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Abstract

In tracking of time-varying low-rank models of time-varying
matrices, we present a method robust to both uniformly-
distributed measurement noise and arbitrarily-distributed
“sparse” noise. In theory, we bound the tracking error. In prac-
tice, our use of randomised coordinate descent is scalable
and allows for encouraging results on changedetection.net, a
benchmark.

Introduction

Dimension reduction is a staple of Statistics and Machine
Learning. In principal component analysis, its undergraduate-
textbook version, possibly correlated observations are trans-
formed to a combination of linearly uncorrelated variables,
called principal components. Often, a low number of princi-
pal components suffice for the so-called low-rank model to
represent the phenomenon observed. Notoriously, however,
a small amount of noise can change the principal compo-
nents considerably. A considerable effort has focussed on the
development of robust approaches to principal component
analysis (RPCA). Two challenges remained: robustness to
both sparse and non-sparse noise and theoretical guarantees
in the time-varying setting.

We present the pursuit of time-varying low-rank mod-
els of time-varying matrices, which is robust to both
dense uniformly-distributed measurement noise and sparse
arbitrarily-distributed noise. Consider, for example, back-
ground subtraction problem in Computer Vision, where one
wishes to distinguish fast-moving foreground objects from
slowly-varying background in video data (Liu et al. 2013).
There, a matrix represents a constant number of frames of
the video data, flattened to one row-vector per frame. At any
point in time, the low-rank model is captured by a short-
and-wide matrix. The time-varying low-rank model makes it
possible to capture slower changes, e.g., lighting conditions
slowly changing with the cloud cover. There may also be
slight but rapid changes, e.g., leaves of grass moving in the
wind, which could be captured by the uniformly-distributed
dense noise. Finally, the moving objects are captured by the
sparse noise. Clearly, low-rank modelling has wide-ranging
applications beyond Computer Vision, wherever one needs
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to analyse high-dimensional streamed data and flag abnormal
observations to operators, while adapting the model of what
is normal over time.

Our contributions are as follows:

• we extend the low-rank + sparse model to low-rank + dense
uniformly-distributed noise + sparse, where low-rank can
be time-varying

• we provide an algorithm with convergence-rate guarantees
for the time-invariant case

• we provide an algorithm with guarantees for the time-
varying case. In Theorem 2, we bound the tracking error
of an algorithm for any low-rank factorisation problem
for the first time. That is: we show that a sequence of
approximately optimal costs eventually reaches the optimal
cost trajectory.

• we improve upon the statistical performance of RPCA
approaches on changedetection.net of (Goyette et al. 2012),
a well-known benchmark: the F1 score across 6 categories
of changedetection.net improves by 28%, from 0.44643 to
0.57099. On the baseline category, it is 0.80254.

• we improve upon run time per frame of the same RPCA ap-
proaches, as detailed in Table 1. Compared to TTD 3WD,
to give an example of a method which is still considered ef-
ficient in the literature, our single-threaded implementation
is 103 times faster.

Related Work

Traditional approaches to robustness in low-rank models
(Candès and Recht 2009, to name some of the pioneering
work) are based on a long history of work in robust statis-
tics (Huber 1981). In such approaches (Candès et al. 2011;
Feng et al. 2013; Guo, Qiu, and Vaswani 2014; Mardani,
Mateos, and Giannakis 2013), sometimes known as “Low-
rank + Sparse”, one balances the number of samples of the
“sparse” noise and the rank of the model, or the nuclear norm
as a proxy for the rank. There are a number of excellent im-
plementations, including some focused on the incremental
update (Lin, Liu, and Su 2011; He, Balzano, and Lui 2011;
Balzano and Wright 2013; Oreifej, Li, and Shah 2013;
Meng and Torre 2013; Rodriguez and Wohlberg 2013;
Dutta and Li 2017; Dutta, Li, and Richtárik 2017; Ma and Ay-
bat 2018; Lerman and Maunu 2018; Vaswani and Narayana-
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Table 1: A comparison of our approach against five of the best-known RPCA implementations and the recent OMoGMF,
featuring the F1 score on the baseline category of http://changedetection.net and mean run time (in seconds per input frame,
single-threaded) on the “baseline/highway” video-sequence of the same benchmark.

Method Model Guarantees F1 Run-time

LRR FastLADMAP Low-rank + Sparse Off-line: limit point KKT 0.36194 4.611
MC GROUSE Low-rank + Sparse, L2 — 0.31495 10.621
OMoGMF GMM(Low-rank) + Sparse — 0.72611 0.123
RPCA FPCP Low-rank + Sparse — 0.37900 0.504
ST GRASTA Rank-1 + Sparse, L1 — 0.42367 3.266
TTD 3WD Low-rank + Turbulence + Sparse Off-line: limit point feasible 0.40297 10.343
Our approach Low-rank + Uniform + Sparse On-line: tracking error 0.80254 0.103

murthy 2018; Balzano, Chi, and Lu 2018; Yong et al. 2018,
e.g.). In our comparison, we focus five of the best-known im-
plementations and one very recent one. LRR FastLADMAP
(Lin, Liu, and Su 2011), RPCA FPCP (Rodriguez and
Wohlberg 2013), and MC GROUSE (Balzano and Wright
2013) use the low-rank + sparse model. ST GRASTA (He,
Balzano, and Lui 2011) uses rank-1 + sparse. TTD 3WD (Or-
eifej, Li, and Shah 2013) uses low-rank + turbulence + sparse.
The most recent formulation we consider is OMoGMF (Yong
et al. 2018), which utilises a Gaussian mixture model (GMM)
structure over the low-rank model, plus sparse noise on
top. We refer to (Bhojanapalli, Neyshabur, and Srebro 2016;
Boumal, Voroninski, and Bandeira 2016; Jain and Kar 2017;
Boumal, Absil, and Cartis 2018; Bhojanapalli et al. 2018)
for the present-best theoretical analyses in the off-line, time-
invariant case, but stress that no guarantees have been known
for the on-line, time-varying case. We refer to the recent
handbook (Bouwmans, Aybat, and Zahzah 2016) and to the
August 2018 special issue of the Proceedings of the IEEE
(Vaswani, Chi, and Bouwmans 2018) for up-to-date surveys.

Problem Formulation

Consider N streams with n-dimensional measurements, com-
ing from N sensors with uniform sampling period h from tk
till tk+hT (possibly with many missing values), packaged in
a (possibly partial) matrix Mk ∈ R

T×nN . Every time a new
observation comes in, its flattening is added at the bottom
row to the matrix and the first row is discarded. In this way,
the observation matrix slowly varies over time, i.e., Mk+1 is
different from Mk, in general.

It is natural to assume that any row d may resemble a
linear combination of r � T prototypical rows. Prior to
the corruption by sparse noise, we assume that there exists
Rk ∈ R

r×nN , such that flattened observations xd ∈ R
1×nN

are

xd = cdRk + ed, (1)

where the row vector cd ∈ R
1×r weighs the rows of matrix

Rk, while ed ∈ R
1×nN is the noise row vector, where each

entry be uniformly distributed between known, fixed −Δ
and Δ. Further, this formulation (1) is extended towards the
contamination model (Huber 1981), where “sparse errors”
replace readings of some of the sensors. That is: Either we

receive a measurement belonging to our model, or not:

(xd)i = (1n − Ii,k) ◦ [(cdRk)i + (ed)i] + Ii,k ◦ si, (2)

where index i enumerates sensors, si ∈ R
1×n is a generic

noise vector, while the Boolean vector Ii,k ∈ {0, 1}n has
entries that are all zeros or ones depending on whether we
receive a measurement belonging to our model or not. The
operation ◦ represents element-wise multiplication.

Considering the matrix representation, we assume that the
matrix Mk can be decomposed into slowly varying low-rank
model (CkRk) and additive deviation (Ek) from the model
comprising noise and anomalies:

Mk =

⎡
⎣

. . .
xd

. . .

⎤
⎦ = CkRk +Ek, (3)

where T is the number of samples stacked in rows of matrix
Mk, r is the number of prototypes in the low-rank approxi-
mation, xd is a d-th row-vector in matrix Mk, Ck ∈ R

T×r

and Ek ∈ R
T×nN are the matrices incorporating the coeffi-

cient vectors cd’s and noise ed’s as Ck = [. . . ; cd ; . . . ], and
Ek = [. . . ; ed ; . . . ], respectively.

The missing entries in Mk can represent either really ab-
sent data or outliers, such as moving objects in the case of
video-processing applications. One can assume that normal
behaviour exhibits certain regularity, which could be cap-
tured by a low-rank structure, and that events or anomalies
are sparse across both time and space. The sparsity should be
construed quite loosely, for example, comprising dense blobs
of pixels moving coherently in video data, while occupying a
relatively small fraction of image pixels in total. This notion
of anomaly detection is widely used in monitoring streamed
data, event recognition, and computer vision.

If we can identify the low-rank model, any deviation from
the measurement model (1) can be interpreted as an anomaly
or event. When there are few measurements for which Ii,k =
1n and those are different from standard measurements, i.e.,
the aggregated Ik ∈ {0, 1}nN , which stacks all the individual
Ik for a specific time k, is sparse, and samples of si fall
outside of some range [Mk,ij ,Mk,ij ] (defined below), it is
possible to identify samples of si perfectly. In this paper, we
provide a way to detect such anomalies, i.e., measurements
for which Ii,k = 1n. Hence, we are effectively proposing a
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principal component pursuit algorithm robust to uniform and
sparse noise.

We compute matrices Ck and Rk by resorting to a low-
rank approximation of the matrix Mk with an explicit con-
sideration of the uniformly-distributed error in the measure-
ments. Let Mk,ij be the (i, j) element of Mk. Consider the
interval uncertainty set [Mk,ij −Δ,Mk,ij +Δ] around each
observation. Finding (Ck,Rk) can be seen as matrix comple-
tion with element-wise lower bounds Mk,ij := Mk,ij −Δ

and element-wise upper bounds Mk,ij := Mk,ij + Δ. Let
Ck,i: and Rk,:j be the i-th row and j-th column of Ck and
Rk, respectively. With Frobenius-norm regularisation, the
completion problem we solve is:

minimise
Ck∈RT×r, Rk∈Rr×nN

f(Ck,Rk;Mk), (4)

where:

f(Ck,Rk;Mk) :=
1
2

∑
(ij) �(Mk,ij −Ck,i:Rk,:j)

+ 1
2

∑
(ij) �(Ck,i:Rk,:j −Mk,ij)

+ ν
2‖Ck‖2F + ν

2‖Rk‖2F , (5)

where � : R→ R is the square of the maximum of the two-
element set composed of the argument and 0, as detailed in
Section “A Derivation of the Step Size” of (Akhriev, Marecek,
and Simonetto 2018), and ν > 0 is a weight.

Our only further assumption is that we have the element-
wise constraints on all elements of the matricial variable:

Assumption 1. For each (i, j) of Mk there is a finite
element-wise upper bound Mk,ij and a finite element-wise
lower bound Mk,ij .

This assumption is satisfied even for any missing values
at ij when the measurements lie naturally in a bounded set,
e.g., [0, 255] in many computer-vision applications.

Proposed Algorithms

In this section, we first present the overall schema of our
approach in Algorithm 1. Second, we present Algorithm 2 for
on-line inequality-constrained matrix completion, a crucial
sub-problem.

The Overall Schema

Overall, we interleave the updates to the low-rank model via
the inequality-constrained matrix completion, detection of
sparse noise, and updating of the inputs to the inequality-
constrained matrix completion, which disregards the sparse
noise.

At each time step, we acquire new measurements xd and
compute their projection coefficients onto the low-rank sub-
space as

v = arg min
v∈R1×r

‖xd − vRk−1‖p, (6)

where p can be the 1, 2,∞ norm, or the 0 pseudo-norm. Since
for a very large number of sensors, even solving (6) can be
challenging, we subsample xd by picking only a few sensors
uniformly at random. Let i ∈ Ñ be the sampled sensors, with

Input: Initial matrices (C0,R0), rank r
Output: (Ck,Rk) and events for each k

1: for each time tk : k = 1, 2, . . . , tk+1− tk = h do
2: acquire new measurements xd

3: subsample xd uniformly at random to obtain x̃d

4: compute ṽ via the subsampled projection (7)
5: for each sensor i in parallel do
6: compute residuals ri = ‖(xd)i− (ṽRk−1)i‖
7: end for
8: compute λ as a function of {ri}i as described in

(Akhriev, Marecek, and Simonetto 2018)
9: compute T as a value at risk at λ of {ri}

10: initialise y as a boolean all-False vector of same
dimension as xd

11: for each sensor i in parallel do
12: if ri < T then
13: set yi to True, as value at sensor i is likely

to come from our model
14: add (xd)i to Mk

15: end if
16: end for
17: compute (Ck,Rk) via Algorithm 2 with rank r
18: end for
19: return (Ck,Rk,y)

Algorithm 1: Pursuit of low-rank models of time-varying
matrices robust to both sparse and measurement noise.

|Ñ | = Ñ . We form a low-dimensional measurement vector
x̃d ∈ R

1×nÑ and solve the subsampled:

ṽ = arg min
v∈R1×r

‖x̃d − v(Ri
k−1)i∈Ñ ‖p, (7)

where (Ri
k−1)i∈Ñ ∈ R

r×nÑ is the matrix whose columns
corresponds to the sensors, which are sampled uniformly at
random. Solving (7) yields solutions ṽ such that the norm
‖v − ṽ‖p is very small, while being considerably less de-
manding computationally.

Once the projection coefficients v have been computed,
we can compute the discrepancy between the measure-
ment (xd)i coming from sensor i and our projection (7),
‖(xd)i − (vRk−1)i‖p, also known as the residual for sensor
i. We use the residuals in a two-step thresholding procedure
inspired by (Malistov 2014). In the first step, we use resid-
uals to compute a coefficient λ > 0. In the second step, we
consider the individual residuals as samples of an empiri-
cal distribution, and take the value at risk (VaR) at λ as a
threshold. We provide details in (Akhriev and Marecek 2019;
Akhriev, Marecek, and Simonetto 2018). The test as to
whether residual at each sensor is below the threshold re-
sults in a binary map, suggesting whether the observation of
each sensor is likely to have come from our model or not.
For a positive value at i in the map, the measurement (xd)i
is kept in Mk. Otherwise, it is discarded.

On-line Matrix Completion

Given Mk, we utilise inequality-constrained matrix com-
pletion, to estimate the low-rank approximation (Ck,Rk)
of the input matrix considering interval uncertainty sets.
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Clearly, solving the non-convex problem (4) for non-trivial
dimensions of matrix Mk to a non-trivial accuracy at high-
frequency requires careful algorithm design. We propose an
algorithm that tracks the low-rank Rk over time, increasing
the accuracy of the solution of (4) while new observations
are brought in, and old ones are discarded. In particular, we
propose the on-line alternating parallel randomised block-
coordinate descent method summarized in Algorithm 2.

For each input k, the previously-found approximate solu-
tions (Ck−1,Rk−1), are updated based on the new observa-
tion matrix Mk, the correspondingly-derived element-wise
lower and upper bounds Mk,ij ,Mk,ij , and the desired rank
r. The update is computed using the alternatig least squares
(ALS) method, which is based on the observation that while
f (4) is not convex jointly in (Ck,Rk), it is convex in Ck

for fixed Rk and in Rk for fixed Ck. The update takes the
form of a sequence {(CT,τ

k ,RT,τ
k )} of solutions, which are

progressively more accurate. If we could run a large number
of iterations of the ALS, we would be in an off-line mode.
In the on-line mode, we keep the number of iterations small,
and apply the final update based on Mk at time tk+1, when
the next observation arrives.

The optimisation in each of the two alternating least-
squares problems is based on parallel block-coordinate de-
scent, as reinterpreted by (Nesterov 2012). Notice that in
Nesterov’s optimal variant, one requires the the modulus of
Lipschitz continuity restricted to the sampled coordinates
(Nesterov 2012, Equation 2.4) to compute the step δ. Con-
sidering that the modulus is not known a priori, we maintain
an estimate WT,τ

ir̂ of the modulus of Lipschitz continuity
restricted to the CT,τ

k,ir̂ sampled, and estimate V T,τ
r̂j of the

modulus of Lipschitz continuity restricted to the RT,τ
k,r̂j sam-

pled. We refer to (Akhriev, Marecek, and Simonetto 2018)
for the details of the estimate and to (Nesterov 2012) for a
high-level overview.

Overall, when looking at Algorithm 2, notice that there
are several nested loops. The counter for the update of the
input is k. For each input, we consider factors C and R as
the optimisation variable alternatingly, with counter T . For
each factor, we take a number of block-coordinate descent
steps, with the blocks sampled randomly; the counter for the
block-coordinate steps is τ . In particular, in Steps 3–8 of the
algorithm, we fix RT,τ

k , choose a random r̂ and a random
set Ŝrow of rows of Ck, and, in parallel for i ∈ Ŝrow, update
CT,τ+1

k,ir̂ to CT,τ
k,ir̂ + δir̂, where the step is:

δir̂ := −〈∇Ck
f(CT,τ

k ,RT,τ
k ;Mk),Pir̂〉/WT,τ

ir̂ , (8)

and Pir̂ is the n×r matrix with 1 in entry (ir̂) and zeros else-
where. The computation of 〈∇Ck

f(CT,τ
k ,RT,τ

k ;Mk),Pr̂j〉
can be simplified considerably, as explained in in Section
“A Derivation of the Step Size” of (Akhriev, Marecek, and
Simonetto 2018).

Likewise, in Steps 9–14, we fix CT,τ+1
k , choose a r̂ and

a random set Ŝcolumn of columns of Rk, and, in parallel for
j ∈ Ŝcolumn, update RT,τ+1

k,r̂j to RT,τ
k,r̂j + δr̂j , where the step

Input: updated Mk, Mk,ij ,Mk,ij , previous iter-
ate (Ck−1,Rk−1), rank r, limit τ
Output: (Ck,Rk)

1: Initialise: (C0,0
k = Ck−1,R

0,0
k = Rk−1), T = 0

2: while Mk+1 is not available do
3: for τ = 0, 1, 2, . . . , τ do

4: choose Ŝrow ⊆ {1, . . . ,m}
5: for i ∈ Ŝrow in parallel do
6: choose r̂ ∈ {1, . . . , r} uniformly at ran-

dom
7: compute δir̂ using formula (8)
8: update CT,τ+1

k,ir̂ ← CT,τ
k,ir̂ + δir̂

9: end for
10: end for
11: for τ = 0, 1, 2, . . . , τ do

12: choose Ŝcolumn ⊆ {1, . . . , n} uniformly at
random

13: for j ∈ Ŝcolumn in parallel do
14: choose r̂ ∈ {1, . . . , r} uniformly at ran-

dom
15: compute δr̂j using (9)
16: update RT,τ+1

k,r̂j ← RT,τ
k,r̂j + δr̂j

17: end for
18: end for
19: set: CT+1,0

k = CT,τ+1
k , RT+1,0

k = RT,τ+1
k

20: update: T = T + 1
21: end while
22: return Ck = CT,0

k , Rk = RT,0
k

Algorithm 2: On-line inequality-constrained matrix-
completion via randomised coordinate descent.

is:

δr̂j := −〈∇Rk
f(CT,τ+1

k ,Rk;Mk),Pr̂j〉/V T,τ
r̂j , (9)

and Pr̂j is the r × m matrix with 1 in entry
(r̂j) and zeros elsewhere. Again, the computation of
〈∇Rk

f(CT,τ+1
k ,Rk;Mk),Pr̂j〉 can be simplified.

Convergence Analysis

For the off-line inequality-constrained matrix completion
problem (4), (Marecek, Richtarik, and Takac 2017) pro-
posed an algorithm similar to Algorithm 2 and presented
a convergence result, which states that the method is mono-
tonic and, with probability 1, converges to the so-called
bistable point, i.e., lim infT→∞ ‖∇Cf(C

τ ,Rτ ;M)‖ = 0,
and lim infT→∞ ‖∇Rf(Cτ ,Rτ ;M)‖ = 0. Here, we need
to show the rate of convergence to the bistable point and a
distance of the bi-stable point to an optimum f∗:

Theorem 2. There exists τ > 0, such that Algorithm 2
with the initialization to all-zero vector after at most T =
O(log 1

ε ) steps has f(CT ,RT ) ≤ f∗ + ε with probability 1.

The proof is available on-line (Akhriev, Marecek, and Si-
monetto 2018) and should not be surprising, in light of (Bho-
janapalli, Neyshabur, and Srebro 2016; Boumal, Voroninski,
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and Bandeira 2016; Jain and Kar 2017; Boumal, Absil, and
Cartis 2018; Bhojanapalli et al. 2018).

Building upon this, we can prove a bound on the error in
the on-line regime. In particular, we will show that Algo-
rithm 2 generates a sequence of matrices {(Ck,Rk)} that
in the large limit of k →∞ guarantees a bounded tracking
error, i.e., f(Ck,Rk;Mk) ≤ f(C∗

k,R
∗
k;Mk)+E. The size

of the tracking error E depends on how fast the time-varying
matrices change:

Assumption 3. The variation of the observation matrix Mk

at two subsequent instant k and k − 1 is so to guarantee that

|f(Ck,Rk;Mk)− f(Ck,Rk;Mk−1)| ≤ e,

for all instants k > 0.

Now, let us bound the error in tracking, i.e., when Mk

changes over time and we run only a limited number of
iterations τ of our algorithm per time step, before obtaining
new inputs.
Theorem 4. Let Assumptions 1 and 3 hold. Then with prob-
ability 1, Algorithm 2 starting from an all-zero matrices gen-
erates a sequence of matrices {(Ck,Rk)} for which

f(Ck,Rk;Mk)− f(C∗
k,R

∗
k;Mk) ≤

η0(f(Ck−1,Rk−1;Mk−1)− f(C∗
k−1,R

∗
k−1;Mk−1))+ η0e,

where η0 < 1 is a constant. In the limit,

lim sup
k→∞

f(Ck,Rk;Mk)−f(C∗
k,R

∗
k;Mk) ≤ η0e

1− η0
=: E.

In other words, as time passes, our on-line algorithm gen-
erates a sequence of approximately optimal costs that eventu-
ally reaches the optimal cost trajectory, up to an asymptotic
bound. We bound from above the maximum discrepancy be-
tween the approximate optimum and the true one at instant k,
as k goes to infinity. The convergence to the bound is linear
and the rate is η0, and depends on the properties of the cost
function, while the asymptotic bound depends on how fast
the problem is changing over time.

This is a tracking result: we are pursuing a time-varying
optimum by a finite number of iterations τ per time-step. If
we could run a large number of iterations per each time step,
then we would be back to a off-line case and we would not
have a tracking error. This may not, however, be possible in
settings, where inputs change faster than one can compute an
iteration of the algorithm.

Experimental Evaluation

We have implemented Algorithms 1 and 2 in C++, and re-
leased the implementation1 under Apache License 2.0. Based
on limited experimentation, we have decided on the use of a
time window of T = 35, rank r = 4, and half-width of the
uniform noise Δ = 5. We have used dual simplex from IBM
ILOG CPLEX 12.8 as a linear-programming solver for solv-
ing solving (7) in Algorithm 1. To initialise the C0 and R0

in Algorithm 1, we have used the matrix completion of Algo-
rithms 2 with 1 epoch per frame for 3 passes on each video

1https://github.com/jmarecek/OnlineLowRank

Figure 1: Top: Effects of subsampling in the projection (7).
Bottom: Performance of Algorithm 2 as a function of the
number of epochs per update.

(4,000 to 32,000 frames), starting from all-zero matrices. We
note that in real-world deployments, such an initialisation
may be unnecessary, as the the number of frames processed
will render the initial error irrelevant.

First, let us highlight two aspects of the performance of
the algorithm. In particular, on the top in Figure 1, we il-
lustrate the effects of the subsampling on the projection (7).
For projection in L1 and L∞, we present the L2 norm of
the difference ṽ − v as a function of the sample period of
the subsampling (7), where v is the true value obtained in
(6) without subsampling and ṽ is the value obtained in (7)
with subsampling, and the sample period is the ratio of the
dimensions of xd and x̃d. It is clear that L1 is very robust
to the subsampling. This corroborates the PAC bounds of
(Marecek et al. 2018) and motivated our choice of L1 with
a sampling period of 100 pixels in the code. For complete-
ness, we also present the performance of the Geman-McLure
loss (Sawhney and Ayer 1996), where we do not consider
subsampling, relative to the performance of L1 norm without
subsampling.

Next, on the bottom in Figure 1, we showcase the L2

norm of residual CkRk −Mk and the per-iteration run-time
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Table 2: Results of our Algorithm 2, compared to 6 other approaces on the “baseline” category of http://changedetection.net,
evaluated on the 6 performance metrics of (Goyette et al. 2012). For each performance metric, the best result across the presented
methods is highlighted in bold.

Approach / Performance metric Recall Specificity FPR FNR Precision F1

LRR FastLADMAP (Lin, Liu, and Su 2011) 0.74694 0.93980 0.06021 0.25306 0.28039 0.36194
MC GROUSE (Balzano and Wright 2013) 0.65640 0.89692 0.10308 0.34360 0.25425 0.31495
OMoGMF (Meng and Torre 2013; Yong et al. 2018) 0.89943 0.98289 0.01711 0.10057 0.62033 0.72611
RPCA FPCP (Rodriguez and Wohlberg 2013) 0.73848 0.94733 0.05267 0.26152 0.29994 0.37900
ST GRASTA (He, Balzano, and Lui 2011) 0.45340 0.98205 0.01795 0.54660 0.44009 0.42367
TTD 3WD (Oreifej, Li, and Shah 2013) 0.61103 0.97117 0.02883 0.38897 0.35557 0.40297
Algorithm 2 (w/ Geman-McLure) 0.85684 0.99078 0.00922 0.14316 0.77210 0.80254
Algorithm 2 (w/ L1 norm) 0.84561 0.99063 0.00937 0.15439 0.76709 0.79421

Table 3: Results of our Algorithm 2, compared to 3 other approaches on 6 categories of http://changedetection.net, evaluated on
the 6 performance metrics of (Goyette et al. 2012). For each pair of performance metric and category, the best result across the
presented methods is highlighted in bold.

Approach and category / Performance metric Recall Specificity FPR FNR Precision F1
Algorithm 2 (w/ L1 norm):

badWeather 0.86589 0.98814 0.01186 0.13411 0.54689 0.64618
baseline 0.84561 0.99063 0.00937 0.15439 0.76709 0.79421
cameraJitter 0.59694 0.95928 0.04072 0.40306 0.55402 0.51324
dynamicBackground 0.46324 0.99677 0.00323 0.53676 0.65511 0.49254
nightVideo 0.83646 0.87469 0.12531 0.16354 0.20992 0.29481
shadow 0.76158 0.97612 0.02388 0.23842 0.64121 0.68493

Overall 0.72829 0.96427 0.03573 0.27171 0.56237 0.57099
OMoGMF (Yong et al. 2018):

badWeather 0.86871 0.98939 0.01061 0.13129 0.57917 0.67214
baseline 0.89943 0.98289 0.01711 0.10057 0.62033 0.72611
cameraJitter 0.85954 0.90739 0.09261 0.14046 0.30567 0.44235
dynamicBackground 0.87655 0.86383 0.13617 0.12345 0.08601 0.15012
nightVideo 0.75607 0.92372 0.07628 0.24393 0.23252 0.31336
shadow 0.55772 0.80276 0.03057 0.27562 0.40539 0.37450

Overall 0.80300 0.91166 0.06056 0.16922 0.37151 0.44643
ST GRASTA (He, Balzano, and Lui 2011):

badWeather 0.26555 0.98971 0.01029 0.73445 0.45526 0.30498
baseline 0.45340 0.98205 0.01795 0.54660 0.44009 0.42367
cameraJitter 0.51138 0.91313 0.08687 0.48862 0.23995 0.31572
dynamicBackground 0.41411 0.94755 0.05245 0.58589 0.08732 0.13736
nightVideo 0.42488 0.97224 0.02776 0.57512 0.24957 0.28154
shadow 0.44317 0.96681 0.03319 0.55683 0.42604 0.41515

Overall 0.41875 0.96192 0.03808 0.58125 0.31637 0.31307
RPCA FPCP (Rodriguez and Wohlberg 2013):

badWeather 0.82546 0.84424 0.15576 0.17454 0.09950 0.16687
baseline 0.73848 0.94733 0.05267 0.26152 0.29994 0.37900
cameraJitter 0.74452 0.84143 0.15857 0.25548 0.18436 0.29024
dynamicBackground 0.69491 0.80688 0.19312 0.30509 0.03928 0.07134
nightVideos 0.79284 0.85751 0.14249 0.20716 0.11797 0.19497
shadow 0.72132 0.90454 0.09546 0.27868 0.26474 0.36814

Overall : 0.75292 0.86699 0.13301 0.24708 0.16763 0.24509
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of a single-threaded implementation as a function of the
number of epochs per update. Clearly, the decrease in the
residual is very slow beyond one epoch per update, due to the
reasonable initialisation. On the other hand, there is a linear
increase in per-iteration run-time with the number of epochs
of coordinate descent per update. This motivated our choice
of 1 epoch per update, which allows for real-time processing
at 10 frames per second without parallelisation, which can
further improve performance as suggested in Algorithm 2.

We have also conducted a number of experiments on in-
stances from changedetection.net (Goyette et al. 2012), a
benchmark often used to test low-rank approaches. There,
short videos (1,000 to 9,000 frames) are supplemented with
ground-truth information of what is foreground and what is
background. These experiments have been run on a single
4-core workstation (Intel Core i7-4800MQ CPU, 16 GB of
RAM, RedHat 7.6/64) and results have been deposited2 in
FigShare. In Tables 2 and 3, we summarise the results. In par-
ticular, we present the false positive rate (FPR), false negative
rate (FNR), specificity, precision, recall, and the geometric
mean of the latter two (F1) of our method and 6 other low-
rank approaches, which have been used as reference methods
recently (Bouwmans, Aybat, and Zahzah 2016). These ref-
erence methods are implemented in LRSLibrary (Sobral,
Bouwmans, and Zahzah 2015; Bouwmans et al. 2015) and
by the original authors of OMoGMF (Meng and Torre 2013;
Yong et al. 2018), and have been used with their default set-
tings. Out of these, OMoGMF (Yong et al. 2018) is the most
recent and considered to be the most robust. Still, we can
improve upon the results of OMoGMF by a considerable
margin: the F1 score across the 6 categories is improved by
28% from 0.44643 to 0.57099, for example.

Further details and results are available in (Akhriev, Mare-
cek, and Simonetto 2018). At http://changedetection.net/, a
comparison against four dozen other methods is readily avail-
able, although one should like to discount methods tagged
as “supervised”, which are trained and tested on one and the
same dataset. A further comparison against dozens of other
methods is available in (Vaswani et al. 2018).

Conclusions

We have presented a tracking result for time-varying low-rank
models of time-varying matrices, robust to both uniformly-
distributed measurement noise and arbitrarily-distributed
“sparse” noise. This improves upon prior work, as sum-
marised by the recent special issues (Vaswani et al. 2018;
Vaswani, Chi, and Bouwmans 2018).

Our analytical guarantees improve upon the state of the art
in two ways. First, we provide a bound on the tracking error
in estimation of the time-varying low-rank sub-space, rather
than a result restricted to the off-line case. Second, we do not
make restrictive assumptions on RIP properties, incoherence,
identical covariance matrices, independence of all outlier
supports, or initialisation. Broadly speaking, such analyses
of time-varying non-convex optimisation (Liu et al. 2018;
Tang et al. 2018; Fattahi et al. 2019; Massicot and Marecek
2019), seems to be an important direction for further research.

2https://figshare.com/articles/AAAI2020 results zip/10316696

In practice, our use of randomised coordinate descent in
alternating least-squares seems much better suited to high-
volume (high-dimensional, high-frequency) data streams than
spectral methods and other alternatives we are aware of.
When the matrix Mk does not change quickly, performing
a fixed number of iterations within an inexact step (4) upon
arrival of a new sample makes it possible to spread the com-
putational load over time, while still recovering a good back-
ground model. Also, our algorithm is easy to implement and
optimize. It has very few hyper-parameters, and this simpli-
fies tuning. Our results are hence practically relevant.
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