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Abstract

To tackle the individual differences and characterize the dy-
namic relationships among different EEG regions for EEG
emotion recognition, in this paper, we propose a novel
instance-adaptive graph method (IAG), which employs a
more flexible way to construct graphic connections so as to
present different graphic representations determined by dif-
ferent input instances. To fit the different EEG pattern, we
employ an additional branch to characterize the intrinsic dy-
namic relationships between different EEG channels. To give
a more precise graphic representation, we design the multi-
level and multi-graph convolutional operation and the graph
coarsening. Furthermore, we present a type of sparse graphic
representation to extract more discriminative features. Exper-
iments on two widely-used EEG emotion recognition datasets
are conducted to evaluate the proposed model and the exper-
imental results show that our method achieves the state-of-
the-art performance.

Introduction

Emotion recognition makes machine capture human emo-
tional states, which is a crucial part in the research fields
of man-machine interaction and artificial intelligence. As a
hot topic in affective computing area, emotion recognition
has recently caught more attentions. The responses of emo-
tion can be characterized by behavioral and physiological
signals. Compared to behavioral signals, such as facial ex-
pression and speech, physiological signals provide a more
reliable way to identify different emotion states since they
are difficult to be disguised (Liu, Sourina, and Nguyen
2011). Among various non-invasive physiological signals
such as galvanic skin response, electrocardiogram, respira-
tory, blood pressure and electromyogram et al., electroen-
cephalograph (EEG) can directly measure brain electrical
activities, which contain richer information related to emo-
tions.Therefore, the study on EEG signals can contribute to
the revelation of human emotions.

For EEG signals, the data are distributed on irregular grid.
Graph provides an effective data structure to characterize a
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Figure 1: The individual energy distributions of three sub-
jects in resting state.

set of objects and their relationships. Commonly, the graph
connections, used in the classical graph CNNs (Bruna et
al. 2013) and GCNN (Defferrard 2016), are mostly based
on some natural connections or spatial positions between
nodes. Apparently, these methods to construct graph connec-
tions are not suitable to model EEG signals, which contain
complicated dynamic functional connections between dif-
ferent EEG regions. These functional connections of brain
regions and their functional organizations are particularly
important in the cognitive generation of emotions (Kober
et al. 2008). Moreover, the imperceptible neuromechanism
makes it hard to directly predefine the functional connec-
tions related to emotions. Song et.al (Song et al. 2018)
proposed the dynamical graph convolutional neural network
(DGCNN) to learn an optical connection based on the dis-
tribution of EEG data. Li et.al (Li et al. 2018a) proposed
the adaptive graph convolution neural network (AGCNN) to
modify the graph connections in a small range. Nevertheless,
these methods just provide the common graph connection or
weakly modified graph connections. The studies (Lee and
Hsieh 2014; Davidson et al. 1999) on human emotions have
investigated the significance of individual differences, like
the energy distributions shown in Figure 1, and different pat-
terns of functional connectivity in terms of different emotion
states, which should also be considered for EEG emotion
recognition.

To address aforementioned issues, in this paper, we pro-
pose a novel instance-adaptive graph neural network (IAG)
framework to model the relationships of different EEG chan-
nels in a more flexible way. Neuroscience research (LeDoux
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2000) has indicated emotion processing is the directed pat-
tern. Specifically, the IAG model provides a directed graphic
representation to construct the graph connections so as to
reveal the intrinsic relationships between EEG regions. To
alleviate the influence of individual differences and dif-
ferent patterns among various emotions, we try to design
an instance-level graphic construction method. Motivated
by attention mechanism, an additional branch is employed
to adaptive generate adjacency matrices, i.e., the directed
graphic connections. The generation of graphic connections
is determined by input data, i.e., input instances, such that
graphic connections can be adjusted dynamically accord-
ing to different input instances. For this additional branch,
we employ left multiplication matrix and right multiplica-
tion matrix to fuse the spatial and frequency information,
respectively, which makes this structure more effective to
represent the relationships between EEG channels. Consid-
ering that EEG signals from different frequencies may be
represented by different topological relationships, we define
a novel multi-level and multi-graph convolution method to
model EEG signals. In terms of graph clustering, we define
a type of pooling method to abstract EEG features according
to spatial information rather than the distance between fea-
tures. Besides, we also analyze the performance of sparse
graphic connections on EEG emotion recognition.

In experiments, we evaluate the proposed method on two
widely used EEG emotion datasets, i.e., SEED (Zheng and
Lu 2015) and MPED (Song et al. 2019), and experimental
results demonstrate that our method achieves the state-of-
the-art performance. The contributions of the proposed IAG
are summarized as below:

• Instance-adaptive graphic connections. A new
flexible way to adaptive generate graphic connections is
proposed so as to fit every instance and characterize the
individual differences for EEG emotion recognition.

• Graph convolution and graph coarsening. A
novel multi-level and multi-graph convolution method is
proposed to model EEG features from different frequency
bands and a spatial graph coarsening method is designed
to abstract EEG signals.

• Sparse graphic connections. The l1-norm is em-
ployed to constrain graphic connections so as to evaluate
the sparse graphic representation.

Related Work

Graph Convolutional Neural Network

Graph convolutional neural network is an extension of CNN
to deal with irregular data. Particularly, graph convolution
methods can be divided into two categories, i.e., spatial
methods and spectral methods (Bruna et al. 2013). For spa-
tial methods, sorting or aggregating neighbor nodes are gen-
erally presented to model spatial relationships. For instance,
Niepert et.al proposed PSCN that sorted neighbor nodes and
then convolution was employed to deal with the sorted nodes
(Niepert, Ahmed, and Kutzkov 2016). Luo et.al transformed
raw graphs into sequences by introducing the concept of n-
gram block (Luo et al. 2017). In contrast, spectral methods

transform the signal into spectral domain through spectral
graph theory (Sandryhaila and Moura 2014). Spectral meth-
ods often suffer high computational complexity due to the
eigenvalue decomposition. The polynomial approximation
may deal with this issue to some extent (Defferrard 2016).
Many spectral methods aim to extract the local stationarity
property of the signals around the central nodes, which is
similar with CNNs. Li et.al proposed an adaptive graph con-
volutional neural networks so as to adjust graphic connec-
tions in a short distance (Li et al. 2018a). All these methods
need to define the graph connections to extract the local-
ized features. However, for some tasks, like EEG emotion
recognition, it is hard to predefine the graphic connections
according to the prior information and global relationships
are crucial to be considered. How to design a more flexible
graph convolution method is still an open issue.

EEG Emotion Recognition

Generally, EEG emotion recognition can be divided into two
steps, i.e., feature extraction and classification. In feature ex-
traction stage, we commonly distinguish features in time do-
main or frequency domain features. Especially, energy fea-
tures from different frequency bands are the most popular
for EEG emotion recognition. And then these features are
processed by classification algorithms so as to predict vari-
ous emotion states (Jenke, Peer, and Buss 2014).

With processed EEG features, many classification algo-
rithms are introduced to effectively distinguish different
emotion states. In (Zheng 2017), Zheng et.al proposed
a group sparse canonical correlation analysis (GSCCA)
method for EEG channel selection. Li et.al (Li et al.
2018c) proposed a graph regularized sparse linear regres-
sion (GRSLR) algorithm to deal with sparse transform ma-
trix learning so as to improve EEG emotion classification
accuracies. In (Zheng and Lu 2016), Zheng et.al proposed a
transfer learning method to tackle personalizing EEG emo-
tion recognition. Recently, more deep learning methods have
been successfully applied for EEG emotion recognition with
prominent performance. In (Zheng and Lu 2015), Zheng
et.al employed Deep Belief Network (DBN) to extract the
high-level information from EEG signals. In (Zhang et al.
2017), Zhang et.al proposed spatial-temporal recurrent neu-
ral network (STRNN) to investigate both spatial and tempo-
ral dependencies of EEG signals. In (Song et al. 2018), Song
et.al proposed dynamical graph convolutional neural net-
works (DGCNN) for EEG emotion recognition, which aims
to learn graphic connections between multiple EEG chan-
nels based on the training data so as to extract more discrim-
inative features. In (Li et al. 2018b), Li et.al proposed a bi-
hemispheres domain adversarial neural network (BiDANN)
to narrow the distribution gap between training and testing
data. In (Li et al. 2019), a hierarchical spatial-temporal neu-
ral network (R2G-STNN) is proposed to learn both regional
and global spatial-temporal features for EEG emotion recog-
nition. In contrast, in this paper, we most focus on a type of
instance-adaptive global connection to model EEG signals.
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Figure 2: The framework of the proposed IAG. An instance-adaptive branch is provided to achieve the dynamic graphic connec-
tions. EEG signals are processed by multi-level and multi-graph convolution, graph coarsening, region dependency modeling,
full connection layer (FC) and softmax layer.

Method

Overview

To deal with EEG emotion recognition, we need to model
the dynamic relationships between different EEG channels
and distinguish different emotion states. The framework of
the proposed IAG is shown in Fig. 2. To better characterize
the dynamic graphic connections of EEG signals, we pro-
pose an additional branch to generate graphic connections,
which are adaptively changed along with input instance.
With the generated graphic connections, EEG data is pro-
cessed by multi-level and multi-graph convolution to diffuse
the information among different channels. To achieve more
robust features and reduce computational complexity, we
conduct the graph coarsening to abstract them, which gener-
ates the features related to specific regions. To building the
dependency of these regions, an iterative model, i.e., long
short-term memory networks (LSTM), is applied to model
the nodes after graph coarsening. The role of LSTM is to
model dependencies of the features having sequential struc-
ture in graph coarsening layer to an emotion-discriminative
feature vector, which is helpful to provide a good perfor-
mance on EEG emotion recognition. Finally, all the hidden
states of LSTM are connected to a full connection layer and
a softmax layer is applied to output the predicted labels.

Attribute Graph for EEG signals

After energy feature extraction from five frequency bands,
i.e., δ band (1-4 Hz), θ band (4-8 Hz), α band (8-14 Hz), β
band (14-30 Hz) and γ band (30-50 Hz), an EEG sample is
represented by X ∈ R

n×d, where n is the number of EEG
channels (nodes) and d is the number of frequency bands. To
model this EEG signal, we employ a directed attribute graph
G = {V, E ,A} of n nodes, in which V = {vi}ni=1 represents
the set of nodes, E denotes the set of edges between these
nodes and A ∈ R

n×n is an adjacency matrix. The adjacency
matrix A characterizes the connections between nodes. If
source node vi and destination node vj are not connected,
then A(i, j) = 0, otherwise A(i, j) �= 0.

According to graphic signal processing theory (Sandry-
haila and Moura 2014), the Jordan decomposition of the
graph adjacency matrix A can be defined as A = VJV−1,
in which J is a block-diagonal matrix and F=V−1 is the
graph Fourier Transform matrix. The EEG data can be trans-
formed into frequency domain by X̂ = FX and the inverse
graph Fourier transform is given by X = F−1X̂. Given a
filtering function h(·), the filtering process can be character-
ized as

X̃ = h(A)X = F−1h(J)FX, (1)

in which h(J) is the graph frequency response of the filter
h(A), i.e., h(Â) = h(J). The convolution theorem from
classical signal processing has been extended to graphic fre-
quency representation.

Instance-Adaptive Graph Connections

To characterize the individual differences and the dynamic
functional relationships between EEG regions plays an im-
portant role in distinguishing different emotion states. Moti-
vated by design of attention framework, we employ an addi-
tional branch to adaptively construct multiple graphic con-
nections such that the graphic connections are adaptively
changed along with input instance during the training and
classification processes. Especially, this instance-adaptive
branch aims to get more effective graph connections by fus-
ing spatial and frequency information, which is shown in
Figure 2.

The tth column of the EEG data X is denoted by Xt,
which represents EEG features in tth frequency band. First,
we conduct the left multiplication projection, which can be
expressed as this form:

Ot = PXt +Bt, (t = 1, 2, ..., d) (2)

in which P ∈ R
n×n is the left multiplication matrix to

fuse the spatial information, i.e., various EEG channels,
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O ∈ R
n×d is the output of the left multiplication projec-

tion and B is the bias matrix.
The relationship between different frequency bands is

also a key point to be considered. To fuse the emotional in-
formation between different frequency bands, we conduct
the right multiplication projection, which can be expressed
by following equation:

G = Relu(OQΘ), (3)

in which Q ∈ R
d×d is the right multiplication matrix to fuse

frequency information, Θ ∈ R
d×nd is the projection matrix

and G ∈ R
n×nd is the output. Relu function is applied to

guarantee elements non-negative and G is reshaped into d
adjacency matrices, i.e., [A∗

1, ...,A
∗
d], to represent graphs in

d frequency bands.
The whole projection process can be expressed as

G = f(X,P,B,Q,Θ), (4)

in which P,B,Q and Θ are the parameters to be solved.
The output G of left and right multiplication projection is
adaptively changed along with the input instance X. That
is, this branch will adaptively adjust graph connections to fit
every input instance, which provides a flexible way to rep-
resent the intrinsic relationships between EEG regions. To
achieve the normalized version, each element of adjacency
matrix Aij is multiplied by 1√

DiiDjj

, formally, Anorm =

D− 1
2AD− 1

2 , in which D is a diagonal matrix calculated by
Dii =

∑
j Aij . Unless otherwise specified, we use the nor-

malized A below.

Multi-Level and Multi-Graph Convolutional
Kernels

In the standard CNN, convolutional operation is repeated to
extract high-level features with a local square spatial ker-
nels. For graphs, it is hard to construct the convolutional
kernels, due to the irregular structure. Besides, the graph fil-
tering responses need homogeneous graph structure. To deal
with this issues, we employ adjacency matrix A to model
the connections between different nodes, which is based on
the graph filtering theories (Sandryhaila and Moura 2014).
Similarly, graph convolutional operation can be repeated
to model a high-level connections between nodes. Ak ex-
presses the connections after k-step graph convolution oper-
ations. To consider the graphs with different levels, we can
model these graphs by a polynomial of A. Here, we denote
the k-order polynomial as ϕk(A) = Ak. Thus, we define
the multi-level graph convolution as

Y = G ∗ F =

K−1∑

k=0

ϕk(A)X, (5)

in which ϕk(A) is the k-th level graph. This process pro-
vides a potential way to consider the information from dif-
ferent levels.

Particularly, there are different relationships between hu-
man emotions and EEG signals from different frequency
bands. Inspired by this consideration, we employ multi-
ple graphs to model EEG features from different frequency

Figure 3: The region partition for spatial graph coarsening.
The 62 EEG channels in the international 10-20 system are
divided into 17 groups and the EEG nodes of each group are
clustered into one node.

bands respectively, via d adjacency matrices [A∗
1, ...,A

∗
d],

which give a more specific graphic representation. There-
fore, we model EEG data from different frequency bands as

Y = Cat[
K−1∑

k=0

ϕk(A
∗
1)X1, ...,

K−1∑

k=0

ϕk(A
∗
d)Xd]U, (6)

in which Cat[] is a concatenation operator, U ∈ R
d×d′

is
the dimension transformation matrix to be solved and Y ∈
R

n×d′
is the output. This convolution operation provides a

multi-level and multi-graph representation, which diffuses
the information from different channels so as to extract more
discriminative features.

Graph Coarsening

Similar with the standard pooling operation in CNNs, down-
sampling graphs is helpful to abstract them and reduce com-
putational complexity. For graphs, the pooling operation re-
lies on the meaningful relationships between nodes, which
can be considered according to spatial locations or the dis-
tance of features between different nodes. For EEG signals,
clustering these nodes with close features may destroy dy-
namic characteristics, which will lose useful information re-
lated to emotions. Therefore, we conduct the pooling opera-
tion based on spatial locations of EEG electrodes in case to
lose important dynamic information.

With an EEG sample as example, the graph after convo-
lution operation is divided in to n′ groups and clustered into
n′ nodes. The neighbor nodes are fused and the pooling op-
eration on graphs can be formulated as

Zp =
1

nte − nts

nte∑

l=nts

Yl, (p = 1, ..., n′) (7)

where the p-th group contains nodes from number nts to
number nte and Z denotes the nodes after graph coarsening.
Actually, this operation is to calculate the average values of
neighbor nodes, which can be regarded as the specific re-
gion. The detailed location division for EEG channels clus-
tering is displayed in Fig. 3.
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Sparse Graphic Representation

During the training process, we employ the cross entropy
loss function to measure the dissimilarity between predicted
labels and real labels. Specifically, we investigate whether
sparse graphic connections between EEG channels are help-
ful to recognize various emotion states. Therefore, we define
the loss function as the following form:

loss = cross entropy(l, lp) +

d∑

j=1

αj‖A∗
j‖1, (8)

in which l and lp represent the real label vector and the pre-
dicted one, respectively, α is the trade-off parameter and
‖ · ‖1 denotes the l1-norm. We introduce l1-norm to con-
strain the adjacency matrices [A∗

1, ...,A
∗
d], which presents a

type of sparse graphic representation. The sparsity of graph
connection is controlled by α.

Experiment

Datasets and Settings

SEED The SJTU Emotion EEG Database (SEED) recorded
15 subjects’ EEG data (7 males and 8 females), when they
were watching 15 Chinese clip videos. Each video lasts for
about 4 minutes. These videos are applied to elicit three
types of emotions, i.e., neutrality, positivity and negativity.
For each subject, this recording process is repeated in 3 dif-
ferent periods corresponding to 3 sessions and each session
contains 15 trials of EEG signals. All EEG signals are di-
vided into 1-second samples for classification. To compare
with previous literatures, we obey same subject-dependent
and subject-independent protocols strictly (Zheng and Lu
2015; 2016). For subject-dependent protocol, we use the first
9 trials of EEG data as training data and remaining 6 ones
as testing data, and then the mean accuracy of 15 subjects is
evaluated. For subject-independent protocol, we employ the
leave-one-subject-out cross validation strategy.
MPED The Multi-Modal Physiological Emotion Database
(MPED) contains four types of physiological signals of 23
subjects (10 males and 13 females), which are recorded
when they are watching 28 film clips with seven types of
emotions, i.e., joy, funny, anger, fear, disgust, sadness and
neutrality. Therefore, there are 28 trials of EEG data for each
subject. Here, we only use EEG data for emotion recogni-
tion. Similarly, all EEG signals are divided into 1-second
samples. 21 trials of EEG data are served as training data
and the rest 7 trials of EEG data are served as testing data.
We follow the protocols in Song et al. strictly (Song et al.
2019). Protocol one: Eight types of combinations in form
of positive-neutral-negative are conducted and the average
accuracy of these combination are calculated for compari-
son. Protocol two: Seven emotions are divided into three
categories, i.e., positive, neutral and negative emotions, for
classification. Joy and funny are classified into positive emo-
tion, while angry, sadness, fear and disgust are classified into
negative emotion. Protocol three: Seven types of emo-
tions are presented for classification.

Implementation Details

For the input of our model, we employ the extracted EEG
features, i.e., differential entropy (DE) for SEED dataset and
short-time Fourier transform (STFT) spectrum for MPED
dataset, which are consistent with former studies.

For the proposed graph convolution part, the number of
EEG channels (n) is set to 62, the number of frequency
bands (d) is set to 5, the order of graph convolution (K)
is set to 8 and the transformed dimension (d′) is set to 32.
For graph coarsening, original 62 nodes are clustered into
17 nodes. The dimensions of hidden state and memory cell
in LSTM are both set to 64. In our loss function, the trade-
off parameters, i.e., α1, α2, α3, α4 and α5 are set to 10−4,
10−5, 10−5, 10−5 and 10−5, respectively. The learning rate
is set to 0.001. In our system, whole model is implemented
by TensorFlow.

Experiment Results

Verification of IAG structure To validate the efficiency
of our IAG model, we conduct extensive experiments using
different structures on two published EEG discrete emotion
datasets.

As shown in Table 1, we present the results using our IAG
model without instance-adaptive branch (IA) and multi-level
and multi-graph convolution (MMG), respectively. Without
IA structure, we can see that the classification accuracies
for EEG emotion recognition decrease a lot, especially in
subject-independent protocol on SEED and protocol three
on MPED. Without MMG structure, the model also achieves
low classification accuracies. Specifically, we can see that
both IA and MMG are important to improve the classifi-
cation accuracies for EEG emotion recognition. IA struc-
ture provides a more flexible way to represent the intrin-
sic connections among different EEG channels. Besides,
MMG represents EEG features from different frequency
bands with multiple graphs and explores a high-level rela-
tionships, which is helpful to extract discriminative features
for EEG emotion recognition.

To investigate the efficiency of spatial graph pooling, we
conduct extensive experiments using three types of struc-
tures, i.e., IAG without pooling, IAG with spatial pooling
and IAG with k-means pooling, which are shown in Table 1.
For our spatial graph pooling, we divide the EEG channels
into 17 spatial regions, which are shown in Fig. 3. For k-
means graph pooling, certain centers(FPz, F5, Fz, F6, FC5,
FC6, C5, Cz, C6, CP5, CPz, CP6, P5, P6, PO5, POz, PO6)
are given in the initial stage. Specifically, we can see that
spatial graph pooling is more advantageous to abstract use-
ful information than k-means graph pooling. The k-means
graph pooling is based on the distance of features between
different nodes, which may destroy the dynamic information
of EEG signals and induce the low classification results.

Additionally, we also explore the performance of sparse
graphic representation by constraining five adjacency ma-
trices, i.e., [A∗

1, ...,A
∗
d]. The trade-off parameters, i.e., α1,

α2, α3, α4, and α5, are set to 10−4, 10−5, 10−5, 10−5

and 10−5, respectively. Most existing works indicate that
low frequency band contains lower discriminative infor-
mation for EEG emotion recognition. So we give a large
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Table 1: The mean accuracies (ACC) and standard deviations (STD) on SEED databaset and MPED dataset.

Method
SEED MPED

Subject-dependent Subject-independent Protocol one Protocol two* Protocol three
ACC / STD (%) ACC / STD (%) ACC / STD (%) ACC / F1 (%) ACC / STD (%)

IAG (w/o IA, pooling) 90.25 / 08.46 81.61 / 08.57 72.31 / 12.51 69.72 / 64.64 36.31 / 09.84
IAG (w/o MMG, pooling) 91.42 / 07.34 82.10 / 09.31 72.82 / 12.00 69.88 / 63.83 37.20 / 10.05

IAG (w/o pooling) 93.87 / 05.95 85.01 / 08.24 73.11 / 12.34 72.33 / 67.18 40.09 / 10.23
IAG (k-means pooling) 86.39 / 09.45 74.36 / 11.11 67.34 / 12.35 68.22 / 51.79 35.69 / 09.37
IAG (spatial pooling) 94.89 / 06.16 85.24 / 06.86 73.95 / 11.34 72.76 / 66.76 39.10 / 09.65

IAG + sparse 95.44 / 05.48 86.30 / 06.91 74.77 / 10.75 73.58 / 68.41 40.38 / 08.75
*Protocol two in MPED is designed for EEG emotion recognition with unbalanced data such that ACC and F1 score are
suggested performance metrics. ‘w/o’ denotes ‘without’.

weight to make it sparser to suppress the useless informa-
tion. From the result shown in Table 1, sparse graphic rep-
resentation is effective to improve the classification accura-
cies for EEG emotion recognitions. The sparse graphic rep-
resentation captures useful graph connections and ignores
redundant relationships so as to extract more discriminative
features.

Table 2: The mean accuracies (ACC) and standard devia-
tions (STD) on SEED database for subject-dependent EEG
emotion recognition experiment.

Method ACC/STD(%)
SVM (Suykens and Vandewalle 1999) 83.99 / 09.72

CCA (Thompson 2005) 77.63 / 13.21
DBN (Zheng and Lu 2015) 86.08 / 08.34
GCNN (Defferrard 2016) 87.40 / 09.20
DANN (Ganin et al. 2016) 91.36 / 08.30
GRSLR (Li et al. 2018c) 87.39 / 08.64

DGCNN (Song et al. 2018) 90.40 / 08.49
BiDANN (Li et al. 2018b) 92.38 / 07.04

R2G-STNN (Li et al. 2019) 93.38 / 05.96
IAG 95.44 / 05.48

Comparison with the state-of-the-art method To further
validate the proposed IAG, we compared our model with the
start-of-the-art methods on SEED and MPED, respectively,
including linear support vector machine (SVM), canonical
correlation analysis (CCA), deep believe network (DBN),
graph convolutional neural network (GCNN), domain adver-
sarial neural network (DANN), graph regularization sparse
linear regression (GRSLR), dynamical graph convolutional
neural network (DGCNN), kernel principal component anal-
ysis (KPCA), transfer component analysis (TCA), transduc-
tive parameter transfer (TPT), bi-hemispheres domain ad-
versarial neural network (BiDANN), BiDANN-S, spatial-
temporal recurrent neural network (STRNN), a hierarchical
spatial-temporal neural network (R2G-STNN) and attention
long-short time memory networks (A-LSTM).

From the results of EEG emotion recognition summarized
in Table 2, Table 3 and Table 4, we have the following ob-
servation.
• The proposed IAG is superior to the recent graph-based

Table 3: The mean accuracies (ACC) and standard devia-
tions (STD) on SEED dataset for subject-independent EEG
emotion recognition experiment.

Method ACC/STD(%)
SVM (Suykens and Vandewalle 1999) 56.73 / 16.29
KPCA (Schölkopf and Müller 1998) 61.28 / 14.62

TCA (Pan et al. 2011) 63.64 / 14.88
TPT (Sangineto et al. 2014) 76.31 / 15.89
DANN (Ganin et al. 2016) 75.08 / 11.18
DGCNN (Song et al. 2018) 79.95 / 09.02
BiDANN (Li et al. 2018b) 83.28 / 09.60

BiDANN-S (Li et al. 2018d) 84.14 / 06.87
R2G-STNN (Li et al. 2019) 84.16 / 07.63

IAG 86.30 / 06.91

methods, domain adversarial methods and LSTM-based
methods. From the results shown in Table 2, our IAG
achieves better classification result, which is 5.04% and
8.04% higher than graph-based methods, i.e., DGCNN
and GCNN, respectively. Although they are all graph-
based methods, our self-adaptive structure is more ef-
fective to characterize the intrinsic relationships between
different EEG channels. Also, IAG has an improvement
of 3.06% in contrast to BiDANN, which combines do-
main adversarial structure with LSTM. In both Table 3
and Table 4, our IAG achieves better performance, which
is superior to these LSTM-based methods, i.e., STRNN,
LSTM and A-LSTM.

• Our IAG improves the current state-of-the-art results
on both SEED and MPED. On SEED dataset, our
IAG achieves 95.44% in subject-dependent protocol
and 86.30% in subject-independent protocol. On MPED
dataset, the proposed IAG has improved the best perfor-
mance to 74.77%, 73.58% and 40.38% in protocol one,
protocol two and protocol three, respectively.

• Different datasets have different performances. We can
see that there are different performances on EEG emo-
tion recognition using different datasets or in different
classification protocols. For SEED dataset, there are three
emotional categories, which are organized by subject-
dependent and subject-independent protocols. In subject-
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Table 4: Experiment results(%) in protocol one and protocol three (average accuracies and standard deviations), as well as in
protocol two (average accuracies and F1 scores) on MPED database.

Method Protocol one (ACC/STD) Protocol two (ACC/F1) Protocol three (ACC/STD)
SVM (Suykens and Vandewalle 1999) 59.86 / 16.29 57.06 / 24.43 31.14 / 08.06

DBN (Zheng and Lu 2015) 65.83 / 13.20 65.98 / 59.19 29.26 / 09.19
LSTM (Sak, Senior, and Beaufays 2014) 72.09 / 14.94 71.92 / 65.12 38.55 / 08.43

STRNN (Zhang et al. 2017) 65.38 / 13.20 66.84 / 60.57 35.64 / 09.57
DGCNN (Song et al. 2018) 71.13 / 15.77 68.02 / 61.11 36.92 / 12.78
A-LSTM (Song et al. 2019) 72.93 / 13.19 71.57 / 67.74 38.74 / 07.75

IAG 74.77 / 10.75 73.58 / 68.41 40.38 / 08.75

Figure 4: The visualization of degree centrality of EEG elec-
trodes in our IAG model on SEED dataset.

dependent protocol, most methods achieve higher accura-
cies. In contrast, the classification accuracies in subject-
independent protocol will be lower, due to the individual
difference. For MPED dataset, there are seven emotion
categories. The unbalanced distribution of training data
and more categories are the key points to induce lower
classification accuracies.

The visualization of degree centrality in the graph
for EEG emotion recognition

The degree centrality is a validated index measuring con-
nectivity of a node with the other nodes, which has been
widely used to evaluate the importance of the nodes in the
graph (Zhang, Cheng, and Qu 2007). To further evaluate the
importance of nodes sub-serving the emotion recognition of
our IAG, in this section, we visualize the degree centrality
of each scalp EEG electrode based on graphic connections.
In the graphic model, the adjacency matrix A characterizes
the connections between nodes. In an adjacency matrix, val-
ues of the i-th row and the i-th column represent the graphic
weights connected with the i-th nodes. The degree centrality
Ci of the i-th EEG electrode can be calculated by

Ci =

62∑

n=1

Ai,n +

62∑

m=1

Am,i − 2Ai,i, (i = 1, ..., 62). (9)

For SEED dataset, Fig. 4 shows the degree centrality for
different EEG electrodes based on our IAG model. Due to

the multi-graph module in IAG, we can see that there are
different graphic connection patterns for different frequency
bands. Particularly, more EEG electrodes in high frequency
bands are connected with each other, also with stronger con-
nectivity than that in low frequency bands. These results
indicate that the signals in high frequency bands are more
informative for emotion recognition. Notably, this conclu-
sion is highly consistent with former studies (Hadjidimitriou
and Hadjileontiadis 2012). Across emotion states, however,
we observed similar scalp distribution of degree centrality.
That is to say, although our model can adaptively change
the graphic connections, our IAG model is effective to cap-
ture the EEG electrodes of most importance, which are com-
monly shared for emotion recognition across different emo-
tion states.

Conclusion

In this paper, we proposed a graph-based method, called
IAG, to tackle individual differences and model the relation-
ship among different EEG regions for EEG emotion recog-
nition. The graph connections in our IAG is self-adaptive
along with input EEG data so as to characterize the indi-
vidual differences. With the generated graphs, the multi-
level and multi-graph convolutional operation and graph
coarsening are applied to extract more discriminative fea-
tures for classification. In addition, sparse graphic represen-
tation is helpful for EEG emotion recognition to some ex-
tent. The experiment results have validated the efficiency of
our IAG, which is superior to other deep learning methods
and achieves the state-of-the-art performance.
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