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Abstract

When deploying autonomous agents in the real world, we
need effective ways of communicating objectives to them.
Traditional skill learning has revolved around reinforcement
and imitation learning, each with rigid constraints on the for-
mat of information exchanged between the human and the
agent. While scalar rewards carry little information, demon-
strations require significant effort to provide and may carry
more information than is necessary. Furthermore, rewards
and demonstrations are often defined and collected before
training begins, when the human is most uncertain about what
information would help the agent. In contrast, when humans
communicate objectives with each other, they make use of
a large vocabulary of informative behaviors, including non-
verbal communication, and often communicate throughout
learning, responding to observed behavior. In this way, hu-
mans communicate intent with minimal effort. In this pa-
per, we propose such interactive learning as an alternative
to reward or demonstration-driven learning. To accomplish
this, we introduce a multi-agent training framework that en-
ables an agent to learn from another agent who knows the
current task. Through a series of experiments, we demon-
strate the emergence of a variety of interactive learning be-
haviors, including information-sharing, information-seeking,
and question-answering. Most importantly, we find that our
approach produces an agent that is capable of learning inter-
actively from a human user, without a set of explicit demon-
strations or a reward function, and achieving significantly bet-
ter performance cooperatively with a human than a human
performing the task alone.

1 Introduction

Many tasks that we would like our agents to perform, such as
unloading a dishwasher, straightening a room, or restocking
shelves are inherently user-specific, requiring information
from the user in order to fully learn all the intricacies of the
task. The traditional paradigm for agents to learn such tasks
is through rewards and demonstrations. However, iterative
reward engineering with untrained human users is imprac-
tical in real-world settings, while demonstrations are often
burdensome to provide. In contrast, humans learn from a va-
riety of interactive communicative behaviors, including non-
verbal gestures and partial demonstrations, each with their
own information capacity and effort. Can we enable agents
to learn tasks from humans through such unstructured inter-
action, requiring minimal effort from the human user?
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The effort required by the human user is affected by many
aspects of the learning problem, including restrictions on
when the agent is allowed to act and restrictions on the be-
havior space of either human or agent, such as limiting the
user feedback to rewards or demonstrations. We consider a
setting where both the user and the agent are allowed to act
throughout learning, which we refer to as interactive learn-
ing. Unlike collecting a set of demonstrations before train-
ing, interactive learning allows the user to selectively act
only when it deems the information is necessary and use-
ful, reducing the user’s effort. Examples of such interactions
include allowing user interventions or agent requests, for
demonstrations (Kelly et al. 2018), rewards (Warnell et al.
2018; Arumugam et al. 2019), or preferences (Christiano et
al. 2017). While these methods allow the user to provide
feedback throughout learning, the communication interface
is restricted to structured forms of supervision, which may
be inefficient for a given situation. For example, in a dish-
washer unloading task, given the history of learning, it may
be sufficient to point at the correct drawer rather than pro-
vide a full demonstration.

To this end, we propose to allow the agent and the user
to exchange information through an unstructured interface.
To do so, the agent and the user need a common prior un-
derstanding of the meaning of different unstructured inter-
actions, along with the context of the space of tasks that the
user cares about. Indeed, when humans communicate tasks
to each other, they come in with rich prior knowledge and
common sense about what the other person may want and
how they may communicate that, enabling them to commu-
nicate concepts effectively and efficiently (Peloquin, Good-
man, and Frank 2019).

In this paper, we propose to allow the agent to acquire
this prior knowledge through joint pre-training with another
agent who knows the task and serves as a human surrogate.
The agents are jointly trained on a variety of tasks, where
actions and observations are restricted to the physical envi-
ronment. Since the first agent is available to assist, but only
the second agent is aware of the task, interactive learning be-
haviors should emerge to accomplish the task efficiently. We
hypothesize that, by restricting the action and observation
spaces to the physical environment, the emerged behaviors
can transfer to learning from a human user. An added bene-
fit of our framework is that, by training on a variety of tasks
from the target task domain, much of the non-user specific
task prior knowledge is pre-trained into the agent, further
reducing the effort required by the user.

We evaluate various aspects of agents trained with our
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(a) After 100 gradient steps (b) After 1k gradient steps (c) After 40k gradient steps (d) With human principal

Figure 1: Episode traces after 100, 1k, and 40k pre-training steps for the cooperative fruit collection domain of Experiment
4. The principal agent “P” (pink) is told the fruit to be collected, lemons or plums, in its observations. Within an episode,
the assistant agent “A” (blue) must infer the fruit to be collected from observations of the principal. Each agent observes an
overhead image of itself and its nearby surroundings. By the end of training (c) the assistant is inferring the correct fruit and
the agents are coordinating. This inference and coordination transfers to human principals (d). An interactive game and videos
for all experiments are available at: https://interactive-learning.github.io

framework on several simulated object gathering task do-
mains, including a domain with pixel observations, shown
in Figure 1. We show that our trained agents exhibit emer-
gent information-gathering behaviors in general and explicit
question-asking behavior where appropriate. Further, we
conduct a user study with trained agents, where the users
score significantly higher with the agent than without the
agent, which demonstrates that our approach can produce
agents that can learn from and assist human users.

The key contribution of our work is a training framework
that allows agents to quickly learn new tasks from humans
through unstructured interactions, without an explicitly-
provided reward function or demonstrations. Critically, our
experiments demonstrate that agents trained with our frame-
work generalize to learning test tasks from human users,
demonstrating interactive learning with a human in the loop.
In addition, we introduce a novel multi-agent model archi-
tecture for cooperative multi-agent training that exhibits im-
proved training characteristics. Finally, our experiments on
a series of object-gathering task domains illustrate a variety
of emergent interactive learning behaviors and demonstrate
that our method can scale to raw pixel observations.

2 Related Work

The traditional means of passing task information to an
agent include specifying a reward function (Barto and Sut-
ton 1998) that can be hand-crafted for the task (Singh,
Lewis, and Barto 2009; Levine et al. 2016; Chebotar et al.
2017) and providing demonstrations (Schaal 1999; Abbeel
and Ng 2004) before the agent starts training. More re-
cent works explore the concept of the human supervision
being provided throughout training by either providing re-
wards during training (Isbell et al. 2001; Thomaz et al. 2005;
Warnell et al. 2018; Perez-Dattari et al. 2018) or demon-
strations during training; either continuously (Ross, Gordon,
and Bagnell 2011b; Kelly et al. 2018) or at the agent’s dis-
cretion (Ross, Gordon, and Bagnell 2011a; Borsa et al. 2017;
Xu et al. 2018; Hester et al. 2018; James, Bloesch, and Davi-
son 2018; Yu et al. 2018a; Krening 2018; Brown, Cui, and
Niekum 2018). In all of these cases, however, the reward and
demonstrations are the sole means of interaction.

Another recent line of research involves the human ex-

pressing their preference between agent generated trajec-
tories (Christiano et al. 2017; Mindermann et al. 2018;
Ibarz et al. 2018). Here again, the interaction is restricted
to a single modality.

Our work builds upon the idea of meta-learning, or
learning-to-learn (Schmidhuber 1987; Bengio, Bengio, and
Cloutier 1991; Thrun and Pratt 2012). Meta-learning for
control has been considered in the context of reinforcement
learning (Duan et al. 2016; Wang et al. 2016; Finn, Abbeel,
and Levine 2017) and imitation learning (Duan et al. 2017;
Yu et al. 2018b). Our problem setting differs from these, as
the agent is learning by observing and interacting with an-
other agent, as opposed to using reinforcement or imitation
learning. In particular, our method builds upon recurrence-
based meta-learning approaches (Santoro et al. 2016; Duan
et al. 2016; Wang et al. 2016) in the context of the multi-
agent task setting.

When a broader range of interactive behaviors is desired,
prior works have introduced a multi-agent learning compo-
nent (Potter and Jong 1994; Palmer et al. 2018). The fol-
lowing methods are closely related to ours in that, during
training, they also maximize a joint reward function be-
tween the agents and emerge cooperative behavior (Gupta,
Egorov, and Kochenderfer 2017; Foerster et al. 2018; 2016;
Lazaridou, Peysakhovich, and Baroni 2016; Andreas, Dra-
gan, and Klein 2017). Multiple works (Gupta, Egorov, and
Kochenderfer 2017; Foerster et al. 2018) emerge coopera-
tive behavior but in task domains that do not require knowl-
edge transfer between the agents, while others (Foerster
et al. 2016; Lazaridou, Peysakhovich, and Baroni 2016;
Lowe et al. 2017; Andreas, Dragan, and Klein 2017; Mor-
datch and Abbeel 2018) all emerge communication over a
communication channel. Such communication is known to
be difficult to interpret (Lazaridou, Peysakhovich, and Ba-
roni 2016), without post-inspection (Mordatch and Abbeel
2018) or a method for translation (Andreas, Dragan, and
Klein 2017). Critically, none of these prior works conduct
user experiments to evaluate transfer to humans.

Mordatch and Abbeel (2018) experiment with tasks sim-
ilar to ours, in which information must be communicated
between the agents, and communication is restricted to the
physical environment. This work demonstrates the emer-
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(a) MAIDRQN (b) MADDRQN

Figure 2: Information flow for the two models used in our
experiments; red paths are only needed during training. The
MADDRQN model (b) uses a centralized value-function
with per-agent advantage functions. The centralized value
function is only used during training. Superscripts A and P
refer to the assistant and principal agents respectively. The
MAIDRQN model (a) is used in experiments 1-3 and the
MADDRQN model (b) is used in experiment 4 where it ex-
hibits superior training characteristics for learning from pix-
els.

gence of pointing, demonstrations, and pushing behavior.
Unlike this prior approach, however, our algorithm does not
require a differentiable environment. We also demonstrate
our method with pixel observations and conduct a user ex-
periment to evaluate transfer to humans.

Laird et al. (2017) describe desiderata for interac-
tive learning systems. Our method primarily addresses the
desiderata of efficient interaction and accessible interaction.

3 Preliminaries

In this section, we review the cooperative partially observ-
able Markov game (Littman 1994), which serves as the foun-
dation for tasks in Section 4. A cooperative partially observ-
able Markov game is defined by the tuple 〈 S , {Ai}, T , R,
{Ωi}, {Oi}, γ, H 〉, where i ∈ {1..N} indexes the agent
among N agents, S , Ai, and Ωi are state, action, and ob-
servation spaces, T : S × {Ai} × S ′ → R is the transi-
tion function, R : S × {Ai} → R is the reward function,
Oi : S × Ωi → R are the observation functions, γ is the
discount factor, and H is the horizon.

The functions T , R, and Oi are not accessible to the
agents. At time t, the environment accepts actions {ait} ∈
{Ai}, samples st+1 ∼ T (st, {ait}), and returns reward
rt ∼ R(st, {ait}) and observations {oit+1} ∼ {Oi(st+1)}.
The objective of the game is to choose actions to maximize
the expected discounted sum of future rewards:

argmax
{ai

t0
|oit0}

E
s,oi,r

[ H∑

t=t0

γt−t0rt
]
. (1)

Note that, while the action and observation spaces vary for
the agents, they share a common reward which leads to a
cooperative task.

4 The LILA Training Framework

We now describe our training framework for producing an
assisting agent that can learn a task interactively from a hu-
man user. We define a task to be an instance of a cooperative
partially observable Markov game as described in Section 3,
with N = 2. To enable the agent to solve such tasks, we
train the agent, whom we call the “assistant” (superscript
A), jointly with another agent, whom we call the “principal”
(superscript P ) on a variety of tasks. Critically, the princi-
pal’s observation function informs it of the task.1 The prin-
cipal agent acts as a human surrogate which allows us to
replace it with a human once the training is finished. By in-
forming the principal of the current task and withholding
rewards and gradient updates until the end of each task, the
agents are encouraged to emerge interactive learning behav-
iors in order to inform the assistant of the task and allow
them to contribute to the joint reward. We limit actions and
observations to the physical environment, with the hope of
emerging human-compatible behaviors.

In order to train the agents, we consider two different
models. We first introduce a simple model that we find
works well in tabular environments. Then, in order to scale
our approach to pixel observations, we introduce a modi-
fication to the first model that we found was important in
increasing the stability of learning.

Multi-Agent Independent DRQN (MAIDRQN):
The first model uses two deep recurrent Q-networks
(DRQN) (Hausknecht and Stone 2015) that are each trained
with Q-learning (Watkins 1989). Let Qθi(oit, a

i
t, h

i
t) be the

action-value function for agent i, which maps from the
current action, observation, and history, hi

t, to the expected
discounted sum of future rewards. The MAIDRQN method
optimizes the following loss:2

LMAIDRQN :=
1

N

∑

i,t

[yt −Qθi(oit, a
i
t, h

i
t)]

2 (2)

yt := rt + γmax
ai
t+1

Qθi(oit+1, a
i
t+1, h

i
t+1)

The networks are trained simultaneously. The model archi-
tecture is a recurrent neural network, depicted in Figure 2a.
We use this model for experiments 1-3.

Multi-Agent Dueling DRQN (MADDRQN): With in-
dependent Q-Learning, as in MAIDRQN, the other agent’s
changing behavior and unknown actions make it difficult to
estimate the Bellman target yt in Equation 2, which leads
to instability in training. This model addresses part of the
instability that is caused by unknown actions.

If Q∗(o, a, h) is the optimal action-value func-
tion, then the optimal value function is V ∗(o, h) =
argmaxa Q

∗(o, a, h), and the optimal advantage function is
defined as A∗(o, a, h) = Q∗(o, a, h) − V ∗(o, h) (Wang et

1Our tasks are similar to tasks in Hadfield-Menell et al. (2016),
but with partially observable state and without access to the other
agent’s actions, which should better generalize to learning from
humans in natural environment.

2In our experiments we do not use a lagged “target” Q-
network (Mnih et al. 2013), but we do stop gradients through the
Q-network in yt.
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Table 1: Experimental configurations for our 4 experiments. Experiment 1 has two sub experiments, 1A and 1B. In 1B, the
agents incur a penalty whenever the principals moves. The Observation Window column lists the radius of cells visible to each
agent.

EXP. MODEL
PRINCIPAL
MOTION
PENALTY

GRID
SHAPE

NUM.
OBJECTS

OBSERVATIONS
OBSERVATION

WINDOW

1A MAIDRQN 0.0 5X5 10 BINARY VECTORS FULL
1B MAIDRQN -0.4 5X5 10 BINARY VECTORS FULL
2 MAIDRQN 0.0 5X5 10 BINARY VECTORS 1-CELL
3 MAIDRQN -0.1 3X1 “L” 1 BINARY VECTORS 1-CELL
4 MADDRQN 0.0 5X5 10 64× 64× 3 PIXELS ∼2-CELLS

al. 2015). The advantage function captures how inferior an
action is to the optimal action in terms of the expected sum
of discounted future rewards. This allows us to express Q
in a new form, Q∗(o, a, h) = V ∗(o, h) + A∗(o, a, h).
We note that the value function is not needed
when selecting actions: argmaxa Q

∗(o, a, h) =
argmaxa(V

∗(o, h) + A∗(o, a, h)) = argmaxa A
∗(o, a, h).

We leverage this idea by making the following approxi-
mation to an optimal, centralized action-value function for
multiple agents:

Q∗({oi, ai, hi}) = V ∗({oi, hi}) +A∗({oi, ai, hi}) (3)

≈ V ∗({oi, hi}) +
∑

i

Ai∗(oi, ai, hi),

where Ai∗(oi, ai, hi) is an advantage function for agent i
and V ∗({oi, hi}) is a joint value function.3

The training loss for this model is:

LMADDRQN :=
∑

t

[yt −Q{θi},φ({oit, ait, hi
t})]2 (4)

yt := rt + γ max
{ai

t+1}
Q{θi},φ({oit+1, a

i
t+1, h

i
t+1})

where

Q{θi},φ({oit, ait, hi
t}) := Vφ({oit, hi

t})+
∑

i

Aθi(oit, a
i
t, h

i
t).

(5)
Once trained, each agent selects their actions according to
their advantage function Aθi ,

ait = argmax
a

Aθi(oit, a, h
i
t), (6)

as opposed to the Q-functions Qθi in the case of MAID-
DRQN.

In the loss for the MAIDRQN model, Equation 2, there
is a squared error term for each Qθi which depends on the
joint reward r. This means that, in addition to estimating
the immediate reward due their own actions, each Qθi must

3The approximation is due to the substitution of∑
i A

i∗(oi, ai, hi) for A∗({oi, ai, hi}) in Equation 3, which
implies that the agents’ current actions have independent effects on
expected future rewards, and is not true in general. Nevertheless, it
is a useful approximation.

estimate the immediate reward due to the actions of the other
agent, without access to their actions or observations. By
using a joint action value function and decomposing it into
advantage functions and a value function, each Ai can ignore
the immediate reward due to the other agent, simplifying the
optimization.

We refer to this model as a multi-agent dueling deep re-
current Q-network (MADDRQN), in reference to the single
agent dueling network of Wang et al. (2015). The MAD-
DRQN model, which adds a fully connected network for the
shared value function, is depicted in Figure 2b; The MAD-
DRQN model is used in experiment 4.

Training Procedure: We use a standard episodic train-
ing procedure, with the task changing on each episode.
The training procedure for the MADDRQN and MAIDRQN
models differ only in the loss function. Here, we describe
the training procedure with reference to the MADDRQN
model. We assume access to a subset of tasks, DTrain, from
a task domain, D = {..., Tj , ...}. First, we initialize the pa-
rameters θP , θA, and φ. Then, the following procedure is
repeated until convergence. A batch of tasks are uniformly
sampled from DTrain. For each task Tb in the batch, a tra-
jectory, τb = (oP0 , o

A
0 , a

P
0 , a

A
0 , r0..., o

P
H , oAH , aPH , aAH , rH), is

collected by playing out an episode in an environment con-
figured to Tb, with actions chosen ε-greedy according to AθP

and AθA . The hidden states for the recurrent LSTM cells are
reset to 0 at the start of each episode. The loss for each tra-
jectory is calculated using Equations 4 and 5. Finally, a gra-
dient step is taken with respect to θP , θA, and φ on the sum
of the episode losses.

5 Experimental Results

We designed a series of experiments in order to study how
different interactive learning behaviors may emerge, to test
whether our method can scale to pixel observations, and to
evaluate the ability for the agents to transfer to a setting with
a human user.

We conducted four experiments on grid-world environ-
ments, where the goal was to cooperatively collect all ob-
jects from one of two object classes. Two agents, the prin-
cipal and the assistant, act simultaneously and may move
in one of the four cardinal directions or may choose not to
move, giving five possible actions per agent.
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Table 2: Results for Experiments 1A and 1B. Experiment 1B includes a motion penalty for the principal’s motion. In both
experiments, MAIDRQN outperforms the principal acting alone, demonstrating that the assistant learns from and assists the
principal. All performance increases are significant (confidence > 99%), except for FeedFwd-A and Solo-P in Experiment 1A,
which are statistically equivalent.

EXPERIMENT 1A EXPERIMENT 1B

METHOD
NAME

JOINT
REWARD

REWARD
DUE TO P

REWARD
DUE TO A

JOINT
REWARD

REWARD
DUE TO P

REWARD
DUE TO A

ORACLE-A 4.9 ± 0.2 2.5 ± 0.1 2.4 ± 0.1 4.0 ± 0.1 0.0 ± 0.0 4.0 ± 0.1

MAIDRQN 4.6 ± 0.2 3.3 ± 0.2 1.3 ± 0.3 3.6 ± 0.1 0.4 ± 0.1 3.2 ± 0.1
FEEDFWD-A 4.1 ± 0.1 4.1 ± 0.1 0.0 ± 0.04 2.0 ± 0.4 0.7 ± 0.3 1.3 ± 0.6
SOLO-P 4.0 ± 0.1 4.0 ± 0.1 N/A 1.2 ± 0.1 1.2 ± 0.1 N/A

Figure 3: Training curve for Experiment 1B. Error bars are
1 standard deviation. At the end of training, nearly all of the
joint reward in an episode is due to the assistant’s actions,
indicating that the trained assistant can learn the task and
then complete it independently.

Within an experiment, tasks vary by the placement of ob-
jects, and by the class of objects to be collected, which we
call the “target class”. The target class is supplied to the prin-
cipal as a two dimensional, one-hot vector. If either agent
enters a cell containing an object, the object disappears and
both agents receive a reward: +1 for objects of the target
class and −1 otherwise. Each episode consisted of a single
task and lasted for 10 time-steps. Table 1 gives the setup for
each experiment.

We collected 10 training runs per experiment, and we
report the aggregated performance of the 10 trained agent
pairs on 100 test tasks not seen during training. The training
batch size was 100 episodes and the models were trained for
150,000 gradient steps (Experiments 1-3) or 40,000 gradient
steps (Experiment 4). Videos for all experiments, as well as
an interactive game, are available on the paper website.5

4The FeedForward assistant moves 80% of the time, but it never
collects an object.

5https://interactive-learning.github.io

(a) The assistant learns from a
single principal movement.

(b) The assistant learns from a
lack of principal movement.

Figure 4: Episode traces of trained agents on test tasks from
Experiment 1B. Both agents begin in the center square and
cooperatively collect as many instances of the target shape as
possible. The target shape is shown in green. The principal
agent P observes the target shape, but the assistant agent
A does not and must learn from the principal’s movement
or lack of movement. The assistant rapidly learns the target
shape from the principal and collects all instances.

Experiment 1 A&B – Learning and Assisting: In this
experiment we explore if the assistant can be trained to learn
and assist the principal. Table 2 shows the experimental re-
sults without and with a penalty for motion of the principal
(Experiments 1A and 1B respectively). Figures 3 and 4 show
the learning curve and trajectory traces for trained agents in
Experiment 1B.

The joint reward of our approach (MAIDRQN) exceeds
that of a principal trained to act alone (Solo-P), and ap-
proaches the optimal setting where the assistant also ob-
serves the target class (Oracle-A). Further, we see that the re-
ward due to the assistant is positive, and even exceeds the re-
ward due to the principal when the motion penalty is present
(Experiment 1B). This demonstrates that the assistant learns
the task from the principal and assists the principal. Our ap-
proach also outperforms an ablation in which the assistant’s
LSTM is replaced with a feed forward network (FeedFwd-
A), highlighting the importance of memory.

Experiment 2 – Active Information Gathering: In this
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(a) Principal View (b) Assistant View

Figure 5: Visualization of the 1-cell observation window
used in experiments 2 and 3. Cell contents outside of an
agent’s window are hidden from that agent.

(a) 2 step info. seek (b) 3 step info. seek

Figure 6: Episode traces of trained agents on test tasks from
Experiment 2. Both agents begin in the center square and
cooperatively collect as many instances of the target shape as
possible. The target shape is shown in green. The principal
agent P observes the target shape, but the assistant agent
A does not and must learn from the principal’s movement
With restricted observations, the assistant moves with the
principal until it observes a disambiguating action, and then
proceeds to collect the target shape on its own.

experiment we explore if, in the presence of additional par-
tial observability, the assistant will take actions to actively
seek out information. This experiment restricts the view of
each agent to a 1-cell window and only places objects around
the exterior of the grid, requiring the assistant to move with
the principal and observe its behavior, see Figure 5. Figure 6
shows trajectory traces for two test tasks. The average joint
reward, reward due to the principal, and reward due to the
assistant are 4.7± 0.2, 2.8± 0.2, and 1.9± 0.1 respectively.
This shows that our training framework can produce infor-
mation seeking behaviors.

Experiment 3 – Interactive Questioning and Answer-
ing: In this experiment we explore if there is a setting where
explicit questioning and answering can emerge. On 50% of
the tasks, the assistant is allowed to observe the target class.
This adds uncertainty for the principal, and discourages it
from proactively informing the assistant. Figure 7 shows the
first several states of tasks in which the assistant does not

Table 3: Results for Experiment 4. Trained assistants learned
from human principals and significantly increased their
scores (Human&Agent) over the humans acting alone (Hu-
man), demonstrating the potential for our training frame-
work to produce agents that can learn from and assist hu-
mans.7

PLAYERS
JOINT

REWARD
REWARD
DUE TO P

REWARD
DUE TO A

AGENT&AGENT 4.6 ± 0.2 2.6 ± 0.2 2.0 ± 0.2
HUMAN&AGENT 4.2 ± 0.4 2.9 ± 0.3 1.3 ± 0.5
AGENT 3.9 ± 0.1 3.9 ± 0.1 N/A
HUMAN 3.8 ± 0.3 3.8 ± 0.3 N/A

observe the target class.6
The emerged behavior is for the assistant to move into

the visual field of the principal, effectively asking the ques-
tion, then the principal moves until it sees the object, and fi-
nally answers the question by moving one step closer only if
the object should be collected. The average joint reward, re-
ward due to the principal, and reward due to the assistant are
0.4±0.1, −0.1±0.1, and 0.5±0.1 respectively. This demon-
strates that our framework can emerge question-answering,
interactive behaviors.

Experiment 4 – Learning from and Assisting a Human
Principal with Pixel Observations: In this final experiment
we explore if our training framework can extend to pixel ob-
servations and whether the trained assistant can learn from a
human principal. Figure 8 shows examples of the pixel ob-
servations. Ten participants, who were not familiar with this
research, were paired with the 10 trained assistants, and each
played 20 games with the assistant and 20 games without the
assistant. Participants were randomly assigned which setting
to play first. Figure 1 shows trajectory traces on test tasks at
several points during training and with a human principal
after training.

Unlike the previous experiments, stability was a challenge
in this problem setting; most training runs of MAIDRQN
became unstable and dropped below 0.1 joint reward before
the end of training. Hence, we chose to use the MADDRQN
model because we found it to be more stable than MAID-
RQN. The failure rate was 64% vs 75% for each method
respectively, and the mean failure time was 5.6 hours vs 9.7
hours (confidence > 99%), which saved training time and
was a practical benefit.

Table 3 shows the experimental results. The participants
scored significantly higher with the assistant than without
(confidence > 99%). This demonstrates that our framework
can produce agents that can learn from humans.

While inclusion of the assistant increases the human’s
score, it is still less than the score when the assistant acts
with the principal agent with which it was trained. What is

6The test and training sets are the same in Experiment 3, since
there are only 8 possible tasks

7Significance is based on a t-test of the participants’ change in
score, which is more significant than the table’s standard deviations
would suggest (confidence > 99%).
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(a) The square should be collected (green), but the assistant does not observe this (grey under green).

(b) The circle should not be collected (red), but the assistant does not observe this (grey under red)

Figure 7: Episode roll-outs for trained agents from Experiment 3. When the assistant is uncertain of an object, it requests
information from the principal by moving into its visual field and observing the response.

(a) Principal (b) Assistant

Figure 8: Example observations for experiment 4. The prin-
cipal’s observation also includes a 2 dimensional one-hot
vector indicating the fruit to collect, plums in this case.
These are the 7th observations from the human-agent tra-
jectory in Figure 1d.

the cause of this gap? To answer this question, we identified
that 12% of the time the assistant incorrectly infers which
object to collect (episodes where the assistant always col-
lects the wrong object). If we exclude these episodes, we
obtain the performance when the assistant has correctly in-
ferred the task, but must still coordinate with the human
principal. Humans with “correct” assistants achieve rewards
(4.7 ± −0.3, 2.8 ± 0.3, 1.9 ± 0.2) that are statistically
equivalent to Agent&Agent and statistically superior to Hu-
man&Agent in Table 3. This means that the assistants coor-
dinate equivalently with human principals and artificial prin-
cipals, but can experience problems inferring the task from
human principals, resulting in the observed drop in score.
This is an example of co-adaptation to communicating with
the principal agent during training. The next section suggests
an approach to address such co-adaptation.

6 Summary and Future Work

We introduced the LILA training framework, which trains an
assistant to learn interactively from a knowledgeable prin-
cipal through only physical actions and observations in the
environment. LILA produces the assistant by jointly training
it with a principal, who is made aware of the task through its
observations, on a variety of tasks, and restricting the ob-
servation and action spaces to the physical environment. We
further introduced the MADDRQN algorithm, in which the
agents have individual advantage functions but share a value
function during training. MADDRQN showed improved sta-
bility over MAIDRQN, which was a practical benefit in
the experiments. The experiments demonstrate that, depend-
ing on the environment, LILA emerges behaviors such as
demonstrations, partial demonstrations, information seek-
ing, and question answering. Experiment 4 demonstrated
that LILA scales to environments with pixel observations,
and, crucially, that LILA is able to produce agents that can
learn from and assist humans.

A possible future extension involves training with popu-
lations of agents. In our experiments, the agents sometimes
emerged overly co-adapted behaviors. For example, in Ex-
periment 2, the agents tend to always move in the same
direction in the first time step, but the direction varies by
the training run. This makes agents paired across runs less
compatible, and less likely to generalize to human prin-
cipals. We believe that training an assistant across popu-
lations of agents will reduce such co-adapted behaviors.
Finally, LILA’s emergence of behaviors means that the
trained assistant can only learn from behaviors that emerged
during training. Further research should seek to minimize
these limitations, perhaps through advances in online meta-
learning (Finn et al. 2019).
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