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Abstract

Aggregating multi-subject functional magnetic resonance
imaging (fMRI) data is indispensable for generating valid and
general inferences from patterns distributed across human
brains. The disparities in anatomical structures and functional
topographies of human brains warrant aligning fMRI data
across subjects. However, the existing functional alignment
methods cannot handle well various kinds of fMRI datasets
today, especially when they are not temporally-aligned, i.e.,
some of the subjects probably lack the responses to some
stimuli, or different subjects might follow different sequences
of stimuli. In this paper, a cross-subject graph that depicts the
(dis)similarities between samples across subjects is used as
a priori for developing a more flexible framework that suits
an assortment of fMRI datasets. However, the high dimen-
sion of fMRI data and the use of multiple subjects makes
the crude framework time-consuming or unpractical. To ad-
dress this issue, we further regularize the framework, so that a
novel feasible kernel-based optimization, which permits non-
linear feature extraction, could be theoretically developed.
Specifically, a low-dimension assumption is imposed on each
new feature space to avoid overfitting caused by the high-
spatial-low-temporal resolution of fMRI data. Experimental
results on five datasets suggest that the proposed method
is not only superior to several state-of-the-art methods on
temporally-aligned fMRI data, but also suitable for dealing
with temporally-unaligned fMRI data.

Introduction

Functional Magnetic Resonance Imaging (fMRI) is an imag-
ing technology used to measure neural activity by using the
blood-oxygen-level-dependent (BOLD) contrast as an indi-
cator for cognitive states (Logothetis 2002). The informa-
tive patterns encoded in fMRI enable investigators to study
how the human brain works (Haxby, Connolly, and Guntu-
palli 2014). Specifically, the use of multi-subject fMRI data
is indispensable for accessing the validity and generality of
the findings across subjects (Talairach and Tournoux 1988;
Watson et al. 1993). From another angle, aggregating multi-
subject fMRI data is also critical due to the high-spatial-
low-temporal (HSLT) resolution of fMRI, i.e., the number of
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samples (time points or volumes) is generally much smaller
than the number of features (voxels) per subject. However,
such aggregation is facing a challenge that both anatomi-
cal structure and functional topography vary across subjects
(Haxby et al. 2011). Hence, inter-subject alignment is an in-
dispensable step in fMRI analysis.

Existing studies for inter-subject alignment include
anatomical alignment and functional alignment, which can
work in unison. In fact, anatomical alignment is usually
used as a preprocessing step for fMRI analysis, by align-
ing anatomical features based on structural MRI images
across subjects. Typical examples include Talairach align-
ment (Talairach and Tournoux 1988), cortical surface align-
ment (Fischl et al. 1999) and so on. However, anatom-
ical alignment generated limited accuracy since the size,
shape and anatomical location of functional loci differ across
subjects (Watson et al. 1993; Rademacher et al. 1993). In
contrast, functional alignment tries to directly align func-
tional responses across subjects (Sabuncu et al. 2009; Con-
roy et al. 2009). As more radical approaches of functional
alignment, Hyperalignment (Haxby et al. 2011) and Shared
Response Model (SRM) (Chen et al. 2015) learn implic-
itly shared patterns across subjects, which are closely re-
lated to multi-view Canonical Correlation Analysis (CCA).
Though both of them have been extensively studied and
extended to an assortment, the existing related studies as-
sume that the given fMRI datasets should be temporally-
aligned across subjects (Chen et al. 2015; Turek et al. 2018;
Xu et al. 2012). In other words, the sequential fMRI time
points of each subject have to correspond to the same se-
quence of stimuli, like all subjects watching a movie to-
gether. Such a demand makes them not flexible enough
as fMRI datasets today could be not temporally-aligned.
For example, some subjects probably lack the responses to
some stimuli, or different subjects may respond to differ-
ent sequences of stimuli. Even though this problem could
be somewhat solved by reordering and truncating (or down-
sampling) the dataset to generate an aligned version (Chen
et al. 2015), these processes may lead to an inevitable loss
of information. A recent study tries to extend SRM into a
semi-supervised one by exploiting labeled samples, the un-
labeled samples are, however, required to be temporally-
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aligned (Turek et al. 2017).
In this paper, we aim to develop an adaptable functional

alignment framework by using a cross-subject graph that de-
picts the (dis)similarities between all samples as a priori.
Such a graph can be generated according to samples’ cat-
egory labels or through inference (De Sa et al. 2010). From
this perspective, we can then focus on the (dis)similarity,
which is encoded in a graph, between any two samples
rather than merely caring about if the given fMRI dataset
is temporally-aligned. However, the crude framework is un-
practical as the related matrices are too large to be used,
which is caused by the high dimension of fMRI data and
the use of multiple subjects. To address this problem, the
unrefined framework is regularized so that a novel feasible
kernel-based optimization, which allows for non-linear fea-
ture extraction, could be theoretically set up. With such a
regularization, the optimal solution is, sometimes, unique.
Nevertheless, the high-spatial-low-temporal (HSLT) resolu-
tion of fMRI data causes that the generated optimal solu-
tion could indicate overfitting, i.e., it aligns all aligning sam-
ples perfectly. In a specific case, the culprit is that the di-
mension of the subspace spanned by the aligning samples
equals to the number of them. Therefore, a low-dimension
assumption, which agrees with that the number of infor-
mative features is generally less than the number of vox-
els, is imposed on each new feature space to avoid overfit-
ting. The refined framework, together with the proposed op-
timization method, is referred to as Graph-based Decoding
Model (GDM) in this paper. Notably, the objective function
of Hyperalignment is the same as that of our GDM (with
an evident graph). The main contributions of this paper are
summarized as follows:

i) Unlike previous studies that rely on temporally-aligned
data, GDM does not require temporal alignment
for fMRI data. Once the prior information of the
(dis)similarities among samples is available or can be
inferred, one can employ our GDM to solve fMRI-based
problems at hand.

ii) Different from the conventional naive kernel imple-
mentation, the computational time of our proposed
kernel-based optimization (naturally accompanied by a
low-dimension assumption) is faster on the number of
samples, making it suitable for processing large-scale
dataset.

iii) The feasible kernel-based optimization method with the
low-dimension assumption is equipped with some the-
oretical guarantees.

In the following, we first briefly review related works,
and concisely mention the notation and problem statement.
Then, the proposed method GDM will be introduced in de-
tail. We further introduce the materials used in this work,
experimental setup, competing methods, and experimental
results achieved by different methods on both aligned and
unaligned datasets, which is followed by a Conclusion sec-
tion. Related proofs and additional experimental results are
given in the Supplementary File.

Related Works

The initial Hyperalignment (HA) method aims to seek im-
plicitly shared features across subjects (Haxby et al. 2011),
which is based on the orthogonal Procrustes problem. It is
the first that links functional alignment and multi-view CCA.
The performance of Hyperalignment on fMRI analysis is
dramatically increased compared with any other anatomi-
cal alignment methods. To tackle the singularity caused by
the HSLT resolution of fMRI, Regularized Hyperalignment
(RHA) was developed by Xu et al. (Xu et al. 2012).

However, neither of HA nor RHA can handle full-brain
data. To address this issue, there have been several works:
Chen et al. developed a Singular Vector Decomposition Hy-
peralignment (SVDHA), which firstly carries out a joint-
SVD by grouping all subjects’ fMRI data for dimension re-
duction across subjects (Chen et al. 2014). Later, Chen et
al. introduced a Shared Response Model (SRM) which can
be modeled from probabilistic perspective by assuming that
each sample from the latent common space has undergone a
Gaussian noise disturbance (Chen et al. 2015). Solely linear
feature extraction was considered until that Kernel Hyper-
alignment (KHA) was formulated by Lorbert and Ramadge
(Lorbert and Ramadge 2012). Since fMRI dataset may par-
tially contain labels, a semi-supervised scheme based on
SRM was studied by Turek et al. (Turek et al. 2017).

On the other hand, a Searchlight approach, which takes
functional alignment method as a module, was established
to enhance functional alignment further by assuming that
any voxel is only in connection with voxels in its anatom-
ical vicinity (Guntupalli et al. 2016). Recently, a Robust
SRM that accounts for individual variations was developed
by Turek et al. (Turek et al. 2018).

Notation and Problem Statements

Notation In this paper, the bold letters are reserved for ma-
trices (upper) or vectors (lower), whereas the plain are for
scalars. Given any sequence of matrices {Ai}Mi=1, let A∗
be the corresponding block diagonal matrix whose diagonal
matrices are {Ai}Mi=1 from the top left to the bottom right.
Plus, for any matrix A, ai refers to its i-th column vector,
Aij is its (i, j)-th entry, R(A) denotes the subspace spanned
by the columns of A and N(A) is the null space of A, i.e.,
{x |Ax = 0}. Moreover, any vector is treated as a column
vector and the subscript of AI×J indicates its shape.

Let {Xi ∈ R
Vi×Ti}Mi=1 be an fMRI dataset where Ti and

Vi are the number of samples (time points or volumes) and
features (voxels) of the i-th subject, respectively, and M is
the total number of subjects. Due to the HSLT resolution of
fMRI, Ti � Vi. To develop a kernel-based method, we in-
troduce a column-wised non-linear map Φi that maps each
sample, e.g., each column of Xi, of the i-th subject into a
new feature spaceHi, which is a Hilbert space. Unlike Ker-
nel Hyperalignment (Lorbert and Ramadge 2012), subject-
specific kernels are allowed. Here, different kernels could be
thought to account for different structures of human brain.
For simplicity, denote Φi by setting (φφi)j = Φi((xi)j) for
1 ≤ j ≤ Ti, and let Ki be ΦT

i Φi. Plus, let K denote the
number of the shared features across subjects.
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Assumption for Theoretical Development Generally, the
dimension of Hi could be infinite. For example, the re-
producing kernel Hilbert space of Gaussian kernel is iso-
morphic to a subspace of l2(N) (Steinwart and Christmann
2008). For clarity in the development of the optimization,
we assume that Hi is a finite dimensional real Hilbert space
throughout the paper. The general lengthy proofs are left
in the Supplementary File. Thus, Φi : R

Vi �→ R
Ni and

Φi ∈ R
Ni×Ti where Ni is the dimension ofHi.

The goal is to learn aligning maps {fi : RVi �→ R
K}Mi=1

for each subject such that they map populations of subjects’
fMRI responses into a shared space in which the dispari-
ties between subjects’ brains are eliminated. Here, we aim
to learn linear aligning maps {hi : R

Ni �→ R
K} with good

generalization. Therefore, fi = hi ◦ Φi and hi((φφi)j) =
WT

i (φi)j for 1 ≤ j ≤ Ti where Wi ∈ R
Ni×K .

Proposed Method

Formulation

Cross-Subject Graph A graph about the (dis)similarities
among all samples are mostly available. For example,
the part of temporally-aligned samples, the category of
each sample, or the distances between samples tell which
samples are closely related or distinctive. To describe
such (dis)similarities, let G ∈ R

T×T be a cross-subject
graph matrix where T =

∑M
i=1 Ti and Gij indicates the

(dis)similarity of the i-th and j-th samples, and thus GT =
G. Here, i or j could refer to any sample from any subject.

Objective Function Let WT be
(
WT

1 · · · WT
M

)
and

Y be WTΦ∗ =
(
WT

1 Φ1 · · · WT
MΦM

)
. Since Y ∈

R
K×T contains all samples, the objective function can be

expressed as

argmin
W

1

2

T∑
i=1

T∑
j=1

Gij ‖yi − yj‖2F = tr
(
YLYT

)
(1)

where L = D − G is the Laplacian matrix of the graph
matrix G (Chung and Graham 1997) and D is a diagonal
matrix with Dii =

∑T
j=1 Gij . This objective function tries

to separate the transformed samples yi and yj when Gij <
0 but attempts to make them close when Gij > 0.

Constraint Given a stimulus, suppose {zi ∈ R
Vi}Mi=1 are

subjects’ corresponding fMRI responses and the authentic
aligning maps {fi : RVi �→ R

K}Mi=1 are already there. Since
each subject’s fMRI responses to the same stimulus behave
like a random variable, {fi(zi)}Mi=1 are expected to be from
the same shared random variable. In other words, we do not
require that fi(zi) = fj(zj) for any i, j. Therefore, the sta-
tistical constraint YYT = I can be applied directly even
if some samples are expected to be from the same latent
response. The constraint means that each extracted shared
feature is on the same scale and they are restricted be as un-
correlated as possible. The crude framework is

argmin
W

tr
(
WTΦ∗LΦT

∗ W
)

subject to WTΦ∗ΦT
∗ W = I .

(2)

Relationship between GDM and Hyperalignment The
Hyperalignment (HA) method is based on temporally-
aligned dataset, assuming that Ti = T0 for i = 1, 2, . . . ,M .
Define a graph GHA by setting Gij = 1/M when the i-th
and j-th samples are aligned and Gij = 0 otherwise. Then,∥∥WT

i Xi − S
∥∥2
F

, which is the objective function of HA, is
equal to tr

(
WTX∗ (IMT0×MT0

−GHA)X
T
∗ W

)
since

M∑
i=1

‖WT
i Xi − S∗‖2F

=
M∑
i=1

‖WT
i Xi‖2F +

(
M‖S∗‖2F − 2〈

M∑
i=1

WT
i Xi,S

∗〉
)

=tr
(
WTX∗XT

∗ W
)
− tr

(
WTX∗GHAX

T
∗ W

)
=tr

(
WTX∗ (IMT0×MT0 −GHA)X

T
∗ W

)
.

where the optimal S∗ is 1/M
∑M

i=1 W
T
i Xi.

Computational Cost Problem (2) is a generalized eigen-
value problem, which has been studied extensively. How-
ever, with linear kernel, the size of X∗LXT

∗ or X∗XT
∗ ,

which is
(∑M

i=1 Vi

)2
, is too tremendous to be used. For ex-

ample, the dataset DS001 used in our experiment includes
16 subjects with 19174 features per subject, and then it re-
quires at least 350 GB to store X∗LXT

∗ or X∗XT
∗ of shape

(16×19174)× (16×19174), which is not affordable. Thus,
an efficient feasible optimization is needed. The Proposition
below is helpful for solving such an issue.

Proposition 1 If W is one solution for problem (2), then
there must be another solution that belongs to R(Φ∗), and
has the same objective value as W.

Proof. W can be decomposed uniquely as W = WR +
WN where WR ∈ R(Φ∗) and WN ∈ N(ΦT

∗ ). Since

WTΦ∗ = WT
RΦ∗ +WT

NΦ∗ = WT
RΦ∗ + 0 = WT

RΦ∗ ,

Plugging WR into problem (2) leads to that WR satisfies
the constraint and shares the same objective value with W.
�

Regularized Framework In Proposition 1, the trivial part
WN exists due to the HSLT resolution of fMRI, i.e., Ti �
Vi. Such a trifling part indicates that it does not help produce
a better solution, and thus there are many optimal solutions.
If the trivial part is excluded by constraint, the optimal so-
lution, sometimes, become unique, and a feasible optimiza-
tion will be there. More details about the uniqueness are in-
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cluded in the Supplementary File. In a nutshell, the regular-
ized framework is expressed as

argmin
W

tr
(
WTΦ∗LΦT

∗ W
)

subject to WTΦ∗ΦT
∗ W = I

wi ∈ R(Φ∗) for 1 ≤ i ≤ K .

(3)

Optimization

Naive Kernel-Based Optimization A simple way to
solve GDM in Eq. (3) is to let Wi be XiBi, where
Bi is a new variable. Then, WTX∗LXT

∗ W becomes
BTK∗LK∗B, where B is constructed like W. The opti-
mal solution of GDM can be achieved by solving a gener-
alized eigenvalue problem. However, with any kernel, the
complexity in terms of {Ti}Mi=1 will be at least O(T 3) where
T =

∑M
i=1 Ti, meaning that it heavily depends on the num-

ber of samples. In the following, we propose a more efficient
kernel-based optimization algorithm.

Proposed Kernel-Based Optimization Here are some
tricks to solve problem (3). For each i, by spectral decom-
position, Ki = ViDiV

T
i where zero eigenvalues of Ki are

excluded. With Ui = ΦiViD
− 1

2
i , it leads to a Singular Vec-

tor Decomposition (SVD) of Φi as

Φi = UiD
1
2
i V

T
i . (4)

As shown in the Supplementary File, Φi can be decomposed
similarly when the dimension ofHi is infinite. Thus, the de-
velopment below is without loss of generality. With Eq. (4),
Φ∗ = U∗D

1
2∗ VT

∗ and then problem (3) is equivalent to

argmin
Q

tr
(
QTVT

∗ LV∗Q
)

subject to QTQ = I .
(5)

To see this, denote the shape of D∗ by S×S. Let S be {W :
WTΦ∗ΦT

∗ W = I and wi ∈ R(Φ∗) for 1 ≤ i ≤ K} and
T be {Q ∈ R

S×K : QTQ = I}. Denote a map g : S �→ T
by setting g(W) = D

1
2∗ UT

∗ W. Since each column of W

belongs to R(Φ∗) = R(U∗), U∗D
− 1

2∗ D
1
2∗ UT

∗ W = W,
which in turn leads to that g is a bijection between S and
g(S) = T . Plugging W = U∗D

− 1
2∗ Q into problem (3)

leads to problem (5).

Proposition 2 Using spectral decomposition, VT
∗ LV∗ =

EΛET where all eigenvalues of VT
∗ LV∗ along the diagonal

of Λ from the top left to the bottom right are in ascending
order. Denote the shape of VT

∗ LV∗ by S×S. If K ≤ S, the
first K columns of E is optimal for problem (5).

Proof. Firstly, problem (5) is equivalent to

argmin tr
(
RTΛR

)
subject to RTR = I

(6)

where R = ETQ. As RTR = I infers
∑S

i=1

∑K
j=1 R

2
ij =

K and
∑K

j=1 R
2
ij ≤ 1 for each i, there is

tr
(
RTΛR

)
=

S∑
i=1

Λii

K∑
j=1

R2
ij ≥

K∑
i=1

Λii .

Let R∗ denote
(
IK×K 0K×(S−K)

)T
. Since

tr
(
(R∗)TΛR∗) =

∑K
i=1 Λii, R∗ is optimal. There-

fore, an optimal solution Q∗ = ER∗ for problem (5) is
indeed the first K columns of E. �

An Optimal Solution for Regularized Framework and Its

Uniqueness Let Ê denote the first K columns of E and
take Eq. (4) into consideration, then an optimal solution for
problem (3) is

W∗ = U∗D
− 1

2∗ Ê = Φ∗V∗D−1
∗ Ê . (7)

Since each Wi is separable from W, an optimal solution
for subject i is

W∗
i = ΦiViD

−1
i Êi, (8)

where {Êi}Mi=1 are block matrices of Ê, which is cut along
the first dimension according to the dimensions of block ma-
trices in D∗.

By the equivalences above, if K > S, there is no solution
satisfying the constraint in problem (3) or (6) as there is no
R satisfying RTR = I. If K = S, or K < S with ΛKK <
Λ(K+1)(K+1), the optimal solution of problem (3) is unique
except being rotated. In other words, if W(1) and W(2) are
two optimal solutions, there is an orthogonal matrix P such
that W(1) = W(2)P. By the definition of W, it implies
that the shared feature space is unique except being rotated.
More details are given in the Supplementary File.

Low-Dimension Assumption

Potential Overfitting of GDM Suppose the dataset
{Xi}Mi=1 is temporally-aligned, which means that Ti =
Tj = T0 for any i, j. Construct a graph matrix G by setting
Gij = 1 if the i-th and j-th samples are temporally-aligned,
and Gij = 0 otherwise. With this graph matrix, the objective
function of problem (3) with linear kernel becomes

argmin
Wi

1

2

M∑
i=1

M∑
j=1

∥∥WT
i Xi −WT

j Xj

∥∥2
F

. (9)

Assume that each Xi ∈ R
Vi×T0 is full-column rank. Let

PK×T0
(K ≤ T0) be any matrix such that PPT = I

and take Eq. (4) into consideration where Φi is replaced
by Xi. With W∗

i = M−1UiD
− 1

2
i VT

i P
T and (W∗)T =(

(W∗
1)

T · · · (W∗
M )T

)
, W∗ satisfies the constraints in

problem (3). However, (W∗
i )

TΦi = M−1P for each i,
which implies that the generated optimal solution (8) aligns
each aligning sample perfectly. The culprit is the full-
column rank assumption of each Xi, which is almost the
case due to the HSLT resolution of fMRI, i.e., T0 � Vi.
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Therefore, we impose a low-dimension assumption over
each new feature space Hi, which conforms with that the
number of informative features is usually much less than the
number of voxels. Suppose the low-dimension in Hi is Li,
then we try to fit the data in Hi by an Li dimensional affine
subspace1, i.e.,

argmin
mi∈R

Ni

Fi∈R
Ni×Li

Ti∑
j=1

∥∥FiF
T
i ((φφi)j −mi)− ((φi)j −mi)

∥∥2
F

subject to FT
i Fi = I .

(10)
An optimal solution is m∗

i = T−1
i

∑Ti

j=1(φi)j and F∗
i

be the first Li columns of Ui in Eq. (4) where (φi)j ←
(φi)j − m∗

i for 1 ≤ j ≤ Ti. The general proof for any
Hilbert space is left in the Supplementary File.

Centralizing over Gram Matrices To generate and ap-
ply F∗

i , it is necessary to centralize all data by the mean
of the aligning data, i.e., (φi)j ← (φi)j − m∗

i . Suppose
Zi ∈ R

Vi×Ei is extra fMRI data for the i-th subject. Denote
all-one matrices by J. For subject i, the centralizing can be
applied on the Gram matrices directly since(

Φi(Zi)
T − T−1

i JEi×TiΦ
T
i

) (
Φi − T−1

i ΦiJTi×Ti

)
= Φi(Zi)

TΦi + T−2
i JEi×TiΦ

T
i ΦiJTi×Ti

−T−1
i JEi×Ti

ΦT
i Φi − T−1

i Φi(Zi)
TΦiJTi×Ti

.
(11)

From now on, suppose all Gram matrices have been cen-
tralized. As is provided in Eq. (4), Φi = ViD

1
2
i U

T
i , which

is an SVD. Denote the number of the (non-zero) singular
values in Di by si. Assume the singular values in D

1
2
i are

in descending order and the first Li (Li ≤ si) singular val-
ues approximately contains pi% (pi ∈ (0, 100]) energy , i.e.,∑Li

j=1(Di)
1
2
jj/
∑si

j=1(Di)
1
2
jj ≈ pi%. By this way, the low

dimension Li is controlled by pi%. Therefore, the corre-
sponding low-dimensional representation of Φi(Zi) would
be ÛiÛ

T
i Φi(Zi) where Ûi is the first Li columns of Ui.

Generally, with only Gram matrices, there is

Φi(Zi)
T ÛiÛ

T
i ÛiÛ

T
i Φi = Φi(Zi)

T ÛiÛ
T
i Φi

�= Φi(Zi)
TΦi .

Nevertheless, the equality holds with the help of V̂i that is
defined by the first Li columns of Vi

Proposition 3

Φi(Zi)
TΦiV̂i = Φi(Zi)

T ÛiÛ
T
i ΦiV̂i . (12)

Proof. Since ΦiV̂i = UiD
1
2
i V

T
i V̂i = ÛiΛi where

Λi is the upper left Li × Li submatrix of D
1
2
i , there is

ÛiÛ
T
i ΦiV̂i = ÛiÛ

T
i ÛiΛi = ÛiΛi = ΦiV̂i. �

1An L dimensional affine subspace in R
N is V + c where V is

an L dimensional subspace and c ∈ R
N .

Algorithm 1 Graph-Based Decoding Model (GDM)

Input: Aligning data {Xi ∈ R
Vi×Ti}Mi=1, the number of

the shared features K, the energy {pi%}Mi=1 to be kept,
a specific Laplacian matrix L and kernel functions for
each subject.

1: For each i, standardize Xi such that it has zero mean
along the second dimension and the variance of each
feature, i.e., voxel, is 1.

2: Generate {Ki}Mi=1 via specified kernel functions.
3: Centralize Gram matrices: Ki ← Ki +

T−2
i JTi×Ti

KiJTi×Ti
−T−1

i JTi×Ti
Ki−T−1

i KiJTi×Ti

4: for i← 1 to M do
5: Ki = ViDiV

T
i by spectral decomposition. The

eigenvalues in Di is in descending order.
6: Find Li such that the first Li diagonal elements of

D
1
2
i contains approximately pi% energy.

7: Let V̂i be the first Li columns of Vi .
8: Let D̂i be the top left Li × Li submatrix of Di .
9: end for

10: By spectral decomposition, V̂T
∗ LV̂∗ = EΣET where

the diagonal elements of Σ is ascending.
11: Let Ê be the first K columns of E and then cut Ê along

the first dimension such that Êi ∈ R
Li×K .

12: For 1 ≤ i ≤M , W∗
i ← ΦiV̂iD̂

−1
i Êi .

Therefore, the proposed kernel-based optimization can
easily incorporate the low-dimension assumption over each
new feature space. It will be shown in our experiments that
this is essential for getting useful results. The overall opti-
mization procedure of GDM is summarized in Algorithm 1.

Complexity Analysis

The shape of V̂T
∗ LV̂∗ is L×L where L =

∑M
i=1 Li and Li

is the low-dimension of the i-th subject. Suppose the Gram
matrices are given, and K < Ti for each i, i.e., the number
of the shared features is smaller than the sample size, the
complexity of GDM is O((

∑M
i=1 T

3
i ) +L(L2 + T 2 +LT ))

where T =
∑M

i=1 Ti. If each low-dimension Li is fixed,
the complexity thus becomes O((

∑M
i=1 T

3
i )+T 2). Notably,

it could be reduced into O(max1≤i≤M T 3
i + T 2) by using

parallel programming. By contrast, the naive kernel scheme
cannot be parallelized, and the complexity of employing it
is O(T 3). Therefore, our proposed kernel method is more
efficient compared to the naive kernel scheme. Besides, dif-
ferent from methods based on iterative optimization algo-
rithms, one can obtain the optimal solution of GDM directly.

Experiments

Materials We utilize five datasets shared by openfmri.org
and Chen et al. (Chen et al. 2015). The relevant information
about each dataset is outlined in Table 1. Raw datasets are
preprocessed by using FSL (fsl.fmrib.ox.ac.uk), following
a standard process (i.e., slice timing, anatomical alignment,
normalization, and smoothing). The default parameters in
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Table 1: The brief information and parameter settings for each dataset. Here, K is the number of the shared features, energy
p% is set for all subjects, ν is related to ν-SVM.

Dataset #subject #sample/subject #feature #category K energy(p%) ν #subject left out

DS105WB 6 994 19174 8 10 82 0.8 1
DS105ROI 6 994 2294 8 10 82 0.8 1

DS011 14 271 19174 2 10 82 0.3 2
DS001 16 485 19174 4 10 82 0.5 4
DS232 10 1691 9947 4 10 82 0.8 2

Raider.Movie 10 2203 1000 — 20 35 — —
Raider.Image 10 56 1000 7 — — 0.5 2

Table 2: The performance on temporally-aligned datasets is measured by BSC accuracy. The larger the better. Each performance
is reported by averaging accuracies over all folds with standard deviation. The bold denotes the best result on each dataset.

Dataset(#class) ν-SVM HA KHA SVDHA SRM RSRM RHA GDM (Ours)

DS105WB(8) 11.67± 1.80 39.70± 3.90 39.22± 4.50 30.48± 3.52 39.69± 3.95 40.01± 3.84 52.50± 4.28 60.68±5.23
DS105ROI(8) 13.06± 2.93 48.05± 3.93 48.22± 3.34 41.33± 4.19 48.14± 3.17 48.51± 3.80 57.63± 5.55 62.22±4.23

DS011(2) 51.80± 3.73 85.39± 3.52 85.79± 3.82 74.42± 4.40 85.47± 3.53 85.58± 3.89 91.80± 2.65 92.49±2.24
DS232(4) 25.89± 2.46 69.34± 3.22 69.38± 3.16 56.77± 4.52 69.18± 3.27 69.25± 3.20 77.64± 2.75 82.47±1.45
DS001(4) 34.32± 2.08 56.74± 1.63 57.10± 1.97 51.99± 1.87 56.83± 1.54 57.20± 1.30 57.87± 0.61 62.68±1.53
Raider(7) 26.61± 3.80 60.48± 3.68 60.71± 3.23 58.99± 4.19 60.65± 4.16 62.38± 3.48 59.82± 4.10 64.52±3.28

FSL were taken when the dataset does not provide. The de-
scription of each dataset is as follows:

(1) DS105: The fMRI data were measured while six sub-
jects viewed gray-scale images of faces, houses, cats, bot-
tles, scissors, shoes, chairs, and nonsense images (Haxby et
al. 2001). Hence, there are totally 8 categories in this dataset.
Here, DS105WB contains the whole-brain fMRI data while
the data in DS105ROI are based on a region of interest.

(2) DS011: Fourteen subjects participated in a single task
(weather prediction). In the first phase, they learned to pre-
dict weather outcomes (rain or sun) for two different cities.
After learning, they predicted weather (Foerde, Knowlton,
and Poldrack 2006). Thus, there are two cognitive states.

(3) DS001: Sixteen subjects were instructed to inflate a
control balloon or a reward balloon on a screen. For a control
balloon, subjects had merely one choice whereas they could
choose to pump or cash out for another case. After opting to
pump, the balloon may explode or expand (Schonberg et al.
2012). Hence, there are four different cognitive states.

(4) DS232: Ten subjects were instructed to respond to
images of faces, scenes, objects and phrase-scrambled ver-
sions of the scene images (Carlin and Kriegeskorte 2017).

(5) Raider: As a commonly-used one, it collected data
from 10 subjects participating in two experiments. Firstly,
10 subjects watched a movie Raiders of the Lost Ark (2203
TRs). The data of movie dataset does not contain any label.
In the next experiment, the same 10 subjects were shown 7
classes of images (female face, male face, monkey face, dog
face, house, chair and shoes) (Chen et al. 2015).

It’s worth noting that, except for Raider, all four other
datasets are not temporally-aligned. To compare GDM with
other temporal-alignment-based methods, following the pre-
vious study in (Chen et al. 2015), these datasets (i.e., DS105,

DS011, DS001, and DS232) are reordered and truncated, or
downsampled, to be aligned according to their categories.

Experimental Setup We follow the experiment setup with
a cross-validation strategy in previous studies (Chen et al.
2014; Haxby et al. 2011), as illustrated by Fig. S1 and
Fig. S2 in the Supplementary File. Specifically, except for
the Raider, each subject’s data is equally divided into two
parts with each category being equally split, one is for align-
ment whereas the other is for training or testing a clas-
sifier. Switching the roles of the two parts and leave-k-
subject-out strategy are adopted for cross-validation. For in-
stance, if there are 16 subjects, leave-4-subject-out leads
to 16 ÷ 4 × 2 = 8 folds for cross-validation. For Raider
dataset, the movie data is taken for alignment while the im-
age data is for classification. Here, the first 2, 202 time points
of movie data are used for alignment. Then it is equally di-
vided into threes parts with each part having 734 samples for
cross-validation. Since a leave-2-subject-out is used in this
dataset, there are a total of 10 ÷ 2 × 3 = 15 folds when
using Raider. As shown in Fig. S1 in the Supplementary
File, the experiment on each dataset contains two stages:
1) aligning phase, and 2) classification phase. At the first
phase, one part of all subjects’ data are fed into a functional
alignment method to yield the corresponding aligning maps
{fi : R

V
i �→ R

K}Mi=1. At the classification phase, the re-
maining part of data are first mapped to the shared feature
space via the learned aligning maps and then used for classi-
fication model construction. Note that those data used at the
aligning phase will not be used at the classification phase in
our experiments.

Since each dataset (or part of it) used in this paper in-
cludes labels, the performance of alignment is assessed by
testing how well a trained classifier can generalize to new
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Figure 1: Performance of GDM on incomplete or unaligned datasets. Here, q% incompleteness means that q% of the aligning
data are randomly removed per subject. The term “Without alignment” denotes the ν-SVM method without any alignment.
“The best of others” refers to the best result of six competing methods with complete data, and “Guess” denotes the randomly
guess method.

Figure 2: The necessity of low-dimension assumption for GDM. Here, p% energy shows how much energy is nearly kept per
subject. The term “Without alignment” denotes the ν-SVM method without any alignment.

subjects, i.e., between-subject classification (BSC) accuracy
(Haxby et al. 2011). Like previous studies, ν-SVM is used
for classification (Chang and Lin 2011).

Competing Methods The proposed GDM method is com-
pared with six state-of-the-art methods in the experiments,
including (1) Hyperalignment (HA) (Haxby et al. 2011),
(2) Regularized Hyperalignment (RHA) (Xu et al. 2012),
(3) Kernel Hyperalignment (KHA) (Lorbert and Ramadge
2012), (4) SVD-Hyperalignment (SVDHA) (Chen et al.
2014), (5) Shared Response Model (SRM) (Chen et al.
2015), and (6) Robust SRM (RSRM) (Turek et al. 2018).
All methods are implemented by ourselves in Python.

The parameter settings for each dataset are briefly listed
in Table 1. For a fair comparison, the parameter ν in ν-SVM
(with a linear kernel) is fixed for all methods on each dataset.
For six competing methods, we choose the optimal hyperpa-
rameters according to their original papers. For our GDM
model, a linear kernel is fixed, while the influence of differ-
ent kernels are shown in Figs. S3-S8 in the Supplementary
File. For the Raider dataset, we set Gij = 1 if the i-th and j-
th samples are temporally aligned; and Gij = 0, otherwise.
For the other datasets, we set Gij = 1 if the i-th and j-th
samples are in the same category; and Gij = −1, otherwise.

Results on Aligned Datasets On the temporally-aligned
datasets, we report the BSC accuracy values achieved by
eight different methods in Table 2. As can be seen from Ta-
ble 2, for each aligned dataset, the proposed GDM method
consistently outperforms the competing methods in terms of
BSC accuracy. For example, GDM achieves the improve-

ment of > 8% compared to the second best result (i.e., 52.50
of RHA) on the DIS105WB dataset.

Results on Unaligned Datasets To assess the perfor-
mance of GDM when dealing with unaligned data, we ran-
domly remove some data from each aligned dataset. Here,
the term q% incompleteness means that q percent of aligning
data are randomly removed per subject. The corresponding
results are shown in Fig. 1. Notably, six competing meth-
ods (i.e., HA, RHA, KHA, SVDHA, SRM, and RSRM)
cannot be applied to such incomplete datasets since they
are designed for aligned data. More results can be found in
Figs. S3-S5 in the Supplementary File. From Fig. 1, one can
observe that our GDM is able to preserve a dominant BSC
accuracy with incompleteness up to at least 20%. For the
DS232 dataset, the performance of GDM still beats others
with 50% incompleteness. These results further validate the
superiority of GDM in handling unaligned data.

Necessity of Low-Dimension Assumption To evaluate
the influence of low-dimension assumption on GDM, we
perform another group of experiments to study the BSC val-
ues achieved by GDM with different energy ratios kept on
three datasets, with results reported in Figure 2. This fig-
ure suggests that the best results are not achieved by GDM
with 100% energy on each dataset, thus verifying the im-
portance of the low-dimension assumption. Besides, on the
Raider dataset, GDM still achieves a good result with around
20% energy kept. We conjecture that it results from the fact
that the movie data contain much richer information than the
visual data generated from simple objects. More results can
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be found in Figs. S6-S8 in the Supplementary File.

Conclusion

As an essential step in fMRI analysis, functional alignment
removes the differences between subjects’ brains so that
multi-subject fMRI data can be aggregated to make valid
and general inferences. However, the existing methods can-
not well handle unaligned fMRI datasets. In this paper, a
flexible framework is developed on a cross-subject graph
that depicts the (dis)similarities among all samples. To re-
duce the computational cost, the framework is regularized
so that a novel feasible kernel-based optimization is analyt-
ically developed. To avoid overfitting caused by the HSLT
resolution of fMRI, a low-dimension assumption is made
over each new feature space, and we also propose a way to
incorporate such an assumption into our proposed optimiza-
tion. Experimental results attest to the superiority of GDM.
In the future, we plan to study how to construct an informa-
tive graph matrix in different situations.
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