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Abstract

The study of finding the equilibrium for multiplayer games is
challenging. This paper focuses on computing Team-Maxmin
Equilibria (TMEs) in zero-sum multiplayer Extensive-Form
Games (EFGs), which describes the optimal strategies for a
team of players who share the same goal but they take ac-
tions independently against an adversary. TMEs can capture
many realistic scenarios, including: 1) a team of players play
against a target player in poker games; and 2) defense re-
sources schedule and patrol independently in security games.
However, the study of efficiently finding TMEs within any
given accuracy in EFGs is almost completely unexplored. To
fill this gap, we first study the inefficiency caused by comput-
ing the equilibrium where team players correlate their strate-
gies and then transforming it into the mixed strategy profile
of the team and show that this inefficiency can be arbitrarily
large. Second, to efficiently solve the non-convex program
for finding TMEs directly, we develop the Associated Re-
cursive Asynchronous Multiparametric Disaggregation Tech-
nique (ARAMDT) to approximate multilinear terms in the
program with two novel techniques: 1) an asynchronous pre-
cision method to reduce the number of constraints and vari-
ables for approximation by using different precision levels
to approximate these terms; and 2) an associated constraint
method to reduce the feasible solution space of the mixed-
integer linear program resulting from ARAMDT by exploit-
ing the relation between these terms. Third, we develop a
novel iterative algorithm to efficiently compute TMEs within
any given accuracy based on ARAMDT. Our algorithm is or-
ders of magnitude faster than baselines in the experimental
evaluation.

1 Introduction

The design of algorithms for agents to make complex de-
cisions in an interactive environment is an important com-
ponent in artificial intelligence (Russell and Norvig 2016).
Recently, the computational study in the non-cooperative en-
vironment has achieved many results for two-player games,
for example, security games (Sinha et al. 2018) and poker
games (Brown and Sandholm 2018). The key solution con-
cepts behind these results are the well-known Nash Equi-
librium (NE) (Nash 1951) and Stackelberg equilibrium
(Conitzer and Sandholm 2006). However, there are fewer
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results about multiplayer games except for games with spe-
cial structures, e.g., congestion games (Shoham and Leyton-
Brown 2008), or the algorithm without theoretical guaran-
tee (Brown and Sandholm 2019). It is not only because it
is hard to compute the NE, which is PPAD-complete (Chen
and Deng 2005) even for 3-player games, but also because
the NE is not unique (or not exchangeable) in multiplayer
games, which will make it difficult for each player to select
a strategy independently and then form an NE with other
players’ strategies (Brown and Sandholm 2019).

The Team-Maxmin Equilibrium (TME) is a solution con-
cept for the situation where a team of players with the same
utility function take actions independently against an ad-
versary (von Stengel and Koller 1997; Basilico et al. 2017;
Celli and Gatti 2018). TMEs have some fascinating proper-
ties, e.g., it is the NE maximizing the utility of the team and
always exists. Specifically, it is unique in general, which can
avoid the equilibrium selection problem. Moreover, TMEs
can capture many real-world scenarios. For example, in mul-
tiplayer poker games, all except one of them may form a
team and play against the target player, i.e., they share the
same goal but take actions independently (e.g., the setting
of poker games in Brown and Sandholm (2019) avoids that
players can communicate to correlate their actions). In addi-
tion to recreational applications, in security games, the US
Coast Guard and other different police departments schedule
and patrol independently against the attacker at major ports
such as the New York port (Jiang et al. 2013).

However, it is challenging to compute a TME in
Extensive-Form Games (EFGs), which is FNP-hard and
formulated as a non-convex programming problem (Celli
and Gatti 2018) even each player’s (sequence-form) strat-
egy space is linear in the size of EFGs. The current ap-
proach (Celli and Gatti 2018) to compute this TME is
only to solve the non-convex problem directly by using the
state-of-the-art global optimization solver BARON (Kha-
javirad and Sahinidis 2018). Unfortunately, BARON does
not scale well (Celli and Gatti 2018). On the other hand,
in EFGs, some efficient algorithms (Celli and Gatti 2018;
Farina et al. 2018) are proposed to compute Correlated-
Team Maxmin Equilibria (CTMEs), where team players cor-
relate their strategies. However, if team players transform a
CTME into the mixed strategy profile, they may obtain an
arbitrarily large loss (see the next section for details). There-
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fore, the study of efficiently finding TMEs within any given
accuracy, especially in EFGs, is almost completely unex-
plored. This paper will develop very scalable algorithms to
compute TMEs.

Main Contributions. We first study the inefficiency
caused by computing a CTME and then transforming it into
the mixed strategy profile of the team and theoretically show
that this inefficiency can be arbitrarily large in EFGs. Sec-
ond, to efficiently solve the non-convex program for find-
ing TMEs directly, we develop the Associated Recursive
Asynchronous Multiparametric Disaggregation Technique
(ARAMDT) to approximate multilinear terms in the pro-
gram by using a digit-wise discretization of one variable
in the term and then transform the program into a mixed-
integer linear program (MILP) with two novel techniques:
1) an asynchronous precision method, where we can use dif-
ferent precision levels to approximate these terms even they
include the same discretized variable to reduce the number
of constraints and variables for approximation; and 2) an
associated constraint method, where we exploit the relation
between these terms to reduce the feasible solution space of
MILP in ARAMDT. To our best knowledge, both techniques
have not been considered in the literature of global optimiza-
tion. Third, we develop a novel algorithm to efficiently com-
pute TMEs within any given accuracy based on ARAMDT,
which uses novel techniques to iteratively increase the pre-
cision levels for part of nonlinear terms. Finally, we evaluate
our algorithm by experiments showing that our algorithm is
dramatically faster than baselines.

2 Related Work
The solution concept similar to the TME is the CTME,
where team players correlate their strategies by exploiting
a mediator recommending actions to them through commu-
nication (Basilico et al. 2017). CTMEs in EFGs (Celli and
Gatti 2018) include: 1) CTMEs with communication de-
vice (CTMECom) for the situation where team players can
communicate and correlate their actions before the play of
the game and during the game’s execution; and 2) CTMEs
with correlation device (CTMECor) for the situation where
team players communicate and correlate their actions only
before the play (ex ante coordination (Farina et al. 2018)).
A CTMECom be computed in polynomial time, but com-
puting a CTMECor is FNP-hard, where each team mem-
ber’s (normal-form) strategy space is exponential in the size
of EFGs and efficient algorithms (Celli and Gatti 2018;
Farina et al. 2018) are proposed. However, team players in a
TME have no communication and then do not correlate their
actions (Celli and Gatti 2018). To compute a TME in EFGs,
one approach is to compute a CTME first and then transform
it into the mixed strategy profile of the team, motivated by
the algorithm in normal-form games (Basilico et al. 2017).
Unfortunately, this approach may give the team a huge loss
because of the large gap between the team’s utility obtained
by this approach and the TME value as shown in the pre-
vious experiments (Basilico et al. 2017). We theoretically
show that this loss can be arbitrarily large.

In the domain of global optimization, the Multiparamet-
ric Disaggregation Technique (MDT) (Kolodziej, Castro,

and Grossmann 2013; Castro 2016; Andrade et al. 2019)
for approximating bilinear terms is a strong competitor of
BARON. MDT outperforms the piecewise McCormick re-
laxation (Kolodziej, Castro, and Grossmann 2013; Castro
2016) and has been applied for solving game-theoretical
problems (Wang, Guo, and An 2017; Čermák et al. 2018).
To approximate multilinear terms, we can recursively trans-
form multilinear terms to bilinear terms and then apply MDT
inspired by the recursive McCormick relaxation (Ryoo and
Sahinidis 2001). However, the current MDT approach can-
not compute TMEs efficiently because the number of bilin-
ear terms in EFGs is large (e.g., there are hundreds of bi-
linear terms in small Kuhn poker games) and MDT will use
a large number of constraints and integer variables for ap-
proximating each term. Therefore, instead of applying MDT
directly, we develop novel techniques.

3 Preliminaries

An imperfect-information Extensive-Form Game
(EFG) (Shoham and Leyton-Brown 2008) is a tuple
(N,A,H,L, χ, ρ, μ, u, I), where: N = {1, . . . , n} is a set
of players, A is a set of actions, H is a set of nonterminal
nodes, L is a set of terminal nodes, χ : H → 2A is
the action function assigning a set of possible actions
to each nonterminal node, ρ : H → N is the player
function assigning an acting player to each nontermi-
nal node (Hi = {h | ρ(h) = i, h ∈ H}, ∀i ∈ N ),
μ : H × A ← H ∪ L is the successor function, which
maps a nonterminal node and an action to a new node,
u = (u1, . . . , un) is the set of players’ utility functions
where ui : L → R assigns utilities to terminal nodes for
player i, and I = (I1, . . . , In) is the set of information
sets where Ii is a partition of Hi such that, ρ(h1) = ρ(h2)
and χ(h1) = χ(h2) for any h1, h2 ∈ Hi whenever there
exists Ii,j ∈ Ii with h1 ∈ Ii,j and h2 ∈ Ii,j . Without loss
of generality, we assume, for each action a ∈ A, there is
unique Ii,j such that a ∈ χ(Ii,j). In games with perfect
recall, for each player i and each Ii,j ∈ Ii, nodes in Ii,j
share the same sequence of moves of player i on the paths
from the root.

A pure normal-form plan of player i is a tuple π ∈ Πi =
×Ii,j∈Iiχ(Ii,j) assigning an action to each information set
of player i. A normal-form strategy xi is a probability dis-
tribution over Πi, i.e., xi ∈ Δ(Πi). A behavioral strategy βi

defines a probability distribution over χ(Ii,j) for each infor-
mation set of player i. A sequence (σi) of actions of player
i, defined by a node h ∈ H ∪ L of the game tree, is the or-
dered set of player i’s actions that are on the path from the
root to h. Let Σi define the set of sequences of player i. Let
∅ denote the fictitious sequence corresponding to the root.
A realization plan ri : Σ → [0, 1] is a function assigning
a probability to be played to each sequence, which satisfies
the following constraints.

ri(∅) = 1 (1a)∑
a∈χ(Ii,j)

ri(σia) = ri(σi) ∀Ii,j ∈Ii, σi=seqi(Ii,j) (1b)

ri(σi) ≥ 0 ∀σi ∈ Σi (1c)

where seqi(Ii,j) is the sequence leading to Ii,j .
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Example 1. In the 3-player Kuhn poker game, the informa-
tion set includes the card the payer has and the observed
actions taking by players in turn. For example, J:/ccrc: is
information set of player 2, where player 2 holds card J
and she has observed the actions ‘c,c,r,c’ of all players in
turn. Now, in information set J:/ccrc: reached by sequence
J:/c:c of player 2, player 2 has two actions: calling (c) and
folding (f). Therefore, by Eq.(1b), we have r2(J:/c:c) =
r2(J:/ccrc:c) + r2(J:/ccrc:f).

The Team-Maxmin Equilibrium (TME) defined as
argmaxr1,...,rn−1minrn

∑
σ=×i∈Nσi,σ∈ΣUT (σ)

∏n
i=1ri(σi)

(Celli and Gatti 2018), captures the scenario where a single
team T = {1, . . . , n − 1} plays against an adversary n
with ui = uj(∀i, j ∈ T ) and un = −uT = −∑

i∈T ui,
and team players take actions independently in a zero-
sum EFG. Here, UT denotes the team’s utility with
UT (σ) =

∑
l∈L′ uT (l)c(l) if at least a terminal node

l ∈ L′ ⊆ L is reached by the joint plan σ (L′ is the set
of those terminal nodes) with the chance c(l) determined
by chance nodes, and UT (σ) = 0 otherwise. A TME is a
Nash Equilibrium (NE) maximizing the team’s utility and
is unique in general. Let the TME value be the utility of
the team under any TME. For an ε-TME, both the team and
the adversary cannot gain more than ε if only one player
deviates from his strategy, and the difference between the
ε-TME value and the TME value is not larger than ε. A TME
can be computed by the following non-convex program
(Celli and Gatti 2018):

maxr1,...,rn−1 v(In(∅)) (2a)
v(In(σn))−

∑
In,j∈In:seqn(In,j)=σn

v(In,j) (2b)

≤∑
σT∈ΣT

UT (σT , σn)
∏

i∈T ri(σT (i)) ∀σn ∈ Σn

Eqs.(1a)− (1c) ∀i ∈ T (2c)

where In(σn) is the information set where player n takes
the last action of sequence σn, v : In → R where v(In,j) is
the team’s expected utility in information set In,j , σT is the
team’s joint sequence (i.e., ×i∈Tσi), σT (i) is the sequence
of player i in σT , and ΣT is the set of these joint sequences.
By Eq.(2b), the adversary chooses the action minimizing the
team’s utility in each information set In(σn).

4 The Inefficiency of Correlated Strategies

It is very difficult to solve the non-convex Problem (2) (Celli
and Gatti 2018) even using the state-of-the-art global opti-
mization solver BARON (Khajavirad and Sahinidis 2018).
Instead of solving Problem (2) to compute a TME, one po-
tential approach is to compute a CTME (see Section 2) first
and then transform it into the team’s Mixed Strategy Profile
(Transformed-MSP(TMSP)), as done in normal-form games
(Basilico et al. 2017). This section shows that this approach
can cause an arbitrarily large loss.

To measure the inefficiency of this TMSP, we define the
Price of Correlated strategies (PoC)1, i.e., the inefficiency

1PoC is different from the price of uncorrelation ( v′
c

vm
) (Basilico

et al. 2017), i.e., the inefficiency caused by that team players do not
correlate their strategies when they can (and then obtain utility v′c).

caused by that team players use this TMSP when they take
actions independently. Formally, PoC = vm

vc
, where vm is

the TME value and vc is the team’s utility obtained from
the TMSP. The best algorithm (Basilico et al. 2017), to the
best of our knowledge, to obtain a TMSP is: Given a CTME
strategy for the team: x ∈ Δ(ΠT ) (the probability distribu-
tion over the set of joint normal-formal strategies), player
1’s mixed strategy x1(π1) =

∑
π′∈ΠT\{1}

x(π1, π
′)(∀π1 ∈

Π1); player j’s mixed strategy xj(πj) =
1

|supj | if |supj | > 0,
otherwise xj(πj) = 0 (∀j ∈ T \ {1}, πj ∈ Πj) where
supj = {πj | πj ∈ Πj , ∃πT , πj ∈ πT , x(πT ) > 0}, i.e.,
the set of strategies player j plays with nonzero probability
in x. This algorithm returns the best strategy for the team
among the strategies obtained by exchanging each player of
the team with player 1. From previous experiments (Basil-
ico et al. 2017), we can see the large gap between vm and vc
in normal-form games. Now we theoretically show that PoC
can be arbitrarily large.
Theorem 1. PoC can be arbitrarily large in EFGs.

Proof. Consider an EFG with n players (n − 1 teammates)
and m(> 2) actions per player’s decision node where each
level of the game tree forms a unique information set be-
longing to one player (see Figure 1 for a game tree with
n = 3), and the payoffs of the team at terminal nodes
(πi = a(1 ≤ a ≤ m) is a pure normal-form strategy) are:

UT (π1, . . . , πn)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if π1 = π2 = · · · = πn
1

m+1 if π1=1, πi=2(∀i∈T \{1})
−m+2

m+1 if π1=2, πi=1(∀i∈T \{1})
0 otherwise

...
1

..

...

----------------------------

----------------

...

...

... m 1 m

1 m

m1 m 1...
...

Figure 1: Example

To obtain a TMSP, we need to find
a CTME first. A CTME (the CT-
MECom and CTMECor (see Section
2) are the same in this case) is the strat-
egy profile prescribing that the team
plays each joint strategy π1 = · · · =
πn−1 = a(1 ≤ a ≤ m) with probabil-
ity 1

m .2 Now, by the aforementioned transformed algorithm
(Basilico et al. 2017), the corresponding (unique) TMSP
prescribes that player i(∈ T ) plays πi = a(1 ≤ a ≤ m)
with probability 1

m , while player n is indifferent between
playing any pure strategies given this TMSP. Then, vc = 0.

Even though it is difficult to determine a TME analyti-
cally, we can find a good lower bound for the TME value
through an NE because a TME is an NE maximizing the
team’s utility. This equilibrium strategy (1, 2, . . . , 2, 3) pre-
scribes that player 1 plays π1 = 1, player i(2 ≤ i ≤ n− 1)

2First, the team, obtaining utility 1
m

in this profile, cannot im-
prove its utility by playing other joint strategies with nonzero prob-
ability because all other joint strategies are weakly dominated as
they provide a utility less than 1

m
to the team for every adversary

strategy. Second, the team must play each joint strategy of the form
π1 = · · · = πn−1 with nonzero probability because the team will
receive utility 0 if any such a form with a′ is played with probabil-
ity 0, but the adversary n plays a′. Therefore, each such a form is
played with probability 1

m
by symmetry.

2320



plays πi = 2, while player n plays πn = 3. The team’s util-
ity is UT (1, 2, . . . , 2, 3) =

1
m+1 . Basically, any team mem-

ber will obtain 0 from unilateral deviation while the adver-
sary is indifferent between playing any pure strategies.

Therefore, PoC = vm
vc
≥

1
m+1

0 =∞.

5 Associated Recursive Asynchronous MDT
This section proposes novel techniques to directly solve the
non-convex Problem (2) to compute TMEs. Specifically,
we develop the Associated Recursive Asynchronous Mul-
tiparametric Disaggregation Technique (ARAMDT) to ap-
proximate multilinear terms in Eq.(2b). ARAMDT is de-
veloped based on MDT (Kolodziej, Castro, and Grossmann
2013; Andrade et al. 2019), which uses a digit-wise dis-
cretization of one variable in the bilinear term for approx-
imation and then transforms the bilinear program into a
mixed-integer linear program (MILP). ARAMDT has three
additional important features: 1) the Asynchronous MDT
(AMDT) (i.e., adding the asynchronous precision method
to MDT) to reduce the number of constraints and new
variables for approximating bilinear terms; 2) the Recur-
sive AMDT (RAMDT) (i.e., recursively deploying AMDT)
to approximate multilinear terms which cannot be directly
approximated by AMDT; and 3) the Associated RAMDT
(ARAMDT) (i.e., adding associated constraints to RAMDT)
to reduce the feasible solution space of MILP in RAMDT.

5.1 Asynchronous MDT

To transform the bilinear program into MILP while reducing
the number of constraints and new variables for approximat-
ing bilinear terms, we develop AMDT which can use differ-
ent precision levels to approximate bilinear terms even they
include the same discretized variable. The idea is that: If we
do not need high precision levels to approximate some bilin-
ear terms, AMDT can just use low precision levels to do that,
which reduces the number of constraints and new variables
because this number of constraints and variables increases
with the precision levels. Given a bilinear term w = yiyj
(yi, yj ∈ [0, 1]), we approximate yi by using a binary num-
ber with powers (precision levels) Zyi = {−1, . . . ,−Zyi}:

yi =
∑

z∈Zyi
2zλi,z +Δyi (3)

where λi,z ∈ {0, 1} and Δyi ∈ [0, 2−Zyi ] is the slack
variable. After that, we approximate w by using powers
Zw = {−1, . . . ,−Zw} with Zw ≤ Zyi :

w =
∑

z∈Zw
2zyi,j,z +Δw (4)

where yi,j,z = λi,zyj can be represented by:
0 ≤ yi,j,z ≤ λi,z ∀z ∈ Zw (5a)
0 ≤ yj − yi,j,z ≤ 1− λi,z ∀z ∈ Zw (5b)

Δw = (yi −
∑

z∈Zw
2zλi,z)yj (0 ≤ yi −

∑
z∈Zw

2zλi,z =

Δyi +
∑

−Zyi
≤z<−Zw

2zλi,z ≤ 2−Zw ) cannot be repre-
sented exactly by linear constraints and then is approximated
by using the McCormick relaxation (McCormick 1976):
0 ≤ Δw ≤ yi −

∑
z∈Zw

2zλi,z (6a)

2−Zw(yj−1)+yi−
∑

z∈Zw
2zλi,z ≤ Δw ≤ 2−Zwyj (6b)

Here, AMDT replaces Δyi in the standard MDT
(Kolodziej, Castro, and Grossmann 2013) with yi −∑

z∈Zw
2zλi,z for representing Δw because Zw ≤ Zyi .

Therefore, AMDT can use different powers to approximate
bilinear terms even they include the same discretized vari-
able, which will reduce the number of constraints if we do
not need to use more powers to approximate some bilinear
terms, e.g., when w is already equal to yiyj .

5.2 Recursive Asynchronous MDT

EFGs with n > 3 will result in multilinear terms in Eq.(2b),
where AMDT cannot be applied directly. Therefore, we de-
velop RAMDT, which recursively uses a new variable to re-
place each bilinear part of the multilinear term in Eq.(2b)
until the multilinear term is replaced by a variable (repre-
senting a bilinear term), and then the bilinear term is ap-
proximated by AMDT. More specifically, for each σT ∈
Σ′

T (⊆ ΣT ) reaching a terminal node with the multilinear
term

∏
i∈T ri(σT (i)) in Eq.(2b), we recursively define a set

of bilinear terms BLσT
= {w1(σT1), . . . , wn−2(σTn−2)}

such that:

wi(σTi
)=ri(σTi

(i))wi+1(σTi+1
)=

∏
i≤j≤n−1 rj(σTi

(j))

where wi(σTi
) ∈ [0, 1](1 ≤ i ≤ n − 2), σTi

represents
the joint sequence of players i, . . . , n− 1 as part of σT with
σT1

= σT , σTi
(j)(i.e., σT (j)) is the sequence of player j in

σTi
, and wn−1(σTn−1

) = rn−1(σTn−1
(n − 1)). Therefore,

each multilinear term can be represented by a bilinear term.
To be consistent, we discretize the variable on the left hand
side of each bilinear term in BLσT

.
Denote BL =

⋃
σT∈Σ′

T
BLσT

. By using w1(σT ) to re-
place

∏
i∈T ri(σT (i)) in Eq.(2b) through RAMDT, an upper

bound of Problem (2) is computed by:

maxr1,...,rn−1 v(In(∅))RAMDT (7a)
v(In(σn))−

∑
In,j∈In:seqn(In,j)=σn

v(In,j)

≤∑
σT∈ΣT

UT (σT , σn)w1(σT ) ∀σn ∈ Σn (7b)

Eqs.(1a)− (1c) ∀i ∈ T (7c)

Eq.(3) ∀ri(σT (i)), i∈T \{n−1}, σT ∈Σ′
T (7d)

Eqs.(4)− (6b) ∀wi(σTi
) ∈ BL (7e)

Theorem 2. The solution of Problem (7) yields an upper
bound for Problem (2), i.e., v(In(∅))RAMDT ≥ v(In(∅)).
Proof. The variable wi(σTi) in Problem (7) may not
be exactly equal to ri(σTi(i))wi+1(σTi+1) due to the
power Zwi(σTi

). In fact, by Eqs.(3)–(6b), |wi(σTi
) −

ri(σTi
(i))wi+1(σTi+1

)| ≤ 2−Zwwi+1(σTi+1
). It means that,

some assignments for wi(σTi
), ri(σTi

(i)), and wi+1(σTi+1
)

without satisfying wi(σTi
) = ri(σTi

(i))wi+1(σTi+1
) are

feasible in Problem (7). Thus, Problem (7) is a relaxation of
Problem (2). Therefore, the solution of Problem (7) yields
an upper bound for Problem (2), i.e., v(In(∅))RAMDT ≥
v(In(∅)).
Theorem 3. As Zwi(σTi

) (∀wi(σTi
) ∈ BL) in Problem (7)

approaches∞, v(In(∅))RAMDT approaches v(In(∅)).
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Proof. As Zwi(σTi
) approaches ∞, we have:

limZwi(σTi
)→∞ |wi(σTi) − ri(σTi(i))wi+1(σTi+1)| ≤

limZwi(σTi
)→∞ 2

−Zwi(σTi
)wi+1(σTi+1

) = 0, which means
that wi(σTi) approaches ri(σTi(i))wi+1(σTi+1). Then,
v(In(∅))RAMDT approaches v(In(∅)).

Then, v(In(∅)) is reached if Zwi(σTi
) is large enough.

5.3 Associated Recursive Asynchronous MDT

By Theorem 2, the solution of Problem (7) is an upper
bound for Problem (2) because wi(σTi) may not be equal
to ri(σTi(i))wi+1(σTi+1), which also makes the feasible so-
lution space very large and then makes it difficult to solve
Problem (7). Here we aim to reduce the feasible solution
space in Problem (7) and then solve it efficiently. To do that,
we develop ARAMDT, which adds associated constraints to
RAMDT by exploiting the relation between bilinear terms.

The relation between bilinear terms is based on the con-
straints for the realization plan in Eqs.(1a)-(1c). Basically,
for all sequences with the last action in the same informa-
tion set, the sum of probabilities to play these sequences is
equal to the probability to play the sequence reaching that in-
formation set. For example, in Example 1, for bilinear terms
w1(σ1, J:/c:c), w1(σ1, J:/ccrc:c), and w1(σ1, J:/ccrc:f), we
have w1(σ1, J:/c:c) = w1(σ1, J:/ccrc:c)+w1(σ1, J:/ccrc:f).
In addition, given w1(σ1, J:/c:r), we have w1(σ1, J:/c:c) +
w1(σ1, J:/c:r) = r1(σ1)r2(∅) = r1(σ1). That is, we look for
the equivalence relation between bilinear terms until these
terms are connected to the played probability of a sequence,
which is represented by associated constraints. After adding
these constraints, the solutions which cannot satisfy these
constraints will be ruled out immediately, and then the fea-
sible solution space in Problem (7) is smaller.

Algorithm 1 generates associated constraints for the
equivalence relation between bilinear terms. This relation
is based on the realization plan, which is also based on
information sets of the game tree (see Eq.(1b)). There-
fore, for a set of bilinear terms, to check whether one as-
sociated constraint of a player based on Eq.(1b) can be
created, we can fix other players’ sequences, and then
check whether this player has the sequences in this set
of bilinear terms involving all actions in the related in-
formation set. To do that, we create subsets of bilinear
terms BLσTi\{j},Ij(σTi

(j)) for each player j in Lines 1–2,
which are indexed by all other involved players’ sequences
σTi\{j} and player j’s information set where the last ac-
tion of his sequence σTi

(j) is taken. Now we can add as-
sociated constraints based on these subsets starting from
i = n − 2 (Line 6). For example, in Example 1, if we
have BLσ1,J:/ccrc: = {w1(σ1, J:/ccrc:c), w1(σ1, J:/ccrc:f)},
where |BLσ1,J:/ccrc:| = 2 is the number of actions in
player 2’s information set J:/ccrc:, then there exists an as-
sociated constraint w1(σ1, J:/c:c) = w1(σ1, J:/ccrc:c) +
w1(σ1, J:/ccrc:f) (we can generate an auxiliary variable
w1(σ1, J:/c:c) if it does not exist) among these bilinear
terms. That is, if player j’s sequence σTi

(j) is on the left
hand side of bilinear terms in BLσTi\{j},Ij(σj) whose num-
ber of terms (corresponding to the number of sequences

Algorithm 1: Generate associated constraints
1 for wi(σTi

) ∈ BL, and j ← i, . . . , n− 1 do
2 BLσTi\{j},Ij(σTi

(j))←
BLσTi\{j},Ij(σTi

(j))∪{wi(σTi
)};

3 isContinue← true, BL′ ← BL;
4 while isContinue = true do
5 isContinue← false;
6 for i← n− 2, . . . , 1; j ∈ {i, . . . , n− 1}; each

BLσTi\{j},Ij(σTi
(j)) do

7 wi(σ
′
Ti
)← ∅, σj ← σTi

(j);
8 if i=j∧|BLσTi\{j},Ij(σj)|= |χ(Ij(σj))| then

9 wi(σ
′
Ti
)← wi(seqj(Ij(σj)), σTi\{j});

10 if i �= j ∧BLσTi\{i}
in RM then

11 wi(σ
′
Ti
)← ri(σi)RM [BLσTi\{i}

];

12 if wi(σ
′
Ti
) �= ∅ then

13 isContinue← true;
14 if wi(σ

′
Ti
) /∈ BL′ then

15 Line 2, j ← i, . . . , n− 1;
16 BL′ ← BL′ ∪ {wi(σ

′
Ti
)};

17 if ri(σ
′
Ti
(i)) = 1 then

18 Add wi(σ
′
Ti
) = wi+1(σ

′
Ti\{i});

19 if wi+1(σ
′
Ti\{i}) = 1 then

20 Add wi(σ
′
Ti
) = ri(σ

′
Ti
(i));

21 if ri(σ
′
Ti
(i)) = wi+1(σ

′
Ti\{i}) = 1 then

22 Add wi(σ
′
Ti
) = 1;

23 Add wi(σ
′
Ti
)=

∑
w′

i∈BLσTi\{j},Ij(σTi
(j))

w′
i;

24 RM [BLσTi\{j},Ij(σTi
(j)))]← wi(σ

′
Ti
);

25 Remove BLσTi\{j},Ij(σj);

of player j) is equal to the number of actions in Ij(σj)
(Line 8), or BLσTi\{i}

(= {wi+1(σTi\{i}) | wi(σTi
) ∈

BLσTi\{j}},Ij(σj)} representing the set of terms about the
right hand side of each bilinear term wi(σTi

)) is in the do-
main of the relation mapping RM (Line 10, initialized by
RM [{wn−1(σn−1a) | a ∈ χ(In−1,j)}] = wn−1(σn−1)
based on Eq.(1b) and updated at Line 24), we can add an
associated constraint for the equivalence relation (Line 23)
between this subset of bilinear terms and the bilinear term
involving the sequence reaching this information set (Line
9 or 11). If this term is new, the related subsets and the set
of bilinear terms are updated (Lines 15–16). At Lines 17–
22, this new bilinear term is connected to one variable if the
other variable in this term is certainly 1. The loop (Lines 4–
25) will terminate if no new associated constraints are found.

ARAMDT, remaining to be the upper bound of Problem
(2), adds associated constraints for the equivalence relation
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Algorithm 2: Iterative ARAMDT (IARAMDT)
1 Initialize ε0, ε1, ε2, Zw = Zr = Z = 0, ∀Zw, Zr;
2 repeat
3 (rT , v)← Problem (8) with gap ε1;
4 v← BR, given rT ;
5 Z ← Z + 1, BLI ← ∅;
6 while BLI = ∅ ∧ |v − v| > ε0 do
7 for each wi(σTi) ∈ BL do
8 if |wi(σTi

)−ri(σi)wi+1(σTi+1
)|>ε2 then

9 BLI ← BLI ∪ {wi(σTi)};
10 Zwi(σTi

)←Z if Zwi(σTi
)<�− log2 ε2�;

11 Zri(σi) ← Z if Zri(σi)<�− log2 ε2�;
12 if BLI = ∅ then ε2 ← ε2

10 ;
13 Generate a constraint: v(In(∅))ARAMDT ≥ v;
14 until |v − v| ≤ ε0;
15 return rT

between bilinear terms to RAMDT (Problem (7)), i.e.,

maxr1,...,rn−1
v(In(∅))ARAMDT (8a)

Eqs.(7b)− (7e) (8b)
Constraints generated by Algorithm 1 (8c)

Theorem 4. The feasible solution of Problem (2) is feasible
in Problem (8).

Proof. Suppose the realization plan ri of player i is
the feasible solution of Problem (2) but is infeasi-
ble in Problem (8). By Theorem 2, ri is feasible
in Problem (7). Therefore, ri does not satisfy the
constraints generated by Algorithm 1. Given Zwi(σTi

)

(∀wi(σTi) ∈ BL) in Problem (8), we have |wi(σTi) −
ri(σTi(i))wi+1(σTi+1)| ≤ 2

−Zwi(σTi
)wi+1(σTi+1). Now

we consider the feasible solutions when wi(σTi) =
ri(σTi

(i))wi+1(σTi+1
) for all bilinear terms. Without loss of

generality, we assume
∑

a∈χ(Ii,j)
ri(σTi

(i)a) = ri(σTi
(i)),

but
∑

a∈χ(Ii,j)
wi(σTi

(i)a, σTi\{i}) �= wi(σTi
). We have:

∑
a∈χ(Ii,j)

wi(σTi
(i)a, σTi\{i}) �= wi(σTi

)

⇒
∑

a∈χ(Ii,j)

ri(σTi
(i)a)wi+1(σTi\{i}) �=ri(σTi

(i))wi+1(σTi\{i})

⇒∑
a∈χ(Ii,j)

ri(σTi(i)a) �= ri(σTi(i))

which causes a contradiction. Therefore, the feasible solu-
tion of Problem (2) is feasible in Problem (8).

Theorem 5. v(In(∅))ARAMDT ≥ v(In(∅)), and
v(In(∅))ARAMDT approaches v(In(∅)) as Zwi(σTi

)

(∀wi(σTi
) ∈ BL) approaches∞ in Problem (8).

Proof. This is immediately obtained from Theorems 2–
4

6 An Iterative Algorithm for Computing

TMEs Based on ARAMDT

Even though ARAMDT can compute TMEs, it is diffi-
cult to decide which precision levels for different bilinear
terms could achieve the given accuracy (i.e., ε in ‘ε-TME’).
This section develops a novel iterative algorithm to effi-
ciently compute TMEs within any given accuracy based on
ARAMDT. Specifically, we iteratively increase the precision
levels for part of bilinear terms until the desired accuracy is
achieved, as shown in Algorithm 2. This is based on the fact
that the upper bound of the TME value in Problem (8) will
approach the optimal value when the powers for approxi-
mating bilinear terms in ARAMDT increase by Theorem 5.
Moreover, given the joint realization plan rT of the team
(i.e., ×i∈T ri) corresponding to the upper bound, we can ob-
tain the lower bound of the optimal value by computing the
Best Response (BR) of the adversary. Therefore, we can iter-
atively increase powers for approximating bilinear terms to
make the lower bound and the upper bound tighter to guar-
antee the accuracy.

Here, the upper bound of the TME value can be com-
puted by solving Problem (8), while the lower bound can
be obtained through the BR of the adversary, e.g., by us-
ing the public-state algorithm (Johanson et al. 2011). For
convenience, we use Z = 0 to represent the McCormick
relaxation (McCormick 1976), i.e., approximating a bilin-
ear term w = yiyj (yi, yj ∈ [0, 1]) with loose bounds:
max{0, yi + yj − 1} ≤ w ≤ min{yi, yj}. Line 1 ini-
tializes the powers to 0, which means that each bilinear
term is approximated by the McCormick relaxation, i.e.,
constraints of AMDT in Problem (8) are replaced by con-
straints of the McCormick relaxation. In each iteration, the
lower and upper bounds are computed at Lines 3 and 4,
respectively. Here, the gap ε1 is set for MILP, i.e., Prob-
lem (8). After that, the powers are updated at Lines 5–
12. Specifically, we increase the powers for bilinear terms
(in BLI ) whose difference values between wi(σTi

) and
ri(σi)wi+1(σTi+1

) (here σi = σTi
(i)) are larger than ε2

(Lines 8 and 9). The powers for bilinear terms and the
variables are updated separately with the bound �− log2 ε2�
(Lines 10 and 11) because |wi(σTi

)−ri(σi)wi+1(σTi+1
)| ≤

2
−Zwi(σTi

)wi+1(σTi+1
) ≤ 2

−Zwi(σTi
) . If no bilinear terms

fulfill the requirements, ε2 will decrease at Line 12 to guar-
antee that we can achieve the given accuracy. The lower
bound of the objective value of Problem (8) is updated at
Line 13. The loop will terminate if the gap between the lower
bound and the upper bound is not larger than ε0 (Line 14)
and then the joint realization plan of team players are re-
turned (Line 15). The following theorem shows that the out-
put rT is part of an (ε0 + ε1)-TME.

Theorem 6. The output rT of Algorithm 2 is part of an (ε0+
ε1)-TME.

Proof. When we obtain the output rT of Algorithm
2, we also obtain the optimal value v of Problem
(8). Given the constraints in Problem (8) and con-
straints in Eqs.(1a)-(1c) for the adversary, v is also
the optimal objective value in Problem: maxrT minrn
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ε 10−1 10−1

2 10−2 10−3 10−4 10−5 10−6 10−1 10−1

2 10−2 10−3 10−4 10−5 10−6

IARAMDT <1s <1s <1s <1s <1s <1s <1s <1s <1s <1s 19s 319s 649s 2460s
IARMDT-1 <1s <1s <1s <1s <1s <1s <1s <1s <1s <1s >2h
IARMDT+1 <1s <1s <1s <1s <1s <1s <1s <1s <1s <1s 41 492s 964s 4786s
IRAMDT 4s 47s >2h 52s >2h
IARMDT <1s <1s <1s <1s <1s <1s <1s <1s <1s <1s 7s 252 714s 4425s
IRMDT 4s 172s >2h 61s >2h
BARON 30s 690s >10h 30s >10h
IARAMDT <1s <1s 1s 4s 54s 133s 522s <1s <1s <1s 35s 141s 399s 3242s
IARMDT-1 <1s <1s <1s 4s 14s >2h <1s <1s 2s 3082s 5982s >2h
IARMDT+1 <1s <1s 1s 4s 50s 707s 707s <1s <1s 1s 19s 100s 1885s >2h
IRAMDT 319s >2h >2h
IARMDT <1s <1s 2s 5s 65s >2h <1s <1s 1s 39s 320s 919s >2h
IRMDT 436s >2h >2h
BARON 60s >10h 540s >10h

Table 1: The top left part is 3K4 with |BL| = 120, the top right part is 3K5 with |BL| = 200, the bottom left part is 3K6 with
|BL| = 300, the bottom right part is 3K7 with |BL| = 420, ΔU = 6, and ‘> #h’: algorithms are terminated after # hours.

∑
σn∈Σn

∑
σT∈ΣT

UT (σT ,σn)w1(σT )rn(σn). Let rn be
the optimal solution in this problem. Suppose v� is the
team’s utility value under profile (rT , rn). We know that
v ≤ v� ≤ v+ε1. Consequently, given rn, for any strategy r′T
by the unilateral deviation from rT with the team’s utility v′,
we have v′ ≤ v+ε1 and then v′−v� ≤ v+ε1−v ≤ ε0+ε1.
Given rT , for any adversary strategy r′n with the adver-
sary’s utility v′, we have v′ ≤ −v and then v′ − (−v�) ≤
−v+v+ε1 ≤ ε0+ε1. Then rT is part of (ε0+ε1) Nash equi-
librium. In addition, v + ε1 is the upper bound of the TME
value v�� and then v�� − v� ≤ v + ε1 − v� ≤ v + ε1 − v ≤
ε0 + ε. Therefore, rT is part of an (ε0 + ε1)-TME.

7 Experimental Evaluation

We evaluate our algorithm (IARAMDT) through experi-
ments. We use CPLEX (version 12.9) to solve the linear pro-
gram. All the algorithms are performed on a machine with
6-core 3.2GHz CPU and 16GB memory. Because the de-
fault gap for MILP in CPLEX is 10−6, we set ε1 = 10−6

with ε2 = 5× 10−7 unless otherwise specified.
We use BARON (version 19.3.24) (Khajavirad and

Sahinidis 2018) to solve Problem (2) directly as a base-
line. Other baselines include: 1) IARAMDT-1: at each it-
eration, we only select bilinear terms with the largest differ-
ence between wi(σTi) and ri(σi)wi+1(σTi+1) similar to the
previous approach (Čermák et al. 2018); 2) IARAMDT+1:
we increase the power with 1 instead of Z at lines 10 and
11 of Algorithm 2, which is similar to many approaches
(Čermák et al. 2018; Andrade et al. 2019); 3) IRAMDT:
we use RAMDT instead of ARAMDT; 4) IARMDT: we use
MDT to replace AMDT; and 5) IRMDT: we increase the
powers with 1 for all bilinear terms starting with Z = 1,
which is the original MDT approach (Kolodziej, Castro, and
Grossmann 2013; Wang, Guo, and An 2017).

Our experiments run on the standard games, the multi-
player Kuhn poker and the Leduc Hold’em poker games (see
Farina et al. (2018) for their rules), where nKr and nLr de-
note an n-player Kuhn instance with r ranks (i.e., r cards)
and an n-player Leduc instance with r ranks (i.e., 2r cards),

ε 10−1 10−2 10−3 10−4 10−1 10−2 10−3 10−3

2
1 2s 44s 481s 7047s 3s 218s 1831s 5591s
2 2s >3h 3s >3h
3 2s 274s 1303s >3h 3s 155s 5121s >3h
4 2s 83s 4442s >3h 3s 209s 6924s 6924s

Table 2: The left part is 4K5 with |BL| = 1840 and ΔU = 8,
the right part is 3L3 with |BL| = 1380 and ΔU = 21 (ε1 =
ε2 = 0.001), and rows 1–4 are IARAMDT, IARAMDT-
1, IARAMDT+1, IARMDT, respectively, which are termi-
nated after 3 hours.

respectively. ΔU is the difference between the maximum
possible utility and the minimum possible utility of the team.
In addition to the current game rules, the game ends if the
adversary takes the action of folding because the team will
certainly win after that. Without loss of generality, player n
is the adversary.

We show the time to compute εΔU -TMEs for different
accuracies. Here εΔU is ε0 + ε1 in Algorithm 2 or the
difference between the lower bound and the upper bound
in BARON. Results in Table 1 show that 1) IARAMDT
dramatically outperforms the exiting MDT approach and
BARON; 2) our approximation techniques, especially the
associated constraint method, are extremely important for
the scalability of IARAMDT by comparing it with IRAMDT
and IARMDT; and 3) our novel techniques in our iterative
algorithm improve the scalability of IARAMDT by com-
paring it with IARAMDT-1 and IARAMDT+1. Specifically,
after using our associated constraint method with the same
initial setting (i.e., using the McCormick relaxation) in the
iterative algorithm, IARAMDT-1, IARAMDT+1, and IAR-
MDT perform similarly to IARAMDT when we only need
low precision levels to achieve the given accuracy, but they
perform significantly worse than IARAMDT when we need
high precision levels to achieve the given accuracy, which is
further confirmed in larger problems as shown in Table 2.

Comparison to TMSP. Table 3 shows the comparison
to the TMSP obtained from an εΔU -CTMECor, which is
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ε 10−1 10−2 10−3 10−6 10−1 10−2 10−3 10−6

1 74% 0% 0% 0% 60% 60% 10% 0%
5 <1s 3s 6s 6s 5s 38s 169s 169s
5 75% 70% 80% 80% 76% 80% 84% 84%
6 <1s 4s >2h <1s 10s >2h
6 87% 69% 91% 69%
1 86% 20% 17% 0% 77% 67% 12% 0%
5 24s 201s 1305s 2208s 59s 1154s >2h
5 84% 86% 84% 82% 83% 82%
6 <1s 7s >2h <1s 23s >2h
6 88% 76% 93% 77%

Table 3: The gaps and runtime of IARAMDT (label 1) (see
Table 1 for its runtime), HCG (label 5), and FTP (label 6) on
3K4, 3K5, 3K6, and 3K7, respectively.

computed by algorithm Hybrid Column Generation (HCG)
(Celli and Gatti 2018) or algorithm Fictitious Team-Play
(FTP) (Farina et al. 2018). The gap is the relative distance
between the team’s best utility (vm) of IARAMDT (the
lower bound when ε = 10−6) and the team’s lower bound
(v) under different values of ε, i.e., |v−vm|

|v| × 100%. The
larger the gap is, the more utility the team will lose. We
can see that: 1) the gaps of IARAMDT monotonically de-
crease with ε to 0, but the gaps of the TMSP may not de-
crease with ε and are always very large; and 2) given the
same ε, IARAMDT runs faster than HCG and FTP in most
cases. About the TMSP obtained from a CTMECom, it can
be computed within 1s in four games of Table 3, but the gaps
(i.e., 88%, 94%, 95%, and 92%) are extremely large. There-
fore, the TMSP can cause a huge loss, which is consistent
with our theoretical result shown in Theorem 1.

8 Conclusions

This paper proposes an efficient algorithm to compute TMEs
within any given accuracy for zero-sum multiplayer EFGs.
We first show that the inefficiency of correlated strategies
can be arbitrarily large in EFGs. To efficiently solve the
non-convex program for finding TMEs directly, we develop
novel approximation techniques (i.e., an asynchronous pre-
cision method and an associated constraint method) and
the novel iterative algorithm. Our algorithm is dramatically
faster than baselines in the experimental evaluation. In addi-
tion, our novel techniques could shed light on the study of
imperfect-recall games involving bilinear terms (Čermák et
al. 2018) and global optimization.
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