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Abstract

Visual Speech Recognition (VSR) is the process of recogniz-
ing or interpreting speech by watching the lip movements of
the speaker. Recent machine learning based approaches model
VSR as a classification problem; however, the scarcity of train-
ing data leads to error-prone systems with very low accuracies
in predicting unseen classes. To solve this problem, we present
a novel approach to zero-shot learning by generating new
classes using Generative Adversarial Networks (GANs), and
show how the addition of unseen class samples increases the
accuracy of a VSR system by a significant margin of 27%
and allows it to handle speaker-independent out-of-vocabulary
phrases. We also show that our models are language agnostic
and therefore capable of seamlessly generating, using English
training data, videos for a new language (Hindi). To the best
of our knowledge, this is the first work to show empirical
evidence of the use of GANs for generating training samples
of unseen classes in the domain of VSR, hence facilitating
zero-shot learning. We make the added videos for new classes
publicly available along with our code1.

1 Introduction

In Visual Speech Recognition (VSR), also known as auto-
mated lip reading, a system has to recognize words spo-
ken by a human in a silent video, by primarily focusing on
the region of the speaker’s lips. VSR has a wide variety of
potential applications such as in cybersecurity, and as as-
sistive/augmentative technology (Schmidt et al. 2013). For
example, if a person has a laryngectomy or voice-box cancer,
dysarthria, or works in very loud environments such as a
factory floor, VSR can be enabling.

VSR is treated as a classification problem. The training
data can have single or multiple views of different speakers,
paired with utterance labels (e.g. digits, phrases or sentences).
Given a video displaying lip movements of a speaker, the
model outputs a probability distribution over the utterance

∗These authors contributed equally. Author order was deter-
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Intelligence (www.aaai.org). All rights reserved.

1The code as well as the supplementary file can be found at
https://github.com/midas-research/DECA/. The videos can be ac-
cessed through this YouTube playlist link: https://bit.ly/336geft.

labels. The final prediction is the utterance label with the
highest probability score. The performance of humans in
lip reading is poor, with the best lip readers achieving an
accuracy of just around 21% (Easton and Basala 1982), so
VSR is a challenging task.

Modeling VSR as a classification problem limits the pre-
dictions to a fixed number of utterances. This significantly
hinders model generalization on predicting out-of-vocabulary
(OOV) classes, i.e. new utterances, new poses or new speak-
ers. Additionally, preparing datasets for training VSR models
is a challenging task by itself as it requires collecting hours
of video recordings of utterances from multiple speakers and
multiple poses. Recently, significant effort has gone into col-
lecting high-quality VSR datasets, yet VSR is still both more
complex than and has far less available training data than its
close relative, “classic” audio speech recognition. Therefore
in functionality VSR is basically where audio speech recog-
nition was in the late 1980s - isolated words/phrases, limited
speakers.

Due to the unique aspects of VSR as a task, the challenges
associated with it and its potential applications, it forms an
appropriate down-stream task for low-shot OOV problem
settings. The challenge of automatically learning new classes
and to generalize from very few labeled examples is often
called low-shot (or few-shot) learning (Wang et al. 2018); or
zero-shot learning (Socher et al. 2013), in situations where
there are no examples of certain classes at all. Two main
techniques applied to solve such machine learning problems
are: (i) data driven approaches (Krizhevsky, Sutskever, and
Hinton 2012), which rely on adding more data either by col-
lecting data from external sources or by augmenting existing
datasets by synthesizing similar data points, and (ii) parame-
ter driven approaches (Elhoseiny et al. 2017), which rely on
regularization techniques in order to constrain the number of
parameters to be learnt by the model.

In 2014, Goodfellow et al. presented the idea of Genera-
tive Adversarial Networks (GANs) (2014). Since then, there
has been significant research on GANs and their applica-
tions (Creswell et al. 2018). In their seminal work, Good-
fellow et al. mention data augmentation as one of the ap-
plications of GANs, and indeed there is a growing litera-
ture focusing on it (Antoniou, Storkey, and Edwards 2017;
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Wang et al. 2018). However, to date, the primary use of GANs
for image/video data augmentation has been as a proxy to
traditional approaches such as rotation, reflection, cropping,
translation, scaling and adding Gaussian noise (Krizhevsky,
Sutskever, and Hinton 2012), and augmenting training data
for a classification problem by generating similar data items
(Antoniou, Storkey, and Edwards 2017). Recently, GANs
have been used to generate unseen images from text descrip-
tions (Zhu et al. 2018).

However, to the best of our knowledge, no prior work uses
GANs to augment VSR datasets with data items representing
new classes and performing zero-shot learning.

In this paper, we describe how we generate lip move-
ment videos of unseen utterances using Temporal Conditional
Generative Adversarial Networks (TC-GANs) (Vougioukas,
Petridis, and Pantic 2018) and a viseme-concatenation ap-
proach (Huang, Cosatto, and Graf 2002) (Section 5). As
illustrated in Figure 1, we use the generated data for training
a deep learning model for VSR. We empirically show the
usefulness of the augmented data in increasing the accuracy
of the VSR model while predicting unseen utterances. Addi-
tionally, we also show that our solution does not only cater to
unseen utterances of the same language but also works well
for a new language.
Our Contributions - The key contributions we make are
summarized as follows:

• We introduce zero-shot learning using GANs for augment-
ing VSR datasets with data for unseen utterances.

• We show that our solution results in improved accuracies
of up to 27% in prediction of unseen utterances at test
time.

• We show results for the cold-start problem (no training
data at all for training the VSR model) on lipreading for
the first-time in the literature (Amplayo et al. 2018).

• We further show that this method can work for zero-shot
learning for an unseen language, Hindi.

• We expand the OuluVS2 dataset (Anina et al. 2015) by
adding videos for 10 new Hindi phrases and 25 new En-
glish phrases generated using our model2. We plan to re-
lease this dataset as well as the code for generating it. But
due to space constraints, we only conduct experiments on 3
new Hindi phrases and the 10 phrases present in OuluVS2.

2 Related Work

2.1 Visual Speech Recognition

Most early approaches to VSR such as (Ngiam et al. 2011)
treat it as a single-word classification task. Other researchers
such as (Goldschen, Garcia, and Petajan 1997) use meth-
ods borrowed from acoustic speech recognition like HMMs.
However, most work has focused on predicting utterances
from limited lexicons. Furthermore, these techniques heavily
rely upon hand-engineered feature pipelines.

With advancements in deep learning and the increasing
availability of large lip reading datasets, there have been
approaches such as (Wand, Koutnı́k, and Schmidhuber 2016;

2More details are present in supplementary materials

Zhou et al. 2019; Salik et al. 2019) addressing lip reading
using deep learning based algorithms such as CNNs and
LSTMs. Further, there have been works such as (Lee, Lee,
and Kim 2016; Kumar et al. 2018b; Uttam et al. 2019; Kumar
et al. 2019) extending lip reading from single view to multi-
view settings by incorporating videos of mouth sections from
multiple views together. Multi-view lip reading has been
shown to improve performance significantly as compared to
single view. Although the deep learning-based methods don’t
require hand-engineered features, most still treat lip reading
as a classification task.

2.2 Few- and Zero-Shot Learning

In few-shot learning, one learns a model that can generalize
to classes that have few examples in the training set (Lake,
Salakhutdinov, and Tenenbaum 2015). The few-shot learning
problem has been studied from different perspectives such
as optimization (Ravi and Larochelle 2017), metric learn-
ing (Vinyals et al. 2016), similarity-matching (Koch, Zemel,
and Salakhutdinov 2015), and hierarchical graphical models
(Salakhutdinov, Tenenbaum, and Torralba 2012). However,
generalizing a classifier on unseen classes is mostly uninves-
tigated. We show that GANs can generate data for classes
unseen during training, and that this generated data can give
improved accuracy for the downstream VSR task.

This problem falls under the meta-learning umbrella
(Thrun 1998; Shrivastava et al. 2019). High-level visual
concepts like camera-pose or brightness, or even higher-
level concepts like articulation (in the case of VSR) are
shared across computer vision problems. Contemporary meta-
learners, however, largely ignore these cross-task structures
(Wang et al. 2018). Using augmentation strategies like crop-
ping and shifting, researchers have tried to make meta-leaners
learn some of these high-level visual concepts. However,
high-level concepts like articulation require a different type
of augmentation than simply changing brightness or camera
angle; one needs a way to break down the high-level concept
into decomposable elements (Zhu et al. 2018). In the case of
(Zhu et al. 2018), the decomposable elements are keywords.
In the case of VSR, the decomposable basic elements of
articulation are visemes, the visual equivalents of phonemes.

Several research studies have shown that by knowing the
probability distribution on transformations, one can generate
examples from an unseen class by applying those transfor-
mations (Hariharan and Girshick 2017; Wang et al. 2018;
Shah and Zimmermann 2017). Some authors (Hariharan and
Girshick 2017), try to first learn transformations from some
examples of a known class and then apply those transforma-
tions to some seed examples of a new class. This approach
increases the data size of the novel class and hence helps
in boosting accuracy. In our case, the transformations are
the conditions which we impose on temporal-conditional
GANs to make them generate new visemes. We present these
conditions and transformations in Section 5.

3 Dataset

We use the OuluVS2 dataset (Anina et al. 2015), a multi-
view audio visual dataset. OuluVS2 has been used in several
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Figure 1: Overall pipeline demonstrated with the generator G as the TC-GAN architecture

previous VSR studies (Chung et al. 2017; Kumar et al. 2018b;
2018a). It contains data from 52 speakers. Each speaker is
filmed speaking three types of utterance:

• Oulu-digits - digit sequences like 1, 9, 0, 7, 8, 8, 0, 3, 2, 8.

• Oulu-phrases - ten short common English phrases such as
“Excuse me” and “see you”.

• Oulu-sentences - randomly chosen TIMIT sentences (Garo-
folo 1993), such as “Basketball can be an entertaining
sport” and “Are holiday aprons available to us?”.

Speakers are filmed from five different poses:
{0◦,30◦,45◦,60◦,90◦}.

We describe our training, testing, and validation splits in
Section 6, along with the relevant experiments.

4 Problem Formulation

In this section, we describe the data-driven approach we
followed in this paper.

In general, a supervised classifier can be depicted as learn-
ing a conditional distribution p(yi|xi), s.t. (xi, yi) ∈ S train,
the set of training samples. The set S test is used for testing the
model. The set of all the labels present in S train is given by
Y train (also referred as Y seen later in the text), and Y test gives
the set of all the labels present in S test. Similarly, X train repre-
sents the set of all the inputs present in S train (also referred
as X seen later), and X test denotes those in S test.

In our problem setting, unseen classes are present in the
test dataset i.e., Y test - Y train �= φ. Let Y test - Y train = Yunseen.
Let the inputs corresponding to Yunseen be denoted as X unseen.
Thus, Yunseen represents all the unseen classes, the classes
which the model does not get to see while training.

Our main objective in this work is to enable the model
to correctly predict the labels present in Yunseen, given that
Yunseen is available but no xi ∈ X unseen, is available for train-
ing. In other words, we aim to increase accuracy on X unseen
using the knowledge available at train time (S train, Yunseen),
while not decreasing accuracy on X train.

To solve this problem, we “hallucinate” X unseen using S train
and the labels present in Yunseen. We do this by learning a
function f : Y � X . For approximating X unseen with f
using machine learning, we only have S train which, notably
does not have any information about X unseen. For solving this
problem, we introduce an intermediate representation Z such
that g : Y � Z and h : Z � X .

In the case of lipreading, X represents videos of speakers
and Y represents the utterance labels. Z represents the au-
dio representation of the utterances. The function g takes an
utterance label and converts it into its corresponding audio.
The function h is approximated in this work by a TC-GAN
model or a viseme-concatenation approach. The function h
takes in audio as input and produces a corresponding video as
output. The input-output relation between audio and video is
not one-to-one since videos of different speakers in different
poses have the same audio. In order to make this mapping
one-to-one, we introduce speaker and pose information I; h
becomes h : Z × I � X . The pair of (audio, speaker im-
age in the specified pose angle) uniquely identifies a video.

The overall data hallucination pipeline is as follows:

• The utterances present in the set Yunseen are projected onto
the audio space Z (Sections 5 and 6).

• A speaker’s image chosen randomly from the training sub-
set of Oulu-phrases and the audio projections of utterance
zi (where zi ∈ Z) help the generator models (i.e. TC-
GAN and viseme-concatenation) generate videos for the
set X TC−GAN

unseen and X viseme−concat
unseen (Section 5).

• The sets X TC−GAN
unseen and X viseme−concat

unseen are then in-
cluded individually in S train in different experiments. These
different experiments allow us to gauge the efficacy of the
two approaches of generating unseen videos separately
(Section 6).

The model thus trained is then tested on the full S test which
contains original (rather than hallucinated) videos of both
seen and unseen classes (Section 6).

A question that generally gets asked is how the viseme-
concatenation and TC-GAN approaches are able to generate
videos of unseen classes just by taking audio as input. The
viseme-concatenation approach uses a manual mapping of
phonemes to visemes. The TC-GAN approach, by contrast,
learns to maps phonemes to visemes. The TC-GAN approach
also learns inter-visemic frames, i.e., the frames which occur
between two visemes. These are intermediate mouth forma-
tions that stitch together articulations. The importance of
these inter-visemic frames can be judged by the fact that the
viseme-concatenation approach does not result in as good a
performance as the TC-GAN approach (Section 6).
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5 Methodology

In this paper, we apply two techniques for zero-shot learning
to VSR; first, a Generative Adversarial Network (GAN) ap-
proach, and second, a viseme-concatenation approach. Both
approaches synthesize examples belonging to classes unseen
at training time (Yunseen). The overall process is depicted in
Figure 1. Our pipeline is primarily composed of two compo-
nents - a generator G (Sections 5.1 and 5.2), and a classifier
network H, whose main objective is to perform the task of
VSR as described in Section 5.3. G’s task is to hallucinate
lip movement videos for utterances not present in the train-
ing data (Yunseen), as if they were uttered by a given speaker
in a given pose. H is then trained on the videos generated
by G as well as on real videos, hopefully making it a ro-
bust model which performs well on both seen and unseen
class labels (Yunseen∪Y seen). Next, we describe the individual
components of our pipeline.

5.1 Temporal Conditional GAN

Audio

Generator

Identity Condition

Audio Condition

Generated

Sequence
DiscriminatorReal

Frame
Discriminator

Noise

Input
Conditional Input

Still Image

Figure 2: Temporal Conditional GAN Architecture

Our TC-GAN model relies heavily on the recently pub-
lished work of Vougioukas, Petridis and Pantic (2018), who
generated lip movement animations using Temporal Condi-
tional GANs (TC-GANs). We reimplemented the model from
this paper, and trained it on Oulu-sentences. The TC-GAN is
composed of three main components as shown in Figure 2,
comprising a single generator, and two discriminators - (a) a
frame discriminator, and (b) a sequence discriminator. Here,
we briefly describe these components3.
Generator: The Generator takes three inputs: a) Gaussian
noise, b) a still image of a speaker’s lips from a particular
pose angle, and c) audio of the utterance being spoken. The
Generator is conditioned on the audio and the still image.
The image encoding component of the popular segmentation
algorithm U-Net (Ronneberger, Fischer, and Brox 2015) is
used to encode the identity of the still image into a latent
vector (LI ). The audio file is divided into small chunks of
overlapping samples, passed through a 1-D CNN, and then
fed to a 2-layer GRU to generate an audio latent vector (LA)

3Please refer to the original work (Vougioukas, Petridis, and
Pantic 2018) for a detailed description and also refer to the supple-
mentary materials to get a detailed list of the we parameters used in
training our TC-GAN model.

for each corresponding time step. A Gaussian noise vector is
generated and passed through a 1-Layer GRU at each time
step producing the noise latent vector (LN ). The three latent
vectors are concatenated to produce a single latent vector
which is then passed through the decoder component of U-
Net to produce the generated frame at that time step. The
process is repeated temporally to generate animated frames
corresponding to each chunk of the audio sample.
Frame Discriminator: The Frame Discriminator is a 6-
Layer CNN. It takes in an input frame, which can be real or
hallucinated, concatenated channel-wise with the still image
of the speaker’s lips (the same still image as the one fed to the
Generator) and is trained to discriminate whether the input
frame is real or hallucinated.
Sequence Discriminator: The real or hallucinated video seg-
ment at each time step is passed through a 2-Layer GRU and
encoded into a latent vector. The same is done for the audio
sample at each time step. The two latent vectors produced are
then concatenated and passed through a 2-Layer CNN that is
trained to discriminate between real and hallucinated videos.

Ladv (Dimg, DSeq, G) = Ex∼Pd
[logDimg(S(x), x1)]+

Ez∼Pz
[log (1−Dimg (S(G(z)), x1))] +

Ex∼Pd
[logDseq(x, a)] +

Ez∼Pz
[log (1−Dseq(G(z), a))] (1)

Equation 1 represents the adversarial loss function of the
model where Dimg is the frame discriminator, DSeq is the
sequence discriminator, G is the frame generator, x1 and a
are the still image and audio used as conditional input, and x
is the sequence of frames in the real video.

LL1
=

∑
p∈[0,W ]×[0,H] |Fp −Gp| (2)

The pixel-wise L1 reconstruction loss function on each real
frame F and generated frame G, both of dimension W x H ,
is represented by Equation 2.

For generating a video of a particular speaker speaking a
given utterance, we follow these steps: First, if the phrase
is present in Oulu-phrases then the audio file present in the
dataset are used; otherwise, an off-the-shelf Text-To-Speech
(TTS) software4 is used for generating the audio file. The
audio file is sub-sampled into small overlapping chunks. Each
chunk, along with the still image of the speaker, is given as
input to the generative part of our model, which then outputs
a video frame (an image) corresponding to that chunk. The
resulting sequence of video frames is then concatenated to
obtain the generated video, as shown in Figure 1.

In essence, the model learns how to map phonemes to
visemes. Our model is trained on Oulu-sentences, which
contains phonetically rich TIMIT sentences in the English
language. Therefore, our model sees a rich set of phonemes
for the English language during training. Based on this, we as-
sume that it can map the majority of the phonemes present in
the English language into their corresponding visemes. How-
ever, our model is not limited to only a fixed set of visemes;
it also generates inter-visemic frames, as shown in Figure 3a.
These inter-visemic frames cannot be mapped to a distinct

4https://ttsmp3.com
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Figure 3: TC-GAN output for an English phrase (a) and a Hindi phrase (b). Viseme-concatenation output for an English phrase
(c) and a Hindi phrase (d).

viseme; they are the images of intermediate mouth move-
ments present between two different visemes. The genera-
tion of inter-visemic frames by the TC-GAN model ensures
smooth and continuous mouth movements in the entire gener-
ated video. If the inter-visemic frames are removed, anyone
viewing the video would not be able to understand what is
being spoken and the whole video would appear unnatural
and discontinuous.

We also generate utterances in the Hindi language, which
is an entirely different language from that which the model
is trained on. The generation process of an example Hindi
phrase Aap kaisey hain (How are you) is shown in Figure
3b. The phonemes present in the Hindi phrase are [‘AA’, ‘P’,
‘K’, ‘AY’,‘Z’,‘IY’,‘HH’,‘IY’,‘N’], and are also present in
the TIMIT sentences. Since the phonemes are common and
our model has learned to map phonemes to visemes, it can
also generate a video of a speaker speaking the given Hindi
utterance.

5.2 Concatenation of Visemic Frames

The other technique we use for data generation is a Concate-
native Visual Speech Synthesis technique (Huang, Cosatto,
and Graf 2002), which works by using visemes to generate
video. Each viseme is just an image of a mouth movement
of a speaker corresponding to a particular sound. In this tech-
nique, video of lip movements for a speaker speaking a given
utterance is generated by selecting appropriate viseme frames
from a set of visemes belonging to that speaker and then con-
catenating them. This technique requires a speaker-to-viseme
database which contains the set of all the visemes for ev-
ery speaker whose video we want to generate. We construct
this database 5 by parsing through all the videos present in
Oulu-sentences and manually annotating the set of visemes
for every speaker present in the dataset.

An example of the generation process using this technique
for a speaker speaking the English utterance Goodbye is

5It is present in the supplementary file.

shown in Figure 3c. For generating a video of a speaker
speaking the given English utterance, first, we convert the
utterance into a sequence of phonemes using the CMU Pro-
nouncing Dictionary 6. The resulting sequence of phonemes
[‘G’,‘UH’,‘D’,‘B’,‘AY’] is then matched to a sequence of
visemes. This is done by using the Jeffers phoneme-to-viseme
map (Jeffers and Barley 1971)7, and our speaker-to-viseme
database. Note that the Oulu-sentences segment of the dataset
contains all the phonemes present in the English language.
Therefore it also contains all the visemes which can be
mapped from any phoneme present in the English language.
The resulting sequence of visemes is then concatenated to
obtain the generated video.

We also generate phrases in the Hindi language. An exam-
ple is the Hindi phrase Aap kaisey hain (How are you) shown
in Figure 3d. Since the CMU Pronouncing Dictionary does
not work for Hindi phrases, we use phonemizer8, which is a
multi-lingual text-to-phoneme converter, for converting an
input Hindi phrase into a sequence of phonemes. Since most
of the phonemes present in Hindi are also present in Oulu-
sentences, we can use the Jeffers phoneme-to-viseme map
and our speaker-to-viseme database to map the sequence of
phonemes into a sequence of visemes. The resulting sequence
of visemes is then concatenated to obtain the generated video.

5.3 VSR Model

For VSR, we implement and train the architecture from
(Petridis et al. 2017). The architecture consists of three parts:
an encoder, two BiLSTM layers, and a fully connected layer.
The encoder is composed of 3 fully connected layers. The
resultant encoded information is concatenated with its first
and second derivative and fed into the first BiLSTM layer.
The first BiLSTM layer captures the temporal information
associated with each view, and the second BiLSTM layer is

6http://www.speech.cs.cmu.edu/cgi-bin/cmudict
7More details are present in the supplementary materials.
8https://github.com/bootphon/phonemizer
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used to fuse the information from different views. The last
fully-connected layer produces the final output class proba-
bilities. We use PyTorch (Paszke et al. 2017), and release our
implementation as part of the supplementary material.

6 Experiments

6.1 Experimental Setting

In this section, we present experimental results:
• comparing the TC-GAN and viseme-concatenation ap-

proaches for adding new (unseen) classes to Yunseen (Sec-
tion 6.2).

• assessing the extent to which a VSR model can harness
hallucinated data for improving accuracy on Yunseen while
maintaining accuracy for Y seen.

• evaluating the ability of the overall system to adapt to a
new language (Section 6.3).
In order to conduct our experiments we train three different

model configurations:
• Model 1 - a model trained only on Oulu-phrases.
• Model 2 - a model trained on Oulu-phrases and on videos

generated using the TC-GAN model.
• Model 3 - a model trained on Oulu-phrases and on videos

generated using viseme-concatenation.

Table 1: Overall top-3 accuracy (%) for each model on
Yunseen ∪ Y seen.

S.
No.

Seen
classes

Unseen
classes

Model 1 Model 2 Model 3

1 9 1 90 98.3 86.4
2 8 2 79.4 90 76.4
3 7 3 70 84.4 67.8
4 6 4 60 72.2 60.5
5 0 10 30.8 70 34.7

Table 2: Overall top-1 accuracy (%) for each model on
Yunseen ∪ Y seen.

S.
No.

Seen
classes

Unseen
classes

Model 1 Model 2 Model 3

1 9 1 87.2 89.7 81.1
2 8 2 77.2 81.4 70.8
3 7 3 69.2 72.8 62.8
4 6 4 58.9 65.3 54.7
5 0 10 13.3 40 17.5

As suggested by (Petridis et al. 2017; Anina et al. 2015;
Kumar et al. 2018b), we take 35 speakers for training, 5
speakers for validation, and the remaining 12 speakers for
testing the different models. For Oulu-phrases, which is used
to train the VSR model, this results in a total of 5250, 750,
and 1800 videos belonging to train, test, and validation data
respectively. Similarly, for Oulu-sentences, which is used to
train the TC-GAN model, this results in a total of 875, 125,
and 300 videos belonging to train, test, and validation data

Table 3: The best view combination ranked according to their
score on validation split.

Exper-
iment

S.
No.

Model
1

Model
2

Model
3

Set-1

1 {0◦,30◦,45◦ ,60◦,90◦} {30◦,60◦,90◦} {0◦}
2 {0◦,45◦ ,90◦} {0◦,45◦ ,60◦,90◦} {0◦}
3 {0◦,60◦,90◦} {45◦ ,90◦} {0◦}
4 {0◦,30◦,60◦,90◦} {45◦ ,60◦,90◦} {0◦}
5 {0◦} {0◦,30◦,45◦ ,60◦} {0◦}

Set-2 1 {45◦ ,60◦,90◦} {0◦,30◦,45◦ ,90◦} {0◦}

respectively. It is to be noted that the VSR model and the
data generation models share the same training, validation
and test speaker splits, ensuring that no data belonging to the
test speakers is seen by the data generating models during
training and vice versa.

In our experiments, Model 1 is our baseline. The major
differences between Models 2 and 3 are that the videos be-
longing to Model 2, on account of being generated using TC-
GANs, have inter-visemic frames. Thus, Model 2’s videos
have articulatory continuity while frames in videos for Model
3 are non-continuous.

We report top-1 and top-3 accuracy. Top-3 accuracy de-
notes whether the true utterance occurs in the top-3 predicted
utterances ranked by confidence. Top-1 and Top-3 results
follow the same trend.

Note that since our dataset has multiple views (pose an-
gles), we have a separate TC-GAN model for each view
and the pose of the input speaker lip region image corre-
sponds with the TC-GAN model used. For handling different
view videos as input, we have a different VSR model corre-
sponding to each view combination. During evaluation, we
report the results on the test split for the view combination
VSR model which has the highest score on the validation
split. For all the different sets of experiments, the best view-
combination is given in Table 3.

6.2 Experiment-Set 1 : Experiments on Unseen
Classes

In this set of experiments, we test our models on unseen
classes in the same language (Yunseen). The unseen classes
are utterances not present in the real training data. Model 1
therefore contains no instances of these utterances. Model
2 contains instances of these utterances hallucinated by the
TC-GAN model, while model 3 contains instances of these
utterances hallucinated by viseme-concatenation.

Table 4: Overall top-3 accuracy (%) of each model on Yunseen
and separately on Y seen (separated by /).

Unseen classes Model 1 Model 2 Model 3

1 0 / 100 86.1 / 99.7 5.5 / 95.4
2 0 / 99.3 52.8 / 99.3 1.4 / 95.1
3 0 / 100 49.1 / 99.6 0.0 / 96.8
4 0 / 100 31.2 / 99.5 8.3 / 95.4

The top-3 and top-1 accuracies of each model on Y seen ∪
Yunseen are given in Tables 1 and 2. To make sure that train-
ing on new data for Yunseen does not negatively impact the
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Table 5: Overall top-1 accuracy (%) of each model on Yunseen
and separately on Y seen (separated by /).

Unseen classes Model 1 Model 2 Model 3

1 0 / 96.9 33.3 / 96 0 / 90.1
2 0 / 96.5 23.6 / 95.8 0 / 88.5
3 0 / 98.8 21.3 / 94.8 0 / 89.7
4 0 / 98.1 16 / 98.1 0.7 / 90.7

accuracy for Y seen, we also report top-3 and top-1 accuracies
on Yunseen and Y seen separately in Tables 4 and 5.

We ran multiple experiments varying the number of unseen
classes from 10% to 40%. Model 2 always performs better
than Models 1 and 3 on unseen classes. The top-3 accuracy
cost for Model 2 on seen classes is 0%-0.5%, depending on
the number of unseen classes. Model 3 performs far worse
than Model 2 on unseen classes, while incurring a bigger
accuracy cost on seen classes.

As an extreme case, we also show the performance of the
models when 100% of the classes are unseen, in the last row
in Tables 1 and 2. This represents the cold-start problem for
VSR systems (Amplayo et al. 2018). On this type of problem,
Model 1 gets a top-3 accuracy of just 30.8% (an accuracy
which is still better than randomly predicting any class) while
Model 2 gets more than double that accuracy. This indicates
that data hallucination can be used for cold-start for VSR.

6.3 Experiment-Set 2 : Experiments on New
Language

In this set of experiments, our unseen classes are classes
from a different language, Hindi. The utterances we use for
this analysis are { Aap kaisey hai (How are you), Kyaa chal
rahaa hai (What is going on), Shubh raatri (Good night) }.
We test the models by retaining English Oulu-phrases Y seen
and introducing Hindi phrases as Yunseen. The results on the
test split pertaining to this setting are given in Table 6.

Both Model 2 and Model 3 perform better than the Model
1. This is expected since Model 1 has never seen any Hindi
phrase. Model 2 performs better than Model 3 by a margin
of 22.5%. It is also interesting to note that Model 2 has a
100% top-3 accuracy on the newly introduced Hindi phrases
(Yunseen), while Model 3 only has a 32.4% top-3 accuracy.
Additionally, the top-1 accuracy of Model 2 and Model 1 is
almost the same when evaluated on the seen classes, while
we see a drop in top-1 accuracy of more than 2% in the
case of Model 3. Both of these results again demonstrate the
importance of the presence of inter-visemic frames in the
generated video.

Since, for Model 2, new data has a negligible affect on
seen class accuracy, and the difference between Model 1 and
Model 2 is only the addition of the data generated by the TC-
GAN model for unseen classes, we can safely assume that
we can extend the number of classes significantly without
adversely affecting the performance on seen classes. These
results clearly show that Model 2 is able to clearly distinguish
between Hindi and English phrases and is able to predict both
with a very high degree of certainty compared to both Model
1 and Model 3.

Table 6: Overall accuracy of each model on unseen classes
from a different language (Hindi)

Metrics Model 1 Model 2 Model 3

Top-1 Accuracy (Acc) 72.6 95.1 72.6
Top-3 Acc 76.7 99.6 83.9
Unseen Class Top-1 Acc 0 96.3 7.4
Unseen Class Top-3 Acc 0 100 32.4
Seen Class Top-1 Acc 94.4 94.7 92.2
Seen Class Top-3 Acc 99.7 99.4 99.4

7 Conclusions and Future Work

In this paper, we introduced a GAN-based method to deal
with the zero-shot learning problem for VSR. We demon-
strated that this method is more effective than viseme-
concatenation for data augmentation for unseen classes, and
that it does not cause appreciable degredation in accuracy
for seen classes. We show that this method can be used to
help a VSR model generalize to unseen classes and to a new
language.

Although in this work, we explored the phonetically close
language pair of English and Hindi, it would be interesting
to explore it on phonetically-far language pairs, like English
and Hopi, where new visemes must also be hallucinated. Ad-
ditionally, we would like to explore TC-GAN data augmen-
tation for continuous VSR, as opposed to the classification-
based VSR approach we used in this paper.
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