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Abstract

In this paper, we study the problem of query answering with
guarded existential rules (also called GNTGDs) under stable
model semantics. Our goal is to use existing answer set pro-
gramming (ASP) solvers. However, ASP solvers handle only
finitely-ground logic programs while the program translated
from GNTGDs by Skolemization is not in general. To ad-
dress this challenge, we introduce two novel notions of (1)
guarded instantiation forest to describe the instantiation of
GNTGDs and (2) prime block to characterize the repeated
infinitely-ground program translated from GNTGDs. Using
these notions, we prove that the ground termination problem
for GNTGDs is decidable. We also devise an algorithm for
query answering with GNTGDs using ASP solvers. We have
implemented our approach in a prototype system. The evalu-
ation over a set of benchmarks shows encouraging results.

Introduction

Existential rules (Calı̀, Gottlob, and Pieris 2010;
Calı̀, Gottlob, and Lukasiewicz 2012), also well-known as
tuple-generating dependencies (TGDs) (Beeri and Vardi
1984), is a powerful rule-based logic formalism for query
answering. Since query answering with TGDs is unde-
cidable in general (Beeri and Vardi 1981), one important
research direction is to identify decidable fragments of
TGDs. A major decidable class of TGDs is guarded TGDs
(GTGDs) whose body contains an atom that covers all body
variables (Calı̀, Gottlob, and Lukasiewicz 2012). Guard-
edness is a well-accepted paradigm because it captures
important databases constraints such as inclusion dependen-
cies, and lightweight description logics such as DL-Lite.

Adding non-monotonic negation in TGDs under the
stable model semantics (SMS) (Gelfond and Lifschitz
1988), as in answer set programming (ASP), called normal
TGDs (NTGDs), has drawn much attention. The most
notable work is by Gottlob et al. (2014), who showed the
decidability and complexity of query answering under SMS
for GNTGDs and extended the QCHECK algorithm (Calı̀,
Gottlob, and Kifer 2013) to answer covered queries (i.e.
queries in which the variables in each negative atom is
covered by a positive atom) by transforming the GNTGDs
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into disjunctive rules with stratified negation. Other signif-
icant decidable fragments of NTGDs under SMS include
Magka, Krötzsch, and Horrocks (2013), Zhang, Zhang, and
You (2015), and Alviano, Morak, and Pieris (2017).

Due to the availability of efficient ASP solvers, such as
clingo (Gebser et al. 2012) and DLV (Leone et al. 2002),
it is natural to consider reusing ASP solvers for query an-
swering with GNTGDs, which correspond to ASP programs
with function symbols. However, only a restricted subset
of ASP programs, e.g. finitely-ground ones (Calimeri et al.
2008), can be handled by existing ASP solvers. Unfortu-
nately, as shown in the next motivating example, a logic pro-
gram translated from GNTGDs can be infinitely-ground.
Example 1. (Gottlob et al. 2014, Example 1) Let D =
{Person(mary)} be a database and Σ be GNTGDs ex-
pressing that each person has at least one parent, each per-
son belongs to either an odd generation or an even, and odd
and even alternate between one generation and the next:

Person(x) → ∃y Parent(x, y), (1)
Parent(x, y) → Person(y), (2)

Person(x), not Even(x) → Odd(x), (3)
Person(x), not Odd(x) → Even(x), (4)
Parent(x, y), Odd(x) → Even(y), (5)
Parent(x, y), Even(x) → Odd(y). (6)

The Skolemization of rule (1) is

Person(x) → Parent(x, f(x)). (7)

Let Σ0=Σ\{(1)}∪{(7)}. Since program Σ0∪D is infinitely-
ground, ASP solvers are not able to handle it. More-
over, consider a boolean conjunctive query Q= ∃x1x2x3
Parent(x1, x2)∧Parent(x2, x3)∧¬Parent(x1, x3). Since
Q is not covered, the technique in Gottlob et al. (2014) does
not help either. To the best of knowledge, no existing method
can handle such queries over GNTGDs.

To address this challenge, we rely on two techniques: the
first one is guarded chase forest (GCF) (Calı̀, Gottlob, and
Lukasiewicz 2012; Calı̀, Gottlob, and Kifer 2013), in which
the nodes are derived atoms, and the edges encode the ap-
plication of GTGDs. The second is intelligent instantiation
(Calimeri et al. 2008), which has been used for characteriz-
ing finitely-grounded logic programs. In order to tame the
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negation in GNTGDs, we have proposed a novel notion of
guarded instantiation forest (GIF), in which the nodes are
ground rules, and the edges encode the procedure of intelli-
gent instantiation. Another is the prime block for character-
izing the repeated structures of GCF and GIF, an extension
of basic block of GCF (Calautti, Gottlob, and Pieris 2015).

These two notions of GIF and prime blocks are quite
powerful for GNTGDs. We first investigate the ground ter-
mination problem for GNTGDs, i.e., deciding whether the
program translated from GNTGDs is a finitely-ground pro-
gram. Recall that this problem is undecidable for ASP (Cal-
imeri et al. 2008). Fortunately, for GNTGDs, we show that
this problem boils down to the existence of prime blocks,
whose complexity is the same as the chase termination prob-
lem (Calautti, Gottlob, and Pieris 2015).

Next, we turn our attention to the problem of query an-
swering, esp. for infinitely-ground GNTGDs. We show that
this can be done by considering only finite fragments of the
GIFs. Also, we show that prime block is a more fine-grained
bound (thus more efficient) than guarded depth for query an-
swering with guarded existential rules (Gottlob et al. 2014).

Finally, we develop a prototype and conduct experiments
on a set of benchmarks. The results confirm that the our ap-
proach is scalable for query answering with GNTGDs.

Preliminaries
We briefly recall some basic notions for the rest of the paper.
Databases and Queries.We assume an infinite set Δ of con-
stants, an infinite set Δn of (labeled) nulls (used as fresh
Skolem terms), and an infinite set Δv of variables. A term
is either a simple term or a functional term. A simple term is
a constant, a null, or a variable. If t1, . . . , tn are terms and f
is a function symbol (functor) of arity n, then f(t1, . . . , tn)
is a functional term. We denote by x a sequence of vari-
ables x1, . . . , xk with k ≥ 0. An atom a is of the form
R(t1, . . . , tn), whereR is an n-ary relation symbol (or pred-
icate) and t1, . . . , tn are terms. We denote by pred(a) its
predicate and dom(a) the set of all its arguments. For a set
A of atoms, dom(A)=

⋃
a∈A dom(a). An atom is ground if

it contains no variables or nulls. A conjunction of atoms is
identified with the set of all its atoms. A relational schema
R is a finite set of relation symbols. An instance I over R
is a (possibly infinite) set of variable free atoms over R. A
position P [i] in a relational schema is identified by a rela-
tional predicate P and its ith attribute. A database D over
a relational schema R is a finite instance with relation sym-
bols from R and with arguments only from Δ. A conjunctive
query (CQ) over R has the form Q(x) = ∃y φ(x,y), where
φ(x,y) is a conjunction of atoms with variables x and y. An
atomic query is a CQ with only one atom. A Boolean CQ
(BCQ) is a CQ of the formQ(), written asQ. Given aD and
a BCQ Q, the query answer of Q over D is Yes, denoted by
D |= Q, if there is a homomorphism from Q to D.
Logic Programs and Stable Models. A disjunctive logic
program (DLP) Π is a finite set of rules r of the form
β1, . . . , βn, notβn+1, . . . , notβm → α1∨ . . .∨αk where
α1,. . . , αk, β1, . . . , βm (k≥1, m≥n≥0) are atoms. A
positive literal is an atom (e.g.,β1); a negative literal is
the negation of an atom (e.g., notβn+1). We write head(r)

= {α1, . . . , αk} for the head, and body+(r) = {β1, . . . , βn}
and body−(r) = {βn+1, . . . , βm} for the positive and neg-
ative body of r, respectively. A rule r is a fact if k = 1 and
m = 0; r is a constraint if k = 0; r is normal if k = 1. A
normal logic program (NLP) is a set of normal rules.

For a DLP Π, facts(Π) and heads(Π) denote the set of
facts and heads in Π, respectively. We denote the Herbrand
universe by HU (Π) and the Herbrand base by HB(Π). A
variable-free rule r′ is called an instance (or ground rule) of
some rule r ∈ Π if there is a function h: Δv → HU (Π)
s.t. h(r) = r′. The grounding (or instantiation) of Π,
ground(Π), is the set of all instances of all rules r from Π.

The Gelfond-Lifschitz (GL) reduct of a DLP Π w.r.t. a
set M ⊆ HB(Π), denoted by ΠM , is the (possibly infi-
nite) ground positive program obtained from ground(Π) by
(1) deleting every rule r such that body−(r) ∩M �= ∅, and
(2) deleting all negative literals from each remaining rule.M
is a stable model of Π if M is a minimal model of ΠM (Gel-
fond and Lifschitz 1988; Ferraris, Lee, and Lifschitz 2011).
The set of stable models of Π is denoted by SM(Π).
Normal TGDs and BNCQ. A normal tuple generat-
ing dependency (NTGD) σ is a first-order sentence of
form ∀x∀yϕ(x,y) → ∃zψ(x, z), where ϕ is a con-
junction of literals, ψ is a conjunction of atoms, and
each universally quantified variable appears in at least
one positive conjunct of ϕ. W.l.o.g. we assume that
each rule has a single atom in its head. For simplic-
ity, we omit the universal quantifiers and write σ as:

β1, . . . , βn, notβn+1, . . . , notβm → ∃zα
where β’s and α are the atoms in φ and ψ, respectively. The
notions of head and body atoms are defined as in DLP. σ+

denotes the rules obtained by dropping all negative literals
from the σ, and Σ+ =

⋃
σ∈Σ σ

+ for a set Σ of NTGDs.
An NTGD σ is a TGD if body−(σ) = ∅. We say σ is

a guarded NTGD (GNTGD) if it contains an atom in its
body that covers all body variables of σ. The leftmost such
atom is called the guard atom of σ, and other body atoms
are the side atoms of σ. The notions of stratified and full
negation are defined as usual.An NTGD is linear if there
is only one positive atom in its body; it is multi-linear if
all body atoms have the same variables. A linear NTGD is
also a multi-linear NTGD. A disjunctive NTGD (DNTGD)
σ is a formula ∀x∀yϕ(x,y) → ∃zψ(x, z), where ψ is a
disjunction of atoms and ϕ is a conjunction of literals.

The stable models of a finite set Σ of DGNTGDs and
a database D is simply the stable models of the program
P=D∪sk(Σ), where sk(Σ) is the Skolemization of Σ (Got-
tlob et al. 2014). A Boolean normal conjunctive query
(BNCQ) Q is an existentially closed conjunction of atoms
and negated atoms of the form ∃xp1(x1)∧ . . .∧ pm(xm)∧
¬pm+1(xm+1) ∧ . . . ∧ ¬pm+n(xm+n) (m≥1, n≥0). We
write Σ∪D|=Q if M |=Q for all stable models M of Σ∪D.
|Q| denotes the number of atoms in Q. A BNCQ Q is safe
if xm+1∪ . . .∪xm+n ⊆ x1∪. . .∪xm; Q is covered if for
every i∈{m+1, . . . ,m+n}, there exists j∈{1, . . . ,m} s.t.
xi ⊆ xj . Coveredness implies safeness, but not vice versa.
Chase. Let σ = φ(x,y) → ∃zψ(x, z) be a TGD and I an
instance. We say that σ is applicable w.r.t. I if there exists a
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homomorphism h s.t. h(φ(x,y)) ⊆ I . The result of apply-
ing σ over I with h is the instance J = I ∪ {h′(ψ(x, z))},
where h′(z) is a fresh null, for every z ∈ z. Such a single
chase step is denoted by I〈σ, h〉J . For a set Σ of TGDs and
an instance I , a chase sequence for I under Σ is a sequence
(Ii〈σi, hi〉Ii+1)i≥0 of chase steps s.t. (1) I0 = I; (2) for
each i ≥ 0, σi ∈ Σ; and (3)

⋃
i≥0 Ii |= Σ. We call

⋃
i≥0 Ii

the result of this chase sequence. We denote by chase(I,Σ)
the result of an arbitrary chase sequence for I under Σ.

The guarded chase forest (GCF) for a finite set Σ of TGDs
and a database D, GCF (D,Σ), is a directed edge-labeled
graph (V,E, λ), where V = chase(D,Σ), λ is the labeling
function, and an edge e = (a, b) labeled with σ (i.e., λ(e) =
σ) belongs to E if b is obtained from a and possibly other
atoms by a one-step application of a TGD σ ∈ Σ with a as
guard (Calı̀, Gottlob, and Kifer 2013). The guarded depth of
an atom a in GCF for D and Σ, depth(a), is the smallest
length of a path from some d ∈ D to a in GCF.

Given a finite set Σ of NTGDs with stratified negation
and a database D, let Σ0 ∪ ... ∪ Σk be the stratification of
Σ. We define the sets Si as follows: S0 = chase(D,Σ0); if
i > 0, then Si = chase(Si−1,Σ

Si−1

i ), where Σ
Si−1

i is the
GL-reduct of Σi w.r.t. Si−1. Sk is a canonical model of D
and Σ, which corresponds to the stable model of D ∪ Σ.
Finitely-Ground Program and Intelligent Instantia-
tion. Finitely-ground (FG) programs are an important
class of DLP, whose stable models are computable. FG
programs are characterized by intelligent instantiation.
Consider a DLP Π, the set of its predicates is split into
sets C1, . . . , Cn. Each Ci is called a component and the
sequence γ = 〈C1, . . . , Cn〉 components ordering. Then,
according to the component ordering, the rules of NLP can
be split into a number of sets, called modules. Finally, the
program can be safely instantiated with module ordering.
Given a DLP Π and its component ordering 〈C1, . . . , Cn〉,
for each Ci, the module Mi is the set of rules whose head
contains some predicate p ∈ Ci; if a rule can belong to
multiple modules, it belongs to the lowest one. Given a
predicate p, we denote its component by comp(p). For a set
Si of ground rules for Ci, and a set of ground rules R for
the components preceding Ci, the simplification of Si w.r.t.
R, denoted by Simpl(Si, R), is obtained from Si by:
1) deleting each rule r s.t. a ∈ body−(r) or a ∈ head(r)

for some a ∈ facts(R),
2) eliminating each literal l from the remaining rules r

• l = a, a ∈ body+(r), a ∈ facts(R), or
• l = not a, a ∈ body−(r), comp(pred(a)) = Cj with
j < i, and a �∈ heads(R).

For a set X of ground rules of Mi, and a set H of ground
rules belonging only to Mj with j < i, let ΦMi,H(X) =
Simpl(InA(Mi), H), where A = heads(H ∪ X),
InA(Mi) = {r′ | r ∈ Mi, r′ is a ground instance of r,
body+(r′) ⊆ A}. The intelligent instantiation of Π for γ,
denoted by Πγ , is the last element Sn of the sequence
s.t. S0 = facts(P ), Si = Si−1 ∪ Φ∞

Mi,Si−1
(∅), where

Φ∞
Mi,Si−1

(∅) is the least fixed point of ΦMi,Si−1 . If Πγ

is finite for every component ordering, Π is said to be
finitely-ground, and Π and Πγ have the same stable models.

For more details, please refer to Calimeri et al. (2008).

Guarded Instantiation Forest & Prime Block

In this section, we introduce the notions of guarded instanti-
ation forest and prime block, and then prove that the ground
termination problem is decidable. Based on the prime block,
we propose the prime block-bounded instantiation/chase.

Guarded Instantiation Forest

Based on the GCF, we now present guarded instantiation for-
est (GIF), the first novel notion of this paper.

Definition 1. Given a finite set Σ of GNTGDs and a
database D, let P=D ∪ sk(Σ) and P γ an intelligent instan-
tiation of P with γ as its component ordering, the guarded
instantiation forest (GIF) of P , denoted by GIF (D,Σ), is a
directed graph (V,E, λ) where V = P γ is the set of nodes,
λ is the labeling function, and an edge e = (r, r′) labeled
with σ (i.e., λ(e) = σ) belongs to E if r′ is obtained from
head(r) and possibly other atoms by one-step application of
a GNTGD σ ∈ Σ with head(r) as the guarded atom.

As in GCF, the guarded depth of a rule r in GIF (D,Σ),
denoted by depth(r), is the smallest length of a path from
some a ∈ D to r in GIF. The following Lemma shows that
for each rule in GIF (D,Σ), there exists a corresponding
atom in GCF (D,Σ+) with the same guarded depth.

Lemma 1. Given a finite set Σ of GNTGDs and a database
D, let GIF (D,Σ) = (VI , EI , λI) and GCF (D,Σ+) =
(VC , EC , λC), then for every rule r ∈ VI , there exists an
atom a ∈ VC with head(r) = a and depth(r) = depth(a).

Proof. We prove by induction on the guarded depth of the
nodes. The base case is trivial. For the inductive case, sup-
pose the result holds for depth(r) = k. Then we consider
a ground rule rk+1 ∈ VI with depth(rk+1) = k + 1, there
is a rule r′k+1 s.t. rk+1 is obtained from r′k+1 by the intel-
ligent instantiation. Since the body+(r′k+1) ⊆ heads(VI),
thus body+(r′k+1) ⊆ VC . Thus, there is a rule r′′k+1 in VC
s.t. r′′k+1 = r′+k+1. Let a = head(r′′k+1), then a ∈ VC ,
head(rk+1) = a and depth(rk+1) = 1 = depth(a).

Intuitively, the process of generating GCF or GIF is sim-
ilar. The main difference between GCF and GIF is that the
nodes in GCF are atoms while the nodes in GIF are rules
obtained by the intelligent instantiation.

Prime Blocks for GCF and GIF

Calautti, Gottlob, and Pieris (2015) introduced the basic
block for GCF, which is the repeated segment of an infinite
path in GCF. We extend the basic block of GCF to GIF.

Definition 2. Given a finite set Σ of GNTGDs and a
database D, a set of rules {r1, ..., rn+1} in GIF (D,Σ) s.t.
ri+1 is derived from ri (1≤ i≤n), the path from r1 to rn is
a basic block of GIF (D,Σ) if (i) the subtree rooted at r1 is
isomorphic to the subtree rooted at rn+1, and (ii) every pair
of rules in {r1, r2..., rn} are not isomorphic.
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Now we present the second central notion prime block of
this paper, which is a refinement of basic block. To do so,
we need the auxiliary notion of S-isomorphic (Calı̀, Gottlob,
and Lukasiewicz 2012). Given a set S of terms, two sets of
atoms A1 and A2 are S-isomorphic iff a bijection β: A1 ∪
dom(A1) → A2 ∪ dom(A2) exists, s.t. (i) β and β−1 are
homomorphisms, and (ii) β(c) = c = β−1(c) for all c ∈
S. In other words, A1 and A2 are S-isomorphic if they are
isomorphic and the bijection for the isomorphism restricted
to S is the identity function.
Definition 3. Given a finite set Σ of GNTGDs and a
database D, a set of rules {r1, ..., rn+1} in GIF (D,Σ) s.t.
ri+1 derived from ri (1≤i≤n), the path from r1 to rn is a
prime block if (i) the subtree rooted at r1 is isomorphic to
the subtree rooted at rn+1, (ii) there exists r′ ∈ {r1, ..., rn}
s.t. r′ is dom(r1)-isomorphic to rn+1, and (iii) every pair in
{r1, ..., rn} are not dom(r1)-isomorphic.

Next we show prime blocks are larger than basic blocks.
Proposition 1. For a GIF, a prime block consists of at least
two basic blocks.

By Definition 3, we must find a rule r′ s.t. r1 is isomor-
phic to r′. By Definition 2, all rules isomorphic to r1 are the
first rule in each basic block. If the first rule of the second
basic block is r′, then the first basic block is the prime block.
However, it can not satisfy condition (ii) of the prime block.
Hence r′ must be the rule that is not the first rule of the sec-
ond basic block, which means the second basic block is also
a part of the prime block.

Figure 1: Basic blocks and prime blocks for GCF (D1,Σ1).

Example 2 (Example 1 continued). Consider two TGDs:
Person(x) → F (x), (8)

F (x) → ∃yF (y). (9)
Let Σ1 = {(1), (2), (8), (9)}, D1={Person(a)}. Fig. 1
shows the basic blocks and prime blocks of GCF (D1,Σ1)

1.
Prime block Pb 11 has two basic blocks Bb 11 1, Bb 11 2.

The notion of prime blocks of GIFs can be naturally ex-
tended to GCFs. The upper bound of the length of a prime
block in GIF or GCF is characterized by Proposition 2.

1We use subscripted a to for nulls generated from a.

Proposition 2. The length of a prime block in
GIF (D,Σ) (resp., GCF (D,Σ)) is less than or equal
to |R|(2ω)ω2|R|(2ω)ω , where |R| denotes the numbers of
predicates and ω is the maximal arity of a predicate in R.

Proof. We give the proof in the case of GIF (D,Σ),
which can be applied in GCF (D,Σ). Given an atom
a, let type(a) in GIF (D,Σ) be the set of atoms in
heads(GIF (D,Σ)) that only use constants and nulls from
dom(a) as arguments. Then, by Lemma 1 in Calı̀, Gott-
lob, and Lukasiewicz (2012), we can similarly obtain that,
let S be a finite subset of Δ ∪ Δn, and let r1 and r2 be
rules from GIF (D,Σ) s.t. the pairs (head(r1), type(r1))
and (head(r2), type(r2)) are S-isomorphic, then the sub-
tree of r1 (i.e., all the nodes in GIF (D,Σ) derived from
r1 ) and the subtree of r2 are S-isomorphic. Towards a
contradiction, suppose that there is a prime block with
its head r1 in GIF (D,Σ) that its length is larger than
|R|(2ω)ω2|R|(2ω)ω , then by Lemma 2 in (Calı̀, Gottlob,
and Lukasiewicz 2012), there are at least two dom(r1)-
isomorphic pairs. Then, there are at least two rules that their
subtree are dom(r1)-isomorphic, which is contradict to the
definition of prime block. Thus, the length of a prime block
in GIF (D,Σ) (resp., GCF (D,Σ)) is less than or equal to
|R|(2ω)ω2|R|(2ω)ω .

Ground Termination for GNTGDs

The ground termination problem for GNTGDs, i.e., given a
finite set Σ of GNTGDs and a databaseD, deciding whether
NLP P = D∪ sk(Σ) is a finitely-ground program. Calautti,
Gottlob, and Pieris (2015) proved that the chase termination
problem for GTGDs is decidable and gave the complexity.

Theorem 1 (Calautti, Gottlob, and Pieris, 2015a). Given
a finite set Σ of GTGDs, the problem of deciding whether
the chase on D and Σ terminates for every database D is
2-EXPTIME-complete, and EXPTIME-complete for predi-
cates of bounded arity.

It is clear that if GIF is infinite then GCF is infinite.

Lemma 2. Given a finite set Σ of GNTGDs and a database
D, if GIF (D,Σ) is infinite, then GCF (D,Σ+) is infinite.

The following Lemma shows that prime blocks are
sources of infinity GIFs.

Lemma 3. Given a finite set Σ of GNTGDs and a database
D, let NLP P = D ∪ sk(Σ), GIF (D,Σ) is infinite iff there
exist prime blocks in GIF (D,Σ).

Since the chase termination problem can be reduced to
ground termination problem, we can obtain the lower bound
of the ground termination problem. By Lemma 3 and Propo-
sition 2, we can obtain the upper bound of the ground ter-
mination problem. Hence, we further prove that the ground
termination problem for GNTGDs is also decidable and has
the same complexity.

Theorem 2. Given a finite set Σ of GNTGDs and a database
D, the problem of deciding whether GIF (D,Σ) is finite is
2-EXPTIME-complete, and EXPTIME-complete for predi-
cates of bounded arity.
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Theorem 2 tells us whether a program translated from
GNTGDs by Skolemization is a finitely ground logic pro-
gram. If so, we can use ASP solvers directly. If not, however,
we should find an approach to handle the infinite program.

Prime Block-bounded GIF/GCF

To handle the repeated infinite structures in GIF/GCF, we
introduce the prime block-bounded instantiation/chase.

Definition 4. Given a finite set Σ of GNTGDs (resp.,
GTGDs) and a database D, then GIF i(D,Σ) (resp.,
GCF i(D,Σ)) (i ≥ 1) denotes the maximal subgraph of
GIF (D,Σ) (resp., GCF (D,Σ)) with at most i prime
blocks in every path starting from elements of D.

Example 3. For the GCF in Fig. 1, GCF 1(D,Σ) consists
of three prime blocks Pb 11, Pb 12, and Pb 13.

Let P γ
i be the set of rules in GIF i(D,Σ) and rules(P γ , i)

be the set of rules in the ith layer of prime blocks, i.e.,
rules(P γ , i) = P γ

i \P γ
i−1, for i > 1, and rules(P γ , 1) =

P γ
1 . To obtain GIF/GCF, the nodes are not generated sequen-

tially in order of the guarded depth, since the guarded depth
of side atoms are possibly higher than that of guard atoms.

Calı̀, Gottlob, and Lukasiewicz (2012) presented the proof
of an atom a in GCF is the minimal subgraph of GCF which
contains the required nodes for generating a. Lemma 4
shows that for every atom a in GCF, there exists a bound
for its proof in the bounded GCF.

Lemma 4 (Calı̀, Gottlob, and Lukasiewicz, 2012). Given a
finite set Σ of GTGDs and a database D, let GCF (D,Σ) =
(VC , EC), then there is a constant k, depending only on R,
s.t. ∀a ∈ VC , the guarded depth of each atom in the proof of
a is less than k.

We then extend the proof to a rule in GIF and prove that
given a node in the ith layer of prime blocks, all nodes in its
proof are in the first i+ 1 layers of prime blocks.

Lemma 5. Given a finite set Σ of GNTGDs (resp., GT-
GDs) and a database D, for any rule r (resp., atom a) in
GIF i(D,Σ) (resp., GCF i(D,Σ)), the proof of r (resp., a)
is in GIF i+1(D,Σ) (resp., GCF i+1(D,Σ)).

Thus, to obtain some rules (resp., atoms) in GIFi(D,Σ)
(resp., GCF i(D,Σ)), from Lemma 5, we can generate the
forest within i+1 layers prime blocks firstly, and only need
to consider the nodes within i layers prime blocks.

We then extend the soundness and completeness proof
of intelligent instantiation of DLP to the program translated
from GNTGDs, which is possibly infinitely-ground.

Theorem 3. Given a finite set Σ of GNTGDs and a
database D, let NLP P = D ∪ sk(Σ) and γ its component
ordering, let P

′
=

⋃+∞
i=0 rules(P γ , i), then P and P

′
have

the same answer sets.

Query Answering with GNTGDs

In this section, we first propose a method of query answer-
ing (QA) with GNTGDs by means of prime block-bounded
chase. Then we propose another more efficient but involved
method based on prime block-bounded instantiation.

QA via Prime Block-bounded Chases

We show that query answering with GTGDs can be handled
via prime block-bounded chase.

Lemma 6. Given a finite set Σ of GTGDs, a database D
and a BCQ Q, then D ∪ Σ |= Q iff Q is true in the set of
nodes in GCF |Q|(D,Σ).

Proof. We show only the “(⇒)” direction. Let GCF (D,Σ)
= (V,E, λ) and GCF|Q|(D,Σ)= (V|Q|, E|Q|, λ|Q|). Sup-
pose that there exists a homomorphism from Q to V , and
β is the one s.t. depth(β) = Σq∈Qdepth(β(q)) is minimal.
Now we show that β(Q) ⊆ V|Q|. Suppose that β(Q) �⊆ V|Q|,
then there exists a layer of prime blocks in V|Q| that does not
contain any atom in β(Q). Consider a prime block P in the
layer mentioned above. Let r1 be the first atom in P . Let r
be the atom in P dom(r1)-isomorphic to the first atom r′ of
the next prime block. By definition 3, the subtree rooted at
r is dom(r1)-isomorphic to the subtree rooted at r′. Let μ
be the homomorphism mapping the subtree rooted at r′ to
that rooted at r. Let β′ = β ◦ μ, then β′ is a homomorphism
mapping Q to V . But depth(β′) = Σq∈Qdepth(β

′(q)) is
less than depth(β), which contradicts to the assumption that
depth(β) is minimal. Therefore, β(Q) ⊆ V|Q|.

Lemma 6 provides us an algorithm for query answering
with GTGDs, which is in general more efficient than the ap-
proach based on the bound of guarded depth (Calı̀, Gottlob,
and Lukasiewicz 2012, Theorem 5). Recall that the upper
bound of the length of a prime block is double-exponential
in |R|, because the number of all guarded TGDs (up to iso-
morphism) which are generated according to R is at most
double-exponential in |R| in the worst case. However, given
a set Σ of GNTGDs over R, the size of a prime block is
normally significantly less than its theoretical upper bound.

Then we can handle the QA with GNTGD via prime
block-bounded chase by first transforming GNTGDs into
GDNTGDs with stratified negation (Gottlob et al. 2014).

Theorem 4. Given a finite set Σ of GDNTGDs with strati-
fied negation, a database D, and a safe BNCQ Q, then Q is
true in all canonical models of D and Σ iff Q is true in all
GCFs of GCF |Q|(D,Σ).

QA via Prime Block-bounded Instantiations

In this subsection, we develop a method of query answer-
ing with GNTGDs using prime block-bounded instantia-
tion. Given an infinitely-ground program P translated from
GNTGDs, our goal is to extract some finite fragments of
GIF (D,Σ) in order to employ ASP solvers for query an-
swering. One natural attempt is to consider GIF |Q|(D,Σ)
as in Lemma 6. But Example 4 shows this does not work.

Example 4. Consider two additional two rules:

Parent(x, y), not S(y) → S(x) (10)
Parent(x, y), S(y) → S(x) (11)

Let Σ2={(1), (2), (10), (11)}. Fig. 2 depicts GIF (D,Σ2). It
is easy to see that the program D ∪ Σ2 has no answer sets,
while for all k ≥ 1, the GIF k(D,Σ2) has answer sets.
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Figure 2: GIF (D,Σ2)

To address this issue, we introduce a notion of semi-stable
model. Given a ground program P , and a set m of atoms, let
rulesm(P ) = {r | r ∈ P, head(r) ∈ m}.

Definition 5. Given two ground programs P and P ′ with
P ⊆ P ′, we say m ∈ SM(P ) is a semi-stable model of P ′
if there exists m′ ∈ SM(P ′) s.t. rulesm(P ) ⊆ rulesm′(P ′).
We write SSM(P, P ′) for the set of stable models of P that
are semi-stable models of P ′.

The following theorem gives a way of query answering
under stable model semantics of GNTGDs by reducing to
semi-stable models of prime block-bounded instantiation.

Theorem 5. Given a finite set Σ of GNTGDs, a database D
and a safe BNCQ Q, then D ∪ Σ |= Q iff Q is true in all
semi-models of SSM(P γ

|Q|, P
γ) where NLP P = D∪ sk(Σ)

and γ its component ordering.

The proof of Theorem 5 requires the following lemma.

Lemma 7. Given a finite set Σ of GNTGDs, a database D,
let NLP P = D ∪ sk(Σ) and γ its component ordering. If
there exist m ∈ SM(P ) and some k > 0, s.t. mk �⊆ m for
all mk ∈ SM(P γ

k ), then there exist mk0
∈ SM(P γ

k ) and
m′ ∈ SM(P ) s.t. mk0

⊆ m′ and m′ is isomorphic to m.

Proof. (Sketch) First, it is easy to show that we can get a
P ′
k ⊆ P γ

k s.t. ∃m′
k ∈ SM(P ′

k), m
′
k ⊆ m. Also we know

that ∀mk ∈ SM(P γ
k ), m

′
k �⊆ mk. Let hrules(P ′

k, k) denote
the set of rules in rules(P ′

k, k) that are in the highest basic
blocks of the kth layer of prime blocks. Then hrules(P ′

k, k)
is isomorphic to hrules(P γ

k , k). Also let hrulesm′
k
(P ′

k, k)

denote the set of rules in hrules(P ′
k, k) that are used to

generate m′
k. We try to find an mk0

∈ SM(P γ
k ) s.t.

hrulesm′
k
(P ′

k, k) is isomorphic to hrulesmk0
(P γ

k , k). If we
cannot find such mk0

, it is easy to show that m′
k is not a

semi-stable model of P γ , which contradicts to the assump-
tion. If such mk0 exists, then we can obtain an isomorphism
h mapping hrulesm′

k
(P ′

k, k) to hrulesmk0
(P γ

k , k) and such
an isomorphism h can be extended to m. Then we ob-
tain an m′ ∈ SM(P γ) s.t. rules(P γ ,m) is isomorphic to
rules(P γ ,m′). Thus, m′ ⊇ mk0

is isomorphic to m.

We proceed with the proof of Theorem 5: For any m ∈
SM(P γ), there are two cases (1) ∃m|Q| ∈ SM(P γ

|Q|) and
m|Q| ⊆ m, or (2) ∀m|Q| ∈ SM(P γ

|Q|), m|Q| �⊆ m. In (2), by
Lemma 7 we can obtain another model m′ ∈ SM(P γ) s.t.
∃m′

|Q| ∈ SM(P γ
|Q|), m

′
|Q| ⊆ m′ and m is isomorphic to m′.

So |Q| is a proper upper bound of prime block-instantiation
which can be done analogously to Lemma 6.

Example 5 illustrates how Lemma 7 plays a role.

Example 5. Let Σ3={(1), (2), (10)}, BCQ Q=∃xS(x).
Then GIF (D,Σ3) depicted in Fig. 3 has two stable models
m and m′, s.t. m includes {S(mary), S(maryf2), ...}, and
m′ includes {S(maryf1), S(maryf3), ...}. GIF 1(D,Σ3)

Figure 3: GIF (D,Σ3)

has only one stable model m1 that includes S(maryf1). It
is easy to see thatm1 ∈ SSM(P γ

1 , P
γ
2 ), butm1 �⊆ m′. How-

ever, since m and m′ are isomorphic, to check D ∪ Σ3 |=
Q(), it suffices to check m1 |= Q(), which is true.

We notice that our approach can handle safe query, while
the QCHECK algorithm (Gottlob et al. 2014) can only han-
dle covered query, e.g. , the safe BNCQ in Example 1, can
be dealt analogously to the discussion in Example 5.

To apply Theorem 5, we still need an algorithm to verify
whether a stable model of P γ

|Q| is a semi-stable model of P γ .
Theorem 6 serves as such an algorithm.

Theorem 6. Given a finite set Σ of GNTGDs, a database
D, let NLP P = D ∪ sk(Σ), γ its component ordering,
mk ∈ SM(P γ

k ) (k > 0), mk ∈ SSM(P γ
k , P ) iff there exists

a P ′
k+1 s.t. mk ∈ SSM(P γ

k , P
′
k+1), where P ′

k+1 is obtained
from P γ

k+1 by subtracting some or no basic blocks in the
(k+1)th prime blocks.

Proof. (Sketch) (⇐): If there exists a P ′
k+1 ⊆ P γ

k+1 with
basic block subtraction or P ′

k+1 = P γ
k+1 s.t. mk is a semi-

stable model of P ′
k+1. Because of the isomorphism of basic

block, we can also add rules inductively to obtain P γ and
mk is a semi-stable model of P γ .
(⇒): If there exists no P ′

k+1 ⊆ P γ
k+1 with basic block

subtraction nor P ′
k+1 = P γ

k+1 s.t. , mk is a semi-stable
model of P ′

k+1. Given P ′′ ⊇ P γ
k+1, we can infer that mk

is not a semi-stable model of P ′′. We know that each rule
in rules(P γ , k + j) is dom(A)-isomorphic to some rule in
rules(P γ , k + 1) , where j > 1 and A is the set of rules in
P γ
k . If mk is a semi-stable model of P ′′, then there exists

some m′′ ∈ SM(P ′′) s.t. rulesmk
(P γ

k ) ⊆ rulesm′′(P ′′).
For any rule r′′ ∈ rulesm′′\mk

(P ′′), there exists some r ∈
rules(P γ , k + 1) dom(A)-isomorphic to r′′. Let R be the
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set of rules r mentioned above and m′
k = mk ∪ heads(R).

Then m′
k is a stable model of P ′

k+1, and mk is a semi-stable
model of P ′

k+1 due to the existence ofm′
k, which contradicts

the assumption that mk is not a semi-stable model of P ′
k+1.

Somk is not a semi-stable model of P ′′. Due to the arbitrari-
ness of P ′′,mk is not a stable model of P γ , contradicting the
assumption that mk is a semi-stable model ofP γ .

The following example shows how to apply Theorem 6.

Example 6. (Example 4 continued) Let P=D∪ sk(Σ2). As
shown in Fig. 2, the program P γ

1 has the answer set m1 ⊇
{S(mary), S(maryf1)} and P γ

1 has the answer set m2 ⊇
{S(mary), S(maryf1), S(maryf2), S(maryf3)}. Also
rulesm1

(P γ
1 ) = { 1©, 2©, 4©, 5©, 6©, 7©}, rulesm2

(P γ
2 ) =

{ 1©, 2©, 4©, 5©, 6©, 8©, 9©, 10©, 12©, 13©, 14©, 15©}.
We obtain P ′

2 from P γ
2 by subtracting basic blockBb 21 2

from prime block Pb 21. Then program P ′
2 has one sta-

ble model m′
2 ⊇ {S(mary), S(maryf1), S(maryf2),

and rulesm′
2
(P ′

2) = { 1©, 2©, 4©, 5©, 6©, 8©, 9©, 10©, 12©}.
We can verify that rulesm1

(P γ
1 ) � rulesm2

(P γ
2 ) and

rulesm1
(P γ

1 ) � rulesm′
2
(P ′

2), and we know that m1 is not
a semi-stable model of P γ by Theorem 6. Then following
Theorem 5, P does not have any answer set.

Finally, we show that query answering with (multi-)linear
NTGD can be done more efficiently.

Theorem 7. Given a finite set Σ of (multi-)linear NTGDs,
a database D over schema R, a safe BNCQ Q, then D ∪
Σ |= Q iff Q is true in all stable models of P γ

|Q|, where NLP
P = D ∪ sk(Σ) and γ its component ordering.

Proof. (Sketch) By Theorem 5, it suffices to show that each
stable model mk of P γ

k is also a semi-stable model of P γ .
Given such a model mk, we can inductively construct stable
models mk+j of P γ

k+j , for j > 0, by enlarging mk+j−1. Let
m =

⋃∞
j=0mk+j . Then m is a stable model of P γ .

Experimental Evaluation

We implemented a prototype system in Python for query an-
swering with GNTGDs2. To the best of our knowledge, this
is the first system with such functionality. The code and data
to reproduce the experiments are in the online appendix.
Data. We considered three GNTGDs: LUBM3, GeoCon-
cepts4, and Vicodi5 and two (multi-)linear TGDs: DEEP-
100(-200)6 as benchmarks, which are modified by chang-
ing atoms and adding negations to make sure modified on-
tologies are infinitely-ground and have full negation. We de-
signed different safe BNCQs and translated into constraints.
System. Our system has two modes: (1) the mode MGCF

first translates GNTGDs into GDNTGDs with stratified
negation (Gottlob et al. 2014) and then uses Theorem 4. (2)

2Code and datasets. https://github.com/sysulic/GNTGDs
3LUBM. http://swat.cse.lehigh.edu/projects/lubm/
4GeoConcepts. http://www.kr.tuwien.ac.at/research/projects/

myits/
5Vicodi. http://www.vicodi.org
6DEEP-100(-200). https://github.com/dbunibas/chasebench

Benchmark |Σ| |D| |N | |Q| MGIF MGCF

Size TimeS TimeT NumF Size TimeT
Modified 110 100 1% 2 1101 0 0.4 1.2K 3.4M 582.42
LUBM 3% 6 4953 43.7 49.9 — — —
Modified 446 122 1% 2 808 1.2 1.8 3.0K 24.1M 3166.79
GeoConcepts 3% 6 6064 80.4 92.5 — — —
Modified 236 165 1% 2 1603 0 0.8 3.5K 29.8M 6737.74
Vicodi 7% 6 18003 1040.71088.2 — — —
Modified 4241 1000 1% 2 6857 0 8.0 — — —
DEEP-100 10000 3% 5 69420 0 50.0 — — —
Modified 4539 1000 1% 2 9070 0 11.3 — — —
DEEP-200 10000 3% 5 108530 0 124.9 — — —

Table 1: Experimental Results of Query Answering with
GNTGDs. |D| (resp., |Q|) stands for the size of database
(resp., query), |Σ| the number of GNTGDs, NumF the num-
ber of GCFs generated, |N | the ratio of the number of rules
with negation and the total number of rules, Size the number
of nodes in the forest, TimeS the time to obtain semi-stable
model, TimeT the total time. Time out (7200 seconds) or out
of memory are indicated as “–”. All times are in seconds. K
and M stand for 103 and 106.

the GIF mode MGIF implements Theorems 5, 6, and 7. We
use the ASP solver clingo-4.4.0.
Evaluation7. The results are summarized in Table 1. We
note that MGCF can only handle small queries and requires
more time and space in generating GCFs. The reason is that
the number of GCFs grows exponentially since it enumer-
ates all stable models. In contrast, MGIF is more efficient in
both space and time, although it has an extra step of check-
ing semi-stable models. This justifies our claim that GIF is
more suitable than GCF for query answering. For the last
two benchmarks which are (multi-)linear and whose datasets
are larger than those of the first three, GIF can process them
in an acceptable period of time since (multi-)linear NTGDs
does not need to check semi-stable models. However, GCF
cannot handle any of them. We stress that our prototype is a
proof-of-concept, and there are many possible optimizations
but they are beyond the scope of this paper.

Conclusion and Future Work

We have proposed a framework of query answering with
GNTGDs and safe queries using existing ASP solvers, By
introducing guarded instantiation forest and prime block, we
have proved the decidability and complexity of the ground
termination problem for GNTGDs, and developed a query
answering algorithm via prime block-bounded instantiation.

Future work will extend our approach to other fragments
of GNTGDs, e.g., weakly, etc. We also plan to develop
optimization techniques to improve the performance.
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