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Abstract

Continuous queries over data streams often delay answers un-
til some relevant input arrives through the data stream. These
delays may turn answers, when they arrive, obsolete to users
who sometimes have to make decisions with no help whatso-
ever. Therefore, it can be useful to provide hypothetical an-
swers – “given the current information, it is possible that X
will become true at time t” – instead of no information at all.
In this paper we present a semantics for queries and corre-
sponding answers that covers such hypothetical answers, to-
gether with an online algorithm for updating the set of facts
that are consistent with the currently available information.

1 Introduction

Modern-day reasoning systems often have to react to real-
time information about the real world provided by e.g. sen-
sors. This information is typically conceptualized as a data
stream, which is accessed by the reasoning system. The rea-
soning tasks associated to data streams – usually called con-
tinuous queries – are expected to run continuously and pro-
duce results through another data stream in an online fash-
ion, as new elements arrive.

A data stream is a potentially unbounded sequence of data
items generated by an active, uncontrolled data source. El-
ements arrive continuously at the system, potentially un-
ordered, and at unpredictable rates. Thus, reasoning over
data streams requires dealing with incomplete or missing
data, potentially storing large amounts of data (in case it
might be needed to answer future queries), and provid-
ing answers in timely fashion – among other problems,
see e.g. (Babcock et al. 2002; Stonebraker, Çetintemel, and
Zdonik 2005; Dell’Aglio et al. 2017).

The output stream is normally ordered by time, which im-
plies that the system may have to delay appending some an-
swer because of uncertainty in possible answers relating to
earlier time points. The length of this delay may be unpre-
dictable (unbound wait) or infinite, for example if the query
uses operators that range over the whole input data stream
(blocking operations). In these cases, answers that have been
computed may never be output. An approach to avoid this
problem is to restrict the language by forbidding blocking
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operations (Zaniolo 2012; Ronca et al. 2018a). Another ap-
proach uses the concept of reasoning window (Beck et al.
2015; Özçep, Möller, and Neuenstadt 2014), which bounds
the size of the input that can be used for computing each
output (either in time units or in number of events).

In several applications, it is useful to know that some an-
swers are likely to be produced in the future, since there is
already some information that might lead to their generation.
This is the case namely in prognosis systems (e.g., medical
diagnosis, stock market prediction), where one can prepare
for the possibility of something happening. To this goal, we
propose hypothetical answers: answers that are supported
by information provided by the input stream, but that still
depend on other facts being true in the future. Knowledge
about both the facts that support the answer and possible fu-
ture facts that may make it true gives users the possibility to
make timely, informed decisions in contexts where preemp-
tive measures may have to be taken.

Moreover, by giving such hypothetical answers to the user
we cope with unbound wait in a constructive way, since the
system is no longer “mute” while waiting for an answer to
become definitive.

Many existing approaches to reasoning with data streams
adapt and extend models, languages and techniques used for
querying databases and the semantic web (Arasu, Babu, and
Widom 2006; Barbieri et al. 2009). We develop our theory in
line with the works of (Zaniolo 2012; Beck et al. 2015; Dao-
Tran and Eiter 2017; Özçep, Möller, and Neuenstadt 2014;
Ronca et al. 2018b), where continuous queries are treated
as rules of a logic program that reasons over facts arriving
through a data stream.

Contribution. We present a declarative semantics for
queries in Temporal Datalog, where we define the notions
of hypothetical and supported answers. We define an oper-
ational semantics based on SLD-resolution, and show that
there is a natural connection between the answers computed
by this semantics and hypothetical and supported answers.
By refining SLD-resolution, we obtain an online algorithm
for maintaining and updating the set of answers that are con-
sistent with the currently available information. Finally, we
show that our results extend to a language with negation.
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Structure. Section 2 revisits some fundamental back-
ground notions and introduces the running example that we
use throughout this article. Section 3 introduces our declara-
tive semantics for continuous queries, defining hypothetical
and supported answers, and relates these concepts with the
standard definitions of answers. Section 4 presents our op-
erational semantics for continuous queries and relates it to
the declarative semantics. Section 5 details our online algo-
rithm to compute supported answers incrementally, as input
facts arrive through the data stream, and proves it sound and
complete. Section 6 extends our framework to negation by
failure. Section 7 compares our proposal to similar ones in
the literature, discussing its advantages. Missing proofs and
additional examples can be found in (Cruz-Filipe, Gaspar,
and Nunes 2019).

2 Background

Continuous queries in Temporal Datalog

We use the framework from (Ronca et al. 2018b) to write
continuous queries over datastreams, slightly adapting some
definitions. We work in Temporal Datalog, the fragment of
negation-free Datalog extended with the special temporal
sort from (Chomicki and Imielinski 1988), which is isomor-
phic to the set of natural numbers equipped with addition
with arbitrary constants. In Section 6 we extend this lan-
guage with negation.

Syntax of Temporal Datalog. A vocabulary consists of
constants (numbers or identifiers in lowercase), variables
(single uppercase letters) and predicate symbols (identifiers
beginning with an uppercase letter). All these may be in-
dexed if necessary; occurrences of predicates and variables
are distinguished by context. In examples, we use words in
sans serif for concrete constants and predicates.

Constants and variables have one of two sorts: object or
temporal. An object term is either an object (constant) or
an object variable. A time term is either a natural number
(called a time point or temporal constant), a time variable,
or an expression of the form T+k where T is a time variable
and k is an integer.

Predicates can take one temporal parameter, which we as-
sume to be the last one (if present). A predicate with no tem-
poral parameters is called rigid, otherwise it is called tem-
poral. An atom is an expression P (t1, . . . , tn) where P is a
predicate and each ti is a term of the expected sort.

A rule has the form ∧iαi → α, where α and each αi are
rigid or temporal atoms. Atom α is called the head of the
rule, and ∧iαi the body. Rules are assumed to be safe: each
variable in the head must occur in the body. A program is a
set of rules.

A predicate symbol that occurs in an atom in the head of
a rule with non-empty body is called intensional (IDB pred-
icate). Predicates that are defined only through rules with
empty body are called extensional (EDB predicates). An
atom is extensional (EDB atom) or intensional (IDB atom)
according to whether P is extensional or intensional.

A term, atom, rule, or program is ground if it contains
no variables. We write var(α) for the set of variables occur-

ring in an atom, and extend this function homomorphically
to rules and sets. A fact is a function-free ground atom; since
Temporal Datalog does not allow function symbols except in
temporal terms, every ground rigid atom is a fact.

Rules are instantiated by means of substitutions, which
are functions mapping variables to terms of the expected
sort. The support of a substitution θ is the set supp(θ) =
{X | θ(X) �= X}. We consider only substitutions with fi-
nite support, and write θ = [X1 := t1, . . . , Xn := tn] for
the substition mapping each variable Xi to the term ti, and
leaving all remaining variables unchanged. A substitution is
ground if every variable in its support is mapped to a con-
stant. An instance r′ = rθ of a rule r is obtained by si-
multaneously replacing every variable X in r by θ(X) and
computing any additions of temporal constants.

A query is a pair Q = 〈P,Π〉 where Π is a program and
P is an IDB atom in the language underlying Π. (Note that
we do not require P to be ground.)

A dataset is a set of EDB facts (input facts), intuitively
produced by a data stream. For each dataset D and time
point τ , we consider D’s τ -history: the dataset Dτ of the
facts produced by D whose temporal argument is at most τ .
By convention, D−1 = ∅.

Semantics. The semantics of Temporal Datalog is a vari-
ant of the standard semantics based on Herbrand models. A
Herbrand interpretation I for Temporal Datalog is a set of
facts. If α is an atom with no variables, then we define ᾱ as
the fact obtained from α by evaluating each temporal term.
In particular, if α is rigid, then ᾱ = α. We say that I satisfies
α, I |= α, if ᾱ ∈ I . The extension of the notion of satisfac-
tion to the whole language follows the standard construction,
and the definition of entailment is the standard one.

An answer to a query Q = 〈P,Π〉 over a dataset D is a
ground substitution θ whose domain is the set of variables
in P , satisfying Π ∪D |= Pθ. In the context of continuous
query answering, we are interested in the case where D is a
τ -history of some data stream, which changes with time. We
denote the set of all answers to Q over Dτ as A(Q,D, τ).

We use a subset of Example 1 in (Ronca et al. 2018b) as
running example throughout our paper.

Example 1 A set of wind turbines are scattered throughout
the North Sea. Each turbine has a sensor that sends temper-
ature readings Temp(Device,Level ,Time) to a data cen-
tre. The data centre tracks activation of cooling measures
in each turbine, recording malfunctions and shutdowns by
means of the following program ΠE .

Temp(X, high, T ) → Flag(X,T )

Flag(X,T ) ∧ Flag(X,T + 1) → Cool(X,T + 1)

Cool(X,T ) ∧ Flag(X,T + 1) → Shdn(X,T + 1)

Shdn(X,T ) → Malf(X,T − 2)

Consider the query QE = 〈Malf(X,T ),ΠE〉. If the his-
tory D0 consists of the single fact Temp(wt25, high, 0),
then at time instant 0 there is no output for QE . If
Temp(wt25, high, 1) arrives to D, then D1 = D0 ∪
{Temp(wt25, high, 1)}, and there still is no answer to QE .
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Finally, the arrival of Temp(wt25, high, 2) to D yields
D2 = D1 ∪ {Temp(wt25, high, 2)}, allowing us to in-
fer Malf(wt25, 0). Then {X := wt25, T := 0} ∈
A(QE , D, 2). �

Throughout this work, we do not distinguish between the
temporal argument in a fact (the timepoint where it is pro-
duced) and the instant when it arrives in D. In other words,
we assume that at each time point τ , the τ -history Dτ con-
tains all EDB facts about time instants τ ′ < τ .

SLD-resolution

A literal is an atom or its negation. Atoms are also called
positive literals, and a negated atom is a negative literal. A
definite clause is a disjunction of literals containing at most
one positive literal. In the case where all literals are negative,
the clause is a goal. We use the standard rule notation for
writing definite clauses.

The notions of substitution, unification and most general
unifier (mgu) are standard. It is well known that there always
exist several mgus of any two unifiable atoms, and that they
are unique up to renaming of variables.

Recall that a goal is a clause of the form ¬∧j βj . If C is a
rule ∧iαi → α, G is a goal ¬∧j βj with var(G)∩ var(C) =
∅, and θ is an mgu of α and βk, then the resolvent of G and
C is the goal ¬

(∧
j<k βj ∧

∧
i αi ∧

∧
j>k βj

)
θ.

If P is a program and G is a goal, an SLD-derivation of
P ∪{G} is a (finite or infinite) sequence G0, G1, . . . of goals
with G = G0, a sequence C1, C2, . . . of α-renamings of pro-
gram clauses of P and a sequence θ1, θ2, . . . of substitutions
such that Gi+1 is the resolvent of Gi and Ci+1 using θi+1.
A finite SLD-derivation of P ∪ {G} where the last goal is
a contradiction (�) is called an SLD-refutation of P ∪ {G}
of length n, and the substitution obtained by restricting the
composition of θ1, . . . , θn to the variables occurring in G is
called a computed answer of P ∪ {G}.

3 Hypothetical answers

In our running example, Temp(wt25, high, 0) being pro-
duced at time instant 0 yields some evidence that
Malf(wt25, 0) may turn out to be true. At time instant 1, we
may receive further evidence as in the example (the arrival
of Temp(wt25, high, 1)), or we might find out that this fact
will not be true (if Temp(wt25, high, 1) does not arrive).

We propose a theory where such hypothetical answers
to a continuous query are output: if some substitution can
become an answer as long as some facts in the future are
true, then we output this information. In this way we can
lessen the negative effects of unbound wait. Hypothetical
answers can also refer to future time points: in our exam-
ple, [X := wt25, T := 2] would also be output at time point
0 as a substitution that may prove to be an answer to the
query 〈Shdn(X,T ),ΠE〉 when further information arrives.

Our formalism uses ideas from multi-valued logic, where
some substitutions correspond to answers (true), others are
known not to be answers (false), and others are consistent
with the available data, but can not yet be shown to be true
or false. In our example, Malf(wt25, 0) is consistent with the

data at time point 0, and thus “possible”; it is also consistent
with the data at time point 1, and thus “more possible”; and
it finally becomes (known to be) true at time point 2.

As already motivated, we want answers to give us not only
the substitutions that make the query goal true, but also ones
that make the query goal possible in the following sense:
they depend both on past and future facts, and the past facts
are already known.

For the remainder of the article, we assume fixed a query
Q = 〈P,Π〉, a data stream D and a time instant τ .
Definition 1 A hypothetical answer to query Q over Dτ is
a pair 〈θ,H〉, where θ is a substitution and H is a finite set
of ground EDB temporal atoms (the hypotheses) such that:
• supp(θ) = var(P );
• H only contains atoms with time stamp τ ′ > τ ;
• Π ∪Dτ ∪H |= Pθ;
• H is minimal with respect to set inclusion.
H(Q,D, τ) is the set of hypothetical answers to Q over Dτ .

Intuitively, a hypothetical answer 〈θ,H〉 states that Pθ
holds if all facts in H are ever produced by the data stream.
Thus, Pθ is currently backed up by the information avail-
able. In particular, if H = ∅ then Pθ is an answer in the
standard sense (it is a known fact).

Proposition 1 If 〈θ, ∅〉 ∈ H(Q,D, τ), then θ ∈
A(Q,D, τ).

We can generalize this proposition, formalizing the intu-
ition we gave for the definition of hypothetical answer.

Proposition 2 If 〈θ,H〉 ∈ H(Q,D, τ), then there exist a
time point τ ′ ≥ τ and a data stream D′ such that Dτ = D′

τ
and θ ∈ A(Q,D′, τ ′).

Example 2 We illustrate these concepts in the context
of Example 1. Consider θ = [X := wt25, T := 0].
Then 〈θ, {Temp(wt25, high, 1),Temp(wt25, high, 2)}〉 ∈
H(QE , D, 0). Since Temp(wt25, high, 1) ∈ D1, we
get 〈θ, {Temp(wt25, high, 2)}〉 ∈ H(QE , D, 1). Finally,
Temp(wt25, high, 2) ∈ D2, so 〈θ, ∅〉 ∈ H(QE , D, 2). This
answer has no hypotheses, and indeed θ ∈ A(QE , D, 2).

Take θ′ = [X := wt42, T := 1] for another constant
wt42. Then also e.g. 〈θ′, H ′

0〉 ∈ H(QE , D, 0) with H ′
0 =

{Temp(wt42, high, k) | 1 ≤ k ≤ 3}, but since
Temp(wt42, high, 1) /∈ D1 there is no element 〈θ′, H ′〉 ∈
H(QE , D, τ) for τ ≥ 1. �

Hypothetical answers 〈θ,H〉 ∈ H(Q,D, τ) where H �= ∅
can be further split into two kinds: those that are supported
by some present or past true fact(s), and those for which
there is no evidence whatsover – they only depend on future,
unknown facts. For the former, Π ∪ H �|= Pθ: they rely on
some fact from Dτ . This is the class of answers that interests
us, as there is non-trivial information in saying that they may
become true.

Definition 2 A non-empty set of facts E ⊆ Dτ is evidence
supporting 〈θ,H〉 ∈ H(Q,D, τ) if E is a minimal set satis-
fying Π ∪ E ∪H |= Pθ. A supported answer to Q over Dτ

is a triple 〈θ,H,E〉 where E is evidence supporting 〈θ,H〉.
E(Q,D, τ) is the set of supported answers to Q over Dτ .
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Since set inclusion is well-founded, if 〈θ,H〉 ∈
H(Q,D, τ) and Π ∪ E ∪ H |= Pθ, then there exists a set
E′ such that 〈θ,H,E′〉 is a supported answer to Q over Dτ .
However, in general, several such sets E′ may exist. As a
consequence, Propositions 1 and 2 generalize to supported
answers in the obvious way.

Example 3 In Example 2, the hypothetical answer 〈θ,H0〉
is supported by E0 = {Temp(wt25, high, 0)}, while
〈θ,H1〉 is supported by E1 = {Temp(wt25, high, 0),
Temp(wt25, high, 1)}. Since there is no evidence for
〈θ′, H ′

0〉, this answer is not supported. �

This example illustrates that unsupported hypothetical an-
swers are not very informative: it is the existence of sup-
porting evidence that distinguishes interesting hypothetical
answers from any arbitrary future fact.

However, it is useful to consider even unsupported hy-
pothetical answers in order to develop incremental algo-
rithms to compute supported answers: the sequence of sets
ΘE

τ = {θ | 〈θ,H,E〉 ∈ E(Q,D, τ) for some H,E} is non-
monotonic, as at every time point new unsupported hypo-
thetical answers may get evidence and supported hypothet-
ical answers may get rejected. The sequence ΘH

τ = {θ |
〈θ,H〉 ∈ H(Q,D, τ) for some H}, on the other hand, is
anti-monotonic, as the following results state.

Proposition 3 If 〈θ,H〉 ∈ H(Q,D, τ), then there exists H0

such that 〈θ,H0〉 ∈ H(Q,D,−1) and H = H0 \Dτ . Fur-
thermore, if H �= H0, then 〈θ,H,H0 \H〉 ∈ E(Q,D, τ).

Proposition 4 If 〈θ,H〉 ∈ H(Q,D, τ) and τ ′ < τ , then
there exists 〈θ,H ′〉 ∈ H(Q,D, τ ′) such that H = H ′ \
(Dτ \Dτ ′).

Examples 2 and 3 also illustrate this property, with hy-
potheses turning into evidence as time progresses. Since
D−1 = ∅, Proposition 3 is a particular case of Proposition 4.

In the next sections we show how to compute hypothetical
answers and the corresponding sets of evidence for a given
continuous query.

4 Operational semantics via SLD-resolution

The definitions of hypothetical and supported answers are
declarative. We now show how SLD-resolution can be
adapted to algorithms that compute these answers. We
use standard results about SLD-resolution, see for exam-
ple (Lloyd 1984).

We begin with a simple observation: since the only func-
tion symbol in our language is addition of temporal param-
eters (which is invertible), we can always choose mgus that
do not replace variables in the goal with new ones.

Lemma 5 Let ¬ ∧i αi be a goal and ∧jβj → β be a rule
such that β is unifiable with αk for some k. Then there is an
mgu θ = [X1 := t1, . . . , Xn := tn] of αk and β such that
all variables occurring in t1, . . . , tn also occur in αk.

Without loss of generality, we assume all mgus in SLD-
derivations to have the property in Lemma 5.

In classical SLD-resolution, derivations must end in the
empty clause. We relax this by allowing derivations to end
with a goal if: this goal only refers to EDB predicates and all

the temporal terms in it refer to future instants (possibly after
further instantiation). This makes the notion of derivation
also dependent on a time parameter.

Definition 3 An atom P (t1, . . . , tn) is a future atom wrt τ
if P is a temporal predicate and the time term tn either con-
tains a temporal variable or is a time instant tn > τ .

Definition 4 An SLD-refutation with future premises of Q
over Dτ is a finite SLD-derivation of Π∪Dτ ∪{¬P} whose
last goal only contains future EDB atoms wrt τ .

If D is an SLD-refutation with future premises of Q over
Dτ with last goal G = ¬ ∧i αi and θ is the substitution
obtained by restricting the composition of the mgus in D to
var(P ), then 〈θ,∧iαi〉 is a computed answer with premises
to Q over Dτ , denoted 〈Q,Dτ 〉 �SLD 〈θ,∧iαi〉.
Example 4 Consider the query QE from Example 1 and
let τ = 1. There is an SLD-derivation of Π ∪ D1 ∪
{¬Malf(X,T )} ending with the goal Temp(wt25, high, 2),
which is a future EDB atom with respect to 1. Thus,
〈QE , D1〉 �SLD 〈θ,Temp(wt25, high, 2)〉 with θ =
[X := wt25, T := 0]. �

Computed answers with premises are the operational
counterpart to hypothetical answers, with two caveats. First,
a computed answer with premises need not be ground: there
may be some universally quantified variables in the last goal.
Second, ∧iαi may contain redundant conjuncts, in the sense
that they might not be needed to establish the goal. We
briefly illustrate these two features.

Example 5 Continuing with our running example, there is
also an SLD-derivation of Π ∪ D1 ∪ {¬Malf(X,T )} end-
ing with the goal ¬∧2

i=0 Temp(X, high, T + i), which only
contains future EDB atoms wrt 1. Thus also 〈QE , D1〉 �SLD

〈∅,∧2
i=0 Temp(X, high, T + i)〉. �

Example 6 Consider the program Π′ containing rules
P(a, T ) → R(a, T ) and P(a, T ) ∧ Q(a, T ) → R(a, T ) and
the query Q′ = 〈R(X,T ),Π′〉.

Let D′
0 = ∅. There is an SLD-derivation of Π′ ∪ D′

0 ∪
{¬R(X,T )} ending with the goal ¬ (P(a, T ) ∧ Q(a, T )),
which only contains future EDB atoms wrt τ . Thus
〈Q′, D′

0〉 �SLD 〈[X := a] ,P(a, T ) ∧ Q(a, T )〉. However,
atom Q(a, T ) is redundant, since P(a, T ) alone suffices to
make [X := a] an answer to Q for any T .

(Observe that also 〈Q′, D′
0〉 �SLD 〈[X := a] ,P(a, T )〉,

but produced by a different SLD-derivation.) �

We now look at the relationship between the operational
definition of computed answer with premises and the notion
of hypothetical answer. The examples above show that these
notions do not precisely correspond. However, we can show
that computed answers with premises approximate hypo-
thetical answers and, conversely, every hypothetical answer
is a grounded instance of a computed answer with premises.

Proposition 6 (Soundness) If 〈Q,Dτ 〉 �SLD 〈θ,∧iαi〉 and
σ is a ground substitution such that supp(σ) = var(∧iαi) ∪
(var(P ) \ supp(θ)) and tσ > τ for every temporal term t
occurring in ∧iαi, then there is a set H ⊆ {αiσ}i such that
〈(θσ)|var(P ), H〉 ∈ H(Q,D, τ).
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Proposition 7 (Completeness) If 〈θ,H〉 ∈ H(Q,D, τ),
then there exist substitutions ρ and σ and a finite set of atoms
{αi}i such that θ = ρσ, H = {αiσ}i and 〈Q,Dτ 〉 �SLD

〈ρ,∧iαi〉.
All notions introduced in this section depend on the

time parameter τ , and in particular on the history dataset
Dτ . Next, we explore the idea of “organizing” the SLD-
derivation adequately to pre-process Π independently of Dτ ,
so that the computation of (hypothetical) answers can be
split into an offline part and a less expensive online part.

5 Incremental computation of answers

Proposition 4 states that the set of hypothetical answers
evolves as time passes, with hypothetical answers either
gaining evidence and becoming query answers or being put
aside due to depending on facts that turn out not to be true.

In this section, we show how we can use this temporal
evolution to compute supported answers incrementally. We
start by revisiting SLD-derivations and showing how they
can reflect this temporal structure.

Proposition 8 If 〈Q,Dτ 〉 �SLD 〈θ,∧iαi〉, then there exist
an SLD-refutation with future premises of Q over Dτ com-
puting 〈θ,∧iαi〉 and a sequence k−1 ≤ k0 ≤ . . . ≤ kτ such
that: (i) goals G1, . . . , Gk−1 are obtained by resolving with
clauses from Π; (ii) for 0 ≤ i ≤ τ , goals Gki−1+1, . . . , Gki

are obtained by resolving with clauses from Di \Di−1.

An SLD-refutation with future premises with the prop-
erty guaranteed by Proposition 8 is called a stratified SLD-
refutation with future premises. Since data stream D only
contains EDB atoms, it also follows that in a stratified SLD-
refutation all goals after Gk−1

are always resolved with EDB
atoms. Furthermore, each Gki

contains only future EDB
atoms with respect to i. Let θi be the restriction of the com-
position of all substitutions in the SLD-derivation up to step
ki to var(P ). Then Gki

= ¬ ∧j αj represents all hypothet-
ical answers to Q over Di of the form 〈(θiσ)|var(P ),∧jαj〉
for some ground substitution σ (cf. Proposition 6).

This yields an online procedure to compute supported an-
swers. In a pre-processing step, we calculate all computed
answers with premises to Q over D−1, and keep the ones
with minimal set of formulas. (Note that Proposition 7 guar-
antees that all minimal sets are generated by this procedure,
although some non-minimal sets may also appear as in Ex-
ample 5.) The online part of the procedure then performs
SLD-resolution between each of these sets and the facts pro-
duced by the data stream, adding the resulting resolvents to
a set of schemata of supported answers (i.e. where variables
may still occur). By Proposition 8, if there is at least one
resolution step at this stage, then the hypothetical answers
represented by these schemata all have evidence, so they are
indeed supported.

In general, the pre-processing step of this procedure may
not terminate, as the following example illustrates.

Example 7 Consider the following program Π′′, where R is
an extensional predicate and S is an intensional predicate.

S(X,T ) → S(X,T + 1) R(X,T ) → S(X,T )

If R(a, t0) is produced by the datastream, then S(a, t) is
true for every t ≥ t0. Thus, 〈[X := a], {R(a, T − k)}〉 ∈
H(〈S(X,T ),Π′′〉, D, 0) for all k. The pre-processing step
needs to output this infinite set, so it cannot terminate. �

We establish termination of the pre-processing step for
two different classes of queries. A query Q = 〈P,Π〉 is
connected if each rule in P contains at most one temporal
variable, which occurs in the head whenever it occurs in the
body; and it is nonrecursive if the directed graph induced by
its dependencies is acyclic, cf. (Ronca et al. 2018b).

Proposition 9 Let Q = 〈P,Π〉 be a nonrecursive and con-
nected query. Then the set of all computed answers with
premises to Q over D−1 can be computed in finite time.

(Ronca et al. 2018b) also formally define delay and win-
dow size as follows. Q is a query with temporal variable T .

Definition 5 A delay for Q is a natural number d such
that: for every substitution θ and every τ ≥ Tθ + d,
θ ∈ A(Q,D, τ) iff θ ∈ A(Q,D, Tθ + d).

A natural number w is a window size for Q if: each θ is an
answer to Q over Dτ iff θ is an answer to Q over Dτ\Dτ−w.

Proposition 10 If Q has a delay d and a window size w,
then the set of all computed answers with premises to Q over
D−1 can be computed in finite time.

The (offline) pre-processing step gives us a finite set
PQ of preconditions for Q that represents H(Q,D,−1):
for each computed answer 〈θ,∧iαi〉 with premises to Q
over D−1 where {αi}i is minimal, PQ contains an entry
〈θ,M, {αi}i \M〉 where M is the subset of the αi with
minimal timestamp (those whose temporal variable is T + k
with minimal k).

Each tuple 〈θ,M, F 〉 ∈ PQ represents the set of all hypo-
thetical answers 〈θσ, (M ∪ F )σ〉 as in Proposition 6.

We now show that computing and updating the set
E(Q,D, τ) can be done efficiently. This set is maintained
again as a set Sτ of schematic supported answers. We as-
sume that Q is a connected query; we discuss how to remove
this restriction later.

Proposition 11 The following algorithm computes Sτ+1

from PQ and Sτ in time polynomial in the size of PQ, Sτ

and Dτ+1 \Dτ .

1. For each 〈θ,M, F 〉 ∈ PQ and each computed answer σ
to (Dτ+1 \Dτ )∪ {¬∧

M}, add 〈θσ,Mσ, Fσ〉 to Sτ+1.
(By connectedness, all time variables in Mσ ∪ Fσ are
instantiated in θσ.)

2. For each 〈θ, E,H〉 ∈ Sτ , compute the set M ⊆
H of atoms with timestamp τ + 1. For each com-
puted answer σ to (Dτ+1 \Dτ ) ∪ {¬∧

M}, add
〈θσ, (E ∪M)σ, (H \M)σ〉 to Sτ+1.

The following example also illustrates that, by outputting
hypothetical answers, we can answer queries earlier than in
other formalisms.

Example 8 Suppose that we extend the program ΠE in our
running example as in Example 2 from (Ronca et al. 2018b),
i.e. with the rule Temp(X, n/a, T ) → Malf(X,T ).
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If D1 contains Temp(wt25, high, 0),
Temp(wt25, high, 1) and Temp(wt42, n/a, 1), then

S1 = {〈[T := 0, X := wt25] ,

{Temp(wt25, high, i) | i = 0, 1},
{Temp(wt25, high, 2)}〉,

〈[T := 1, X := wt42] , {Temp(wt42, n/a, 1)}, ∅〉} .
Thus, the answer [T := 1, X := wt42] is produced at time-
point 1, rather than being delayed until it is known whether
[T := 0, X := wt25] is really an answer.
Proposition 12 (Soundness) If 〈θ, E,H〉 ∈ Sτ and σ in-
stantiates all free variables in E ∪H , then 〈θσ,Hσ,Eσ〉 ∈
E(Q,D, τ).
Proposition 13 (Completeness) If 〈σ,H,E〉 ∈
E(Q,D, τ), then there exist a substitution ρ and a
triple 〈θ, E′, H ′〉 ∈ Sτ such that σ = θρ, H = H ′ρ and
E = E′ρ.

It also follows from our construction that, if Sτ contains
a triple 〈θ, E,H〉 with θ(T ) ≤ τ and H �= ∅ and d is a
delay for Q, then the time stamp of each element of H is at
most τ + d. Likewise, if w is a window size for Q, then all
elements in E must have time stamp at least τ − w.

Generalization. The hypotheses in Propositions 9 and 10
are not necessary to guarantee termination of the algorithm
presented for the pre-processing step. Indeed, consider the
following example.
Example 9 In the context of our running example, we say
that a turbine has a manufacturing defect if it exhibits two
specific failures during its lifetime: at some time it overheats,
and at some (different) time it does not send a temperature
reading. Since this is a manufacturing defect, it holds at
timepoint 0, regardless of when the failures actually occur.
We can model this property by the rule

Temp(X, high, T1),Temp(X, n/a, T2) → Defective(X, 0) .

Let Π′
E be the program obtained from ΠE by adding this

rule and consider the query Q′ = 〈Defective(X,T ),Π′
E〉.

Performing SLD-resolution with Π′
E and

Defective(X, 0) yields (in one step) the goal
¬ (Temp(X, high, T1) ∧ Temp(X, n/a, T2)), which only
contains future atoms with respect to −1. The set of
computed answers with premises to Q′ over D−1 is indeed

{〈[T := 0] ,Temp(X, high, T1) ∧ Temp(X, n/a, T2)〉} . �

As this example shows, if a rule in the program includes
different time variables, the query cannot have a delay or
window size (since no predicate can use both T1 and T2).

We can also adapt our algorithm to work in this situation,
removing the hypothesis of connectedness in Proposition 11
but sacrificing polynomial complexity. This allows us to deal
with some situations of unbound wait, as we illustrate.
Example 10 Continuing with Example 9, since D0 contains
Temp(wt25, high, 0), the set S0 includes

〈θ′ = [X := wt25, T := 0] ,

{Temp(wt25, high, 0)}, {Temp(wt25, n/a, T2)}〉 .

Note that we do not know when (if ever) θ′ will become an
answer to the original query, but there is relevant informa-
tion output to the user. �

6 Adding negation

We now show how our framework extends naturally to pro-
grams including negated atoms in bodies of rules. We make
the usual assumptions that negation is safe (each variable
in a negated atom in the body of a rule occurs non-negated
elsewhere in the rule).

In the pre-processing step, we compute PQ as before.
However, the leaves in the SLD-derivations constructed may
now contain negated (intensional) atoms as well as exten-
sional atoms. For each such negated atom we generate a
fresh query Q′, replacing the time parameter with a vari-
able, and repeat the pre-processing step to compute PQ′ . We
iterate this construction until no fresh queries are generated.
Since the number of queries that can be generated is finite,
Propositions 9 and 10 still hold.

The online step of the algorithm is now more compli-
cated, as it needs to keep track of all answers to the aux-
iliary queries generated by negated atoms. The following al-
gorithm computes Sτ+1 from P and Sτ .

1. For each Q and each 〈θ,M, F 〉 ∈ PQ: if there is a
negated atom in M with time parameter t, let σ be the
substitution such that tσ = τ + 1; otherwise let σ = ∅.
Let M ′ be the set of positive literals in M .
For each computed answer σ′ to (Dτ+1 \Dτ ) ∪
{¬∧

M ′σ} add 〈θσσ′,M ′σσ′, ((M \M ′) ∪ F )σσ′〉 to
Sτ+1(Q).
(Observe that all time variables in Mσσ′ ∪ Fσσ′ are in-
stantiated in θσσ′.)

2. For each query Q and each 〈θ, E,H〉 ∈ Sτ (Q), com-
pute the set M ⊆ H of positive literals with timestamp
τ + 1. For each computed answer σ to (Dτ+1 \Dτ ) ∪
{¬∧

M}, add 〈θσ, (E ∪M)σ, (H \M)σ〉 to Sτ+1(Q).

3. For each query Q and each 〈θ, E,H〉 ∈ Sτ+1(Q), com-
pute the set M ⊆ H of negative literals. For each literal
not 	 ∈ M with timestamp t ≤ τ + 1, let 	′ be the query
on the same predicate symbol as 	.
If there is no tuple 〈θ′, E′, H ′〉 ∈ Sτ+1(	

′) where 	 and
	′θ′ are unifiable, remove not 	 from H and add it to E.
If there is a tuple 〈θ′, E′, ∅〉 ∈ Sτ+1(	

′) such that 	
and 	′θ′ are unifiable, then: (i) remove 〈θ, E,H〉 from
Sτ+1(Q), (ii) for each substitution σ ranging over the
free variables in 	, if 	σ does not unify with 	′θ′, then
add 〈θσ,Eσ,Hσ〉 to Sτ+1(Q).

Step 3 makes the running time of this algorithm expo-
nential, since it requires iterating over a set of substitutions.
However, if negation is T -stratified (which we define be-
low), we can still establish a polynomial bound.

Definition 6 The temporal closure of a program Π is the
program Π↓ defined as follows. For each (n + 1)-ary pred-
icate symbol p with a temporal argument in the signature
underlying Π, the signature for Π↓ contains a family of n-
ary predicate symbols {pt}t∈N. For each rule in Π, Π↓ con-
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tains all rules obtained by instantiating its temporal param-
eter in all possible ways and replacing p(x1, . . . , xn, t) by
pt(x1, . . . , xn). A program Π is T -stratified if Π↓ is strati-
fied in the usual sense.

Since the number of predicate symbols in Π↓ is infinite,
the usual procedure for deciding whether a program is T -
stratified does not necessarily terminate. However, this pro-
cedure can be adapted to our framework.

Proposition 14 There is an algorithm that decides whether
a program Π is T -stratified, and in the affirmative case re-
turns a finite representation of the strata.

Furthermore, for T -stratified programs we can also give a
complexity bound for the online step.

Proposition 15 Let k be the highest arity of any predicate
that occurs negated in Π. If Π is T -stratified, then the online
algorithm runs in time polynomial in k, the size of PQ, Sτ ,
Dτ+1 \Dτ and the total number of queries.

7 Related work and discussion

Incremental evaluation. Computing answers to a query
over a data source that is continuously producing informa-
tion, be it at slow or very fast rates, asks for techniques
that allow for some kind of incremental evaluation, in or-
der to avoid reevaluating the query from scratch each time
a new tuple of information arrives. Several efforts have
been made in that direction, capitalising on incremental al-
gorithms based on seminaive evaluation (Gupta, Mumick,
and Subrahmanian 1993; Abiteboul, Hull, and Vianu 1995;
Barbieri et al. 2010; Motik et al. 2015; Hu, Motik, and Hor-
rocks 2018), on truth maintenance systems (Beck, Dao-Tran,
and Eiter 2015), window oriented (Ghanem et al. 2007)
among others. Our algorithm fits naturally in the first class,
as it is an incremental variant of SLD-resolution.

Unbound wait and blocking queries. The problems of
unbound wait and blocking queries have deserved much at-
tention in the area of query answering over data streams.
There have been efforts to identify the problematic is-
sues (Law, Wang, and Zaniolo 2011) and varied proposals
to cope with their negative effects, as in (Zaniolo 2012;
Özçep, Möller, and Neuenstadt 2014; Beck et al. 2015;
Ronca et al. 2018a) among others. Our framework deals with
unbound wait by outputting at each time point all supported
answers (including some that later may prove to be false), as
illustrated in Examples 8 and 10. Furthermore, if we receive
a supported answer whose time parameters are all instanti-
ated, then we immediately have a bound on how long we
have to wait until the answer is definite (or rejected).

Blocking queries may still be a problem in our framework,
though: as seen in Example 7, blocking operations (in the
form of infinitely recursive predicates) may lead to infinite
SLD-derivations, which cause the pre-processing step of our
algorithm to diverge. We showed that syntactic restrictions
of the kind already considered by (Ronca et al. 2018b) are
guaranteed to avoid blocking queries.

Our algorithm also implicitly embodies a forgetting algo-
rithm, as the only elements of Dτ kept in the E sets are those
that are still relevant to compute future answers to Q.

(Ronca et al. 2018a) proposes the language of forward-
propagating queries, a variant of Temporal Datalog that al-
lows queries to be answered in polynomial time in the size
of the input data. This is achieved at the cost of disallowing
propagation of derived facts towards past time points – pre-
cluding, e.g., rules like Shdn(X,T ) → Malf(X,T − 2) in
Example 1. The authors present a generic algorithm to com-
pute answers to a query, given a window size, and investigate
methods for calculating a minimal window size.

(Zaniolo 2012), working in another variant of Datalog
called Streamlog, characterise sequential rules and pro-
grams with the purpose of avoiding blocking behaviour.
Again, rule Shdn(X,T ) → Malf(X,T−2) from Example 1
is disallowed in this framework, since the timestamp in the
head of a rule may never be smaller than the timestamps of
the atoms in the body.

Incomplete information. When reasoning over sources
with incomplete information, the concepts of certain and
possible answers, and granularities thereof, inevitably
arise (Gray, Nutt, and Williams 2007; Lang et al. 2014;
Razniewski et al. 2015) as a way to assign confidence levels
to the information output to the user. These approaches, like
ours, also compute answers with incomplete information.

However, our proposal is substantially different from
those works, since they focus on answers over past incom-
plete information. First, as mentioned in Section 2, we as-
sume that our time stream is complete, in the sense that
whenever it produces a fact about a time instant τ , all EDB
facts about time instants τ ′ < τ are already there (in line
with the progressive closing world assumption of (Zaniolo
2012)). Secondly, our hypothetical and supported answers
are built over present facts and future, still unknown, hy-
potheses, and eventually either become effective answers or
are discarded; in the scenario of past incomplete informa-
tion, the confidence level of answers may never change.

Negation. Other authors have considered languages using
negation. Our definition of stratification is similar to the con-
cept of temporal stratification from (Zaniolo 2015). How-
ever, temporal stratification requires the strata to be also or-
dered according to time (i.e., if the definition of pt is in Πi

and the definition of pt+1 is in Πj , then j ≥ i). We make no
such assumption in this work.

(Beck, Dao-Tran, and Eiter 2015) also consider a notion
of temporal stratification for stream reasoning. However,
their framework also includes explicit temporal operators,
making the whole formalization more complex.
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