |Val(X)|2∗2|UX(E)|∗∏Z∈UX(X)

|Val(Z)|.
In the next section, we show that the BIC score is asymptoti-
cally consistent with fixed known windows W .

Note that the learning procedure for ECTBNs enjoys simi-
lar benefits to CTBNs. Since there are no constraints around
acyclicity, structure learning can be decomposed into learn-
ing individual optimal sub-graphs and then combining them
to form the global optimal graph. We use a sub-graph learn-
ing approach that finds the optimal parent set of each state

variable X with a hill climbing search. At each iteration, we
choose the highest scoring graph among the set of graphs
consisting of the current graph and all graphs that are one op-
eration away from the current graphs. The operations under
consideration include adding an edge and deleting an edge.
The search for the parents for each node continues until there
is no improvement in scores.

Structure Identifiability

In this section, we study the stochastic processes that can
be modeled by an ECTBN and demonstrate that under some
assumptions and with enough data, our proposed structure
learning approach with the BIC score can recover the under-
lying graph from which the data is generated.

The key enhancement of an ECTBN over a CTBN is that
the former is able to incorporate historical dependencies of
event arrivals. We introduced a special case with the recency
assumption (Assumption 2), i.e. rates and state transitions
depend on uX(E) that denotes whether the individual events
E ∈ UE(X) occurred in time window wE,X or not. This
vector can not be viewed as a typical Markovian state vari-
able since the intensity function for transitions would include
the memory of when the last event happened. To resolve this
issue, we prove certain lemmas that guarantee BIC score con-
sistency following the broad outline in Nodelman, Shelton,
and Koller (2003). For the theoretical structure identifiabil-
ity results, we assume a more general dependence on event
histories as outlined below.

Piecewise Constant Model for Event Histories: We de-
fine a mapping function σE,X one for every (E,X) ∈ G
which takes the event history hE(t) and produces a categori-
cal value from the discrete alphabet ΣE,X . We assume that
the rates and probabilities of state transition depend on the
categorical output of these functions σE,X , i.e. uX(E) is a
vector of function values σE,X(hE(t)) for all E ∈ UX(E). A
special case of this is our recency assumption where the func-
tion σE,X is an indicator for whether event E occurs within
time period [t−wE,X , t). The assumption of a general sigma
function and discrete output states is one of the most popular
models for modeling event histories in event datasets (with-
out state variables) – this is the piecewise constant intensity
model (PCIM) (Gunawardana, Meek, and Xu 2011).

To model this during search procedure formally, we in-
troduce new state variables that are based on event occur-
rences, given a complete set of functions {σE,X(·)} for
every possible E,X pair. Let SE,X ∈ ΣE,X be categori-
cal output produced by σE,X acting on the history of the
event E, i.e. hE(t). Let sE,X be the realization of SE,X

at time t. We use S = {SE,X : ∀E ∈ E ,X ∈ X} to de-
note the set of all these categorical valued variables and
SX = {SE,X : ∀E ∈ UX(E)} for a particular X in a graph
G. Let the vector sX denote the realization for SX and let s
denote the realization of all categorical valued variables S.

It is important to note that the new state variables intro-
duced have transitions that are not memoryless, because tran-
sitions are driven by occurrences (and non-occurrences) of
historical events; they cannot therefore be nodes in a regular
CTBN with an exponential clock.
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Now, we provide definitions to incorporate the new state
variables and also help specify parameters of an internally
consistent stochastic process involving state variable transi-
tions that are also potentially influenced by event arrivals:

Definition 3. The modified graph G̃ from G consists of nodes
S ∪ X where the parents of X ∈ X are UX(X ) ∪ SX and
nodes SE,X ∈ S have no parents.
Definition 4. s is an admissible categorical vector if for
given E and for all X , sE,X = σE,X(hE(t)), for some
common history of event E, i.e. hE(t). In other words, the
set of values sE,X ∀X is produced by different functions
σE,X acting on a common history hE(t). A is the subset
of admissible categorical vectors s from the set

∏
E,X

ΣE,X

(Cartesian product of the discrete alphabet ΣE,X ).
Let q̃xx′|uX(X),sX be the effective intensity function of

transitioning from state X = x to X = x′ combining the
parameters qx|uX(X),uX(E)

and θxx′|uX(X),uX(E)
.

Definition 5. A graph G̃ with conditional intensities
q̃xx′|uX(X),sx for subsets UX(X ) and SX induces extended
conditional intensities wherein the vector s is consistent with
the vector sX , i.e. q̃xx′|uX(X),s = q̃xx′|uX(X),sX .

Let the collection of these extended conditional intensities
be in the form of matrices Q̃X|UX(X),s. The various extended
conditional intensities of different variables X and their par-
ent state variables UX(X ) can be multiplied though the “amal-
gamation” operation (Nodelman, Shelton, and Koller 2002)
into a conditional intensity for the entire graph G̃ given by:
Q̃G̃|s =

∏
X Q̃X|UX(X),s. This is similar to the amalgama-

tion done in a CTBN except that it is done for a specific
s.

The set of possible admissible vectors A allows us to
characterize potential stochastic processes that a proximal
ECTBN could model. Consider a process over

∏
X Val(X)

defined by the set of conditional intensity matrices Q̃X|s ∀s ∈
A. Each matrix has all the corresponding conditional inten-
sities q̃xx′|s over all state vectors x,x′ ∈ ∏

X Val(X) for a
specific s.

Definition 6. G̃ is an S-map for the stochastic process for
conditional intensity matrices Q̃X|s if and only if Q̃X|s =

Q̃G̃|s, ∀s ∈ A for some set of conditional intensity matrices

Q̃G̃|s that respect G̃.

Definition 7. A stochastic process represented by conditional
intensity matrices Q̃X|s is called variable based if q̃xx′|s = 0
whenever x differs from x′ in more than one co-ordinate for
all s ∈ A.

Consider the following graph Gc where there is a directed
edge between any two state variables X and X ′ and there is a
directed edge from SE,X′ to X for all E,X,X ′. It is almost
fully connected except amongst SE,X state variables.

The following lemma is a variation of one in Nodelman,
Shelton, and Koller (2003) as adapted to our case.
Lemma 8. Gc is an S-map for any stochastic process with
intensity matrices Q̃X|s, s ∈ A.

This is simply because all possible connections are found
in the graph Gc. This can easily be seen by generalizing
Theorem 5.3 in Nodelman, Shelton, and Koller (2003) for
every s ∈ A.

Now we state our main theorem which is a variation of
Theorem 5.5 in Nodelman, Shelton, and Koller (2003). Proofs
for the major theorems are in Appendix A1.

Theorem 9. The modified graph G̃ is an S-map for the
stochastic process with conditional intensities Q̃X|s, s ∈ A,
if and only if Q̃X|s satisfies the following two conditions:

1. ∀X ∈ X , for any two full state vectors x and x′ that agree
on X and UX(X ), then q̃xx|s = q̃xx′|s, ∀s ∈ A

2. ∀X ∈ X , for any two admissible s and s′ that agree on
SX and for any two x and x′ that differ in only the state
variable X , we have : q̃xx′|s = q̃xx′|s′

Remark. The above theorem is different from Theorem
5.5 in Nodelman, Shelton, and Koller (2003) because of the
second condition which is needed due to conditioning by the
states s. This is the crucial piece of difference in the proofs.

By the same arguments as in Nodelman, Shelton, and
Koller (2003), due to Theorem 9, one can only add vacuous
edges and still maintain S-map relationships.

Theorem 10. If G̃ is an S-map for a variable based stochas-
tic process with intensities Q̃X|s, ∀s ∈ A, then there is a
minimal unique minimal S-map Ĝ ⊂ G̃.

Once the existence of a minimal S-map is established and
we have a parameter learning procedure that is asymptotically
accurate given the graph, the following result holds:
Theorem 11. Consider state transition data generated by
an ECTBN stochastic process with the set of functions σE,X

for every edge (E,X) in G. For every X , all admissible u
and state value X = x associated with the graph where
qx|u > 0, suppose that P (limN→∞ M [x|u]/N > 0) → 1,
where N is the number of state transitions observed. Then,
the hill climbing structure learning approach with the BIC
score outlined earlier, given the set of functions that include
the generating set of functions {σE,X}, is consistent with the
minimal S-map Ĝ of the data generating ECTBN.

Remark: The theoretical results of this section rely pri-
marily on showing how an ECTBN resembles an ensemble of
CTBNs. The results are valid for a fairly general assumption
on modeling event histories’ influence on state transitions
using σ·(·) that map event histories into discrete states. Pre-
viously we presented a learning algorithm that uses windows
wE,X as hyper parameters and finds the graph with the best
BIC score. We note that for the more general case, we could
follow the same learning paradigm and choose σE,X from a
pre-defined set of basis functions as hyper-parameters, like
in Gunawardana, Meek, and Xu (2011).

Synthetic Data Experiments

We test the proposed learning approach using synthetic data
where the ground truth ECTBN graph and parameters are

1All appendices can be found in the arXiv version of the paper.
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known. We generate 3 models, each with 5 state variables and
5 event label variables. The models differ in the structural
relations among the state variables: they include a chain, a
star (naive Bayes like structure), and a cycle.

Graph Structure. The chain model has a chain graph
structure among state variables: X1 → X2 → X3 → X4 →
X5. Each state variable has 3 random event label parents.
The star model has a naive Bayes graphical structure among
variables: X1 → X2, X1 → X3, X1 → X4, and X1 → X5.
Again, each state variable has 3 random event label parents.
Lastly, the cycle model forms a circle with its state variables:
X1 → X2 → X3 → X4 → X5 → X1. In this model, each
state variable has 2 random event label parents. In all three
models, each of 5 event labels can have 2 to 4 other event
labels as parents, but with no state variables as parents as per
the ECTBN assumptions.

Model Parameters and Data Generation. In all three
models, each state variable has three states. State variable
parameters q(·) and θ(·) are generated randomly from a uni-
form distribution between 0.1 to 1

3 and a Dirichlet distri-
bution with hyperparameter α = (1, 1) respectively. Event
traces are generated from a proximal graphical event model
(PGEM) (Bhattacharjya, Subramanian, and Gao 2018) with
windows ranging from 10 to 30 and rate of 0.5. Other pa-
rameters follow default values. Windows from event parents
to state variables are set to 15. For each model, we generate
10 datasets over time period T = 10K that include PGEM
generated event traces as well as state variable transitions
which are unique to an ECTBN. Details about the synthetic
data generator are provided in Appendix B.

Results. Table 1 shows graph structure recovery results of
the ECTBN learner for all variables’ parents (both state vari-
ables and event labels) in these 3 synthetic models. We use
the average precision and recall of each variable’s parents
as the performance measure for the learned graph structure
against the ground truth. We observe that the precision is
excellent for all models but the recall varies and is model
dependent. There is perfect recall for the cycle model. Struc-
ture recovery is in general a challenging task and while this
is also the case for ECTBNs, we see that the learner has very
low false positive rates along with reasonable false negative
rates with sufficient data.

Application to Tracking Life Outcomes
We apply the ECTBN model to study the effect of a set
of services (events) on an individual’s life outcome areas
(state variables) in an integrated social services initiative.
The data used for this section comes from our partner-
ship with the CityLink Center in Cincinnati, Ohio, USA
– a city-wide initiative launched in 2013 by a group of
social service agencies and churches who recognized the
need for a systemic approach to poverty. In contrast to the
typical siloed social service delivery model, CityLink rec-
ognizes that different realms of clients’ lives are interre-
lated, so their case management team works with clients

Model Precision Recall
Chain 97% 47.4%
Star 84.6% 57.9%
Cycle 100% 100%

Table 1: ECTBN structure recovery for synthetic data gener-
ated from the three simple models.

Outcome Area ECTBN CTBN CTBN-EV
Anxiety -5530 -7282 -5639
Depression -5079 -6715 -5122
Education -2100 -2776 -2105
Employment -7486 -7877 -7877
Financial Education -1400 -1795 -1564
Transportation -1481 -1481 -1481

Table 2: Log likelihood for the models on the CityLink data.

in a holistic manner which leads to integrated longitudi-
nal data. While there has been some related work on help-
ing homeless individuals using planning, e.g. with MDPs
(Gehlbach et al. 2006; Yi, Finkel, and Goldsmith 2008;
Dekhtyar et al. 2009) and POMDPs (Yadav et al. 2016a;
2016b), as well as other studies of intervention allocation
(Kube, Das, and Fowler 2018), none of these efforts use the
dynamic events setting considered here.

About the Data. For our analysis we use the approximately
1400 clients who have had more than 15 total interactions
with CityLink out of a total of over 2900 total clients. We
consider 6 outcome areas that are tracked through CityLink’s
data: education, employment, financial education, transporta-
tion, anxiety, and depression. These are dimensions of an
individual’s progress in attaining a self-sustainable way out
of poverty; details about the levels and their descriptions
are in Appendix C. Each of these six outcome areas has be-
tween three and six levels. We consider 11 types of services
provided by CityLink and its partners, which are treated as
events: 6 of them are group classes/sessions and 5 are one-
on-one. The services include group industrial training, group
classes on education, employment, financial education, trans-
portation and wellness, as well as one-on-one sessions on
employment, wellness, and financial education.

Structure Learning. We adopt the following learning pro-
cedure on the data, conducted separately for each state vari-
able (outcome area) X . First, we configure a hyper-parameter
setting for windows in Wc associated with incoming edges
into X by uniformly randomly choosing a window from the
list {15, 30, 60, 90, 180} days for each event label. We repeat
this procedure 100 times to build various window hyper-
parameter configurations. Using 5-fold cross validation, we
determine the optimal hyper-parameter setting by maximiz-
ing the average BIC score across folds. Finally, this optimal
hyper-parameter setting is used to learn the optimal graph
and parameters for X using all the training data. Although
this may lead to some bias, it is necessary due to the paucity
of data.
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Figure 2: Learned ECTBN graph from CityLink data.

Outcome Area Level 1 Level 2 Level 3 Level 4 Level 5 Level 6
Education group edu class group edu class group edu class; indus. training indus. training N/A

indus. training
Employment group emp class; group emp class; group emp class; - - N/A

group transp. class group transp. class group transp. class
Financial 1-on-1 fin-ed; 1-on-1 fin-ed; 1-on-1 fin-ed 1-on-1 fin-ed N/A N/A
Education group fin-ed group fin-ed

Table 3: Event label parents in ECTBN state variable transition analysis for three outcome areas. New state variables are created
with states: current level, next higher level and other level, showcasing important events for specific level increments.

Figure 2 presents the learned graphical structure and win-
dows for the CityLink data. This graph was learned using
at most three levels for outcomes areas and with a slightly
reduced weight for the penalty term in the BIC score, again
due to limited data. There are several interesting results that
can be gleaned from the graph, potentially affecting the way
CityLink operates. Firstly, group education classes have a
direct and lasting effect on the Anxiety and Depression out-
come areas, as do group financial education classes. Industrial
training classes have a longer duration of effect (180 days) on
the Education outcome area than the other group education
classes (30 days). One-on-one financial education classes
have more impact on the Financial Education outcome area
than group financial education classes. Employment has a di-
rect effect on Anxiety, Depression, and Financial Education.
It is interesting to see that Anxiety, Depression, and Employ-
ment are critical, reinforcing the importance of a holistic
approach to case management.

State Variable Transition Analysis. We also conducted a
study to better identify influential events that affect transitions
from a particular outcome area level to the next level, which
was of interest to CityLink. We did this by creating additional
state variables to track when the level of an outcome area
increased; this new state variable has three states – the current
level (not the maximum level), the next higher level and
some other level of the outcome area under consideration.
An ECTBN is learned for each new state variable while
considering other outcome areas and events.

Table 3 summarizes the ECTBN event parents for three
outcome areas determined from this transition analysis, en-
abling us to foreground local effects that were not evident
previously. Selecting a few of these additional insights: (1)
core education classes are important for transitions at lower
levels of education whereas industrial training is important

for transitions at higher levels; (2) the impact of group em-
ployment classes is particularly felt on low to mid levels of
employment transitions; and (3) group financial education
classes affect lower level transitions whereas the one-on-one
classes are influential throughout the progression. For this
analysis, all windows were set to 180 days during learning.

ECTBN vs. CTBN(s). We also checked how ECTBN fit
the data as compared to the following two baselines: (1)
CTBN: This is a regular CTBN that only considers state vari-
ables and does not see the event occurrences. (2) CTBN-EV
(event variables): This is a CTBN where new state variables
are introduced, one each for the |E| event labels. These are bi-
nary state variables which are active when the corresponding
event is the most recent one observed and inactive otherwise.
Table 2 compares the log likelihood on the data across models,
demonstrating that ECTBN generally performs better than
the baselines in this application except for the Transportation
outcome area.

Conclusions

We have proposed a novel, interpretable graphical model
that captures joint dynamics of both event occurrences and
state variable transitions. Our focus was primarily on learn-
ing causal relations from events to state variables. In that
regard, we presented an algorithm for learning the model
structure and parameters, and demonstrated the model’s ef-
fectiveness through experiments on synthetic data as well
as a real-world application with data from CityLink Center.
Potential directions for future work include models that incor-
porate even more complex historical dependencies of events
and a decision making framework using parameters obtained
from structure learning to optimally guide system evolution
to achieve a desired goal.
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