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Abstract

Cellular traffic offloading is nowadays an important problem
in mobile networking. We model it as a procurement problem
where each agent sells multi-units of a homogeneous item
with privately known capacity and unit cost, and the auc-
tioneer’s demand valuation function is symmetric submod-
ular. Based on the framework of random sampling and profit
extraction, we aim to design a prior-free mechanism which
guarantees a profit competitive to the omniscient single-price
auction. However, the symmetric submodular demand valua-
tion function and 2-parameter setting present new challenges.
By adopting the highest feasible clear price, we successfully
design a truthful profit extractor, and then we propose a mech-
anism which is proved to be truthful, individually rational and
constant-factor competitive in a fixed market.

Introduction

In recent years, global mobile data traffic has been explo-
sively growing due to the proliferation and in-depth use of
smart mobile devices and applications. According to a white
paper newly updated by Cisco (Cisco 2019), global mobile
data traffic reached 11.5 exabytes per month at the end of
2017, up from 6.7 exabytes per month at the end of 2016.
Moreover, it had grown 17-fold from 2012 to 2017, grown
71% in 2017, and would continue to increase another 7-
fold between 2017 and 2022. Such a surge of mobile traffic
would certainly deteriorate existing cellular networks’ ser-
vice quality if it is not handled properly.

One solution is to offload the mobile data traffic onto fixed
networks through Wi-Fi or femtocell. Compared with up-
dating the cellular network’s infrastructure or building more
towers, cellular traffic offloading can ease the burden of cel-
lular networks and enhance users’ experience in a timely
and economical manner (Balasubramanian, Mahajan, and
Venkataramani 2010; Dong et al. 2014; Wang et al. 2015;
Zhang et al. 2016), and it has already been widely applied
in practice. According to Cisco (Cisco 2019), 54% of to-
tal mobile data traffic was offloaded onto the fixed network
through Wi-Fi or femtocell in 2017, thus mobile offload had
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exceeded cellular traffic by a significant margin; and nearly
three-fifths of traffic (59%) will be offloaded from cellular
networks by 2022. So, it is of great application value to study
how to optimally offload the cellular traffic.

In practice, such femtocell devices or WiFi hotspots
are usually owned by third-party entities (agents) such as
schools, restaurants, shopping malls, residences and so on.
Shifting cellular traffic to these agents requires to consume
their own resources (e.g., bandwidth, data quota, electricity,
etc.), thus the agents need to be well motivated, and their
costs, which are privately known by themselves, should be
properly compensated (Zhang et al. 2016). Under such cir-
cumstances, finding a good offloading solution is no longer
a conventional optimization problem. Instead, what we need
is a well-designed mechanism, that generates an optimized
procurement solution which approximates the optimal one in
an ideal omniscient scenario. Essentially, this is an algorith-
mic mechanism design (Nisan and Ronen 2001) problem.

One common case is that the macrocell of a cellular ser-
vice provider (CSP) is divided into several non-overlapping
small regions. Each agent is located inside one region and
can provide some units of offloading resources for this re-
gion each at a fixed unit cost, and each agent’s capacity
and unit cost is her private information. The agents bid their
capacities and unit costs strategically to obtain utilities as
high as possible. The CSP can purchase some units from the
agents, and her valuation on the units is measured according
to her improvement in service quality. The question then is
how to decide the purchase quantity from each agent and the
associated payment in order to maximize the CSP’s profit.
Basically, this is a novel prior-free optimal mechanism de-
sign problem characterized by the following features:
1) Multi-unit 2-parameter. Each agent sells multiple units

of a homogeneous item with privately known capacity
(inventory volume) and unit cost;

2) Local diminishing return (LDR) demand valuation. LDR
is a superset of concave additivity (Chan and Chen 2014)
and a subset of diminishing return (Chan and Chen
2014);

3) Competitive profit. The objective is to guarantee a profit,
which is defined as “value - cost”, competitive to the om-
niscient single-price auction.
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We aim to solve the above problem by generalizing the ran-
dom sampling and profit extraction paradigm of competitive
auctions (Goldberg, Hartline, and Wright 2001). The contri-
butions of our work can be summarized as follows:
1) We enrich the class of competitive auctions by consid-

ering a more general optimization objective and a more
general demand valuation function.

2) We propose a truthful, individually rational and profit
competitive mechanism for our setting. The profit ob-
tained by the mechanism is constant-competitive for
fixed markets and (8 + ε)-competitive for large markets.

3) We propose a more natural approach to model and solve
the application problem of cellular traffic offloading. As
it is a rather general framework, it can also be used for
other similar problems.

Related Work

Most of the pioneering studies on designing incentive mech-
anisms for cellular traffic offloading, e.g., (Zhuo et al. 2011;
Paris et al. 2013; Dong et al. 2014; Zhuo et al. 2014), fo-
cus on the settings where the underlying traffic or offload-
ing demands are known to the CSP or can be estimated pre-
cisely and efficiently, and the optimization objective is social
welfare maximization. Basically, for these settings the cele-
brated Vickrey-Clarke-Groves (VCG) mechanism (Vickrey
1961; Clarke 1971; Groves 1973) is a perfect solution.

However, mechanism design with optimization objec-
tives/constraints relates to payments, e.g., revenue maxi-
mization, profit maximization (Hartline and Karlin 2007),
and so on, are traditionally well-known hard problems. As
far as we know, such objectives are relatively new in cur-
rent cellular traffic offloading study. Although Myerson’s
work in the 1980’s (Myerson 1981) has solved the revenue
maximization problem in Bayesian single-parameter case,
how to design the optimal mechanism for the general case
still remains a widely open problem. However, there have
been some noteworthy progress. In the past two decades, re-
searchers showed that several important subclasses of op-
timal mechanism design problems can be solved by using
technologies from computer science even in the prior-free
case, for example, competitive auctions (Goldberg, Hart-
line, and Wright 2001), budget-feasible mechanisms (Singer
2010) and so on. The problem of maximizing CSP’s capac-
ity gain under the constraint of a strict budget was firstly
studied by (Zhang et al. 2016) and (Wu et al. 2019).

The research of competitive auctions stems from (Gold-
berg, Hartline, and Wright 2001; Goldberg et al. 2006).
Basically, subsequent work can be categorized into two
classes: designing auctions with improved competitive ra-
tios, e.g., (Fiat et al. 2002; Hartline and Mcgrew 2005;
Ichiba and Iwama 2010; Chen, Gravin, and Lu 2014); or
further exploring the space of solvable prior-free optimal
mechanism design problem based on the methodology of
random sampling, e.g., (Fiat et al. 2002; Cary et al. 2008;
Abrams 2006; Bei et al. 2012). Our work intrinsically be-
longs to the later class.

The first study that brought multi-unit 2-parameter auc-
tion into the scope of random sampling mechanisms is

the multi-unit budget-constrained auction problem studied
in (Borgs et al. 2005), in which there are a limited number of
identical goods, each bidder has a private unit valuation and
a private overall hard budget. They designed for it an asymp-
totically competitive auction with the competitive ratio tends
to 1 as the bidder dominance (defined in section 5.3) tends to
0. However, this mechanism performs badly when the bidder
dominance is large. (Abrams 2006) proposed another ran-
dom sampling mechanism to solve this problem, improved
the competitive ratio for cases with high bidder dominance.
Later, in the study of cellular traffic offloading, (Zhang
et al. 2016) showed that (Abrams 2006)’s mechanism can
be easily adapted to a multi-unit procurement auction set-
ting, where the auctioneer (cellular service provider) aims to
maximize the amount of service purchased from the agents
(femtocells) while the total payment is strictly bounded
within a given budget. Our work is mainly motivated by
(Zhang et al. 2016). We generalize the demand valuation
function from additive to LDR and focus on a different op-
timization objective, i.e., profit. We propose a framework to
generate competitive profit in multi-unit procurement auc-
tions. Note that (Zhang et al. 2016)’s mechanism belongs
to the class of budget feasible mechanisms (Singer 2010;
Chen, Gravin, and Lu 2011; Bei et al. 2012; Chan and Chen
2014; Biswas et al. 2015), especially the subclass of multi-
unit budget feasible mechanisms, which have been system-
atically studied in (Chan and Chen 2014). Thus our setting
also closely relates to the settings studied in (Chan and Chen
2014), but is different in both the optimization objective and
the number of private parameters. We are also aware of the
fact that (Ray, Mandal, and Narahari 2015) have studied a
similar setting of profit maximizing multi-unit procurement
auction. However, they use different techniques to design the
profit extractor, and in the 2-parameter case, their current re-
sults only apply to linear demand valuation functions.

Preliminaries

Cellular Traffic Offloading

In cellular traffic offloading the CSP gains extra network ca-
pacity by purchasing offloading resources (or service) from
α agents in the macrocell sector, denoted as [α] = {1, ..., α}.
We assume each agent i ∈ [α] has

• a capacity m̂i ∈ N, representing the maximal number of
resource units she can provide, and

• a unit cost ĉi ∈ R
+, representing her cost of providing

each resource unit.

The resource units owned by each agent i ∈ [α] can be de-
noted as (i, 1), (i, 2), ..., (i, m̂i), where (i, j) refers to agent
i’s j-th unit. Note that, femtocells have a much smaller cov-
erage compared with macrocell base stations, offloading re-
sources purchased from one femtocell is not able to han-
dle all traffic from the entire macrocell. To deal with this
practical issue, we can divide the entire sector into β non-
overlapping regions, denoted as [β] = {1, ..., β}, each of
which is fully covered by the femtocells that reside in it. So
from a region’s point of view, there is no difference between
the units purchased from different agents inside it.
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We denote an allocation as A = (a1, ..., an) where each
ai ∈ {0, 1, ..., σi} is the number of units obtained from
agent i. The capacity gain of a region j ∈ [β], denoted as
sj(A), equals to the total units purchased within this region.
We can let r(i) denote the region agent i belongs to, and
then the agents in region j can be denoted as Rj = {i ∈
[α] : r(i) = j}. Hence, we have sj(A) =

∑
i∈Rj

ai.
For each region j, we can specify a weight wj ∈ R+,

which intuitively represents the value obtained by using a
resource unit in this region to offload some data traffic. So,
as the number of units obtained in a region increases, the
marginal value of the ith unit is wj · Pr(dj ≥ i), where dj
is a random variable representing the resource demand in
region j, and Pr(dj ≥ i) is the probability that the ith unit
will be used. We denote Pr(dj ≥ i) as δji . Therefore, given
an allocation A, the obtained value in region j is

vj(A) =
sj(A)∑
i=1

wjδ
j
i = wj ·

sj(A)∑
i=1

δji (1)

where 1 ≥ δj1 ≥ δj2 ≥ δj3 ≥ · · · ≥ 0 is a sequence of
nonnegative real numbers upper bounded by 1 (we assume
they are given in advance).

The value of allocation A, denoted as v(A), is the sum of
the values obtained in all regions, i.e.,

v(A) =
β∑

j=1

sj(A)∑
i=1

wjδ
j
i =

β∑
j=1

wj

sj(A)∑
i=1

δji (2)

Given an allocation A = (a1, a2, ..., ai, ..., an), adding
one extra resource unit (i, j) of agent i will result in a
new allocation A + ei = (a1, a2, ..., ai + 1, ..., an), in
which the expected offloading in the system increases by
mA(i, j) = δ

r(i)
sr(i)(A)+1 in region r(i), and the value will

increase by v(A + ei) − v(A) = mA(i, j) · wr(i), which
we refer to as unit (i, j)’s marginal value. It is easy to check
that, for any A and A′ such that ai ≤ a′i for each i, and for
any agent j,

v(A+ej)−v(A) = δ
r(j)
sr(j)(A)+1 ·wr(j) ≥ δ

r(j)
sr(j)(A′)+1 ·wr(j)

(3)
= v(A′ + ej)− v(A′) (4)

According to the the definitions in (Chan and Chen 2014),
v(·) belongs to the diminishing return class. It actually forms
a proper subset of the diminishing return class, since each
unit’s marginal value is only locally depended on the allo-
cation in her region. We call this valuation class as local
diminishing return (LDR) functions, formally, it is a dimin-
ishing return function where the agents are partitioned into
disjointed sets, and for any allocation A and A′, and any
agent j, we have v(A+ ej)− v(A) = v(A′ + ej)− v(A′)
if ai = a′i for all i such that r(i) = r(j). If the payments
to the agents are T = (t1, ..., tn), where ti ∈ R

+, then the
profit π(A, T ) is the difference between the obtained value
and the total payments to the agents, i.e.,

π(A, T ) = v(A)−
α∑

i=1

ti =

β∑
j=1

(

sj(A)∑
i=1

wjδ
j
i −

∑
i∈Rj

ti) (5)

Clearly, the item in the above bracket is actually the profit
obtained in region j, and so π(A, T ) equals to the profits
obtained in all the regions added together. We aim to find
out the allocation and payment that maximizes the profit.
Since the valuations in the regions are independent from
each other, the following result trivially holds.

Proposition 1. Allocation and payment (A, T ) maximizes
the profit iff it maximizes the profit obtained in each region.

Therefore, our problem reduces to finding out the optimal
allocation and payment for each region.

Economic model

For an arbitrary region there is a set of agents (bidders)
[n] = {1, . . . , n}, and the agents compete for providing
their resource units to the auctioneer. The actual values of
m̂i and ĉi are only privately known by each agent i herself,
and we refer to τi = (m̂i, ĉi) as agent i’s type. The auc-
tioneer runs a single round sealed bid procurement auction
with all the agents. As a seller, each agent i submits a bid
bi = (mi, ci) to the auctioneer. We use m̂ and ĉ to de-
note the capacity profile (m̂1, · · · , m̂n) and unit cost profile
(ĉ1, · · · , ĉn) respectively, and use m and c to denote the cor-
responding capacity bid profile (m1, · · · ,mn) and unit cost
bid profile (c1, · · · , cn) respectively. Based on the bid vector
b = (b1, · · · , bn), the auctioneer determines the outcome
using a predefined mechanismM = (x,p) consists of

1) an allocation function xi : b1 × · · · × bn → N, and

2) a payment function pi : b1 × · · · × bn → R
+.

That is, after receiving the vector b, for each i, the auction-
eer tries to purchase xi(b) units of goods from agent i, and
gives agent i a payment of pi(b) if succeed, a punishment as
serious as possible otherwise. So the utility of agent i is

ui(b) =

{
pi(b)− ci · xi(b) xi(b) ≤ mi

−∞ xi(b) > mi
(6)

Note that, such a utility function can be realized by (Nisan
and Ronen 2001)’s framework of mechanism with verifica-
tion, but we omit the details to avoid unnecessary complex-
ity. We assume the agents are rational in the sense that they
always pursue higher utilities, and the agents do not collude
and have complete knowledge of the auction mechanism.

The auctioneer’s valuation to the purchased unit set S is
actually a symmetric submodular function (Singer 2010),
when |S|= j (j ∈ N), the auctioneer obtains the value:
vr(j) =

∑j
i=1 ri, where ri = wiδi is the i-th unit’s

marginal value, r = 〈r1, ..., rM 〉 is a non-increasing se-
quence of non-negative real numbers, M is a sufficiently
large natural number. We refer to vr as the local demand
valuation function. Given a mechanism (x,p) and an arbi-
trary bid vector b, the profit of the auctioneer is

πr(b) = vr(

n∑

j=1

xj(b))−
n∑

j=1

pj(b) =

∑n
j=1 xj(b)∑

i=1

ri −
n∑

j=1

pj(b)

(7)
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Regional Optimal Omniscient Auctions

In the omniscient case, the capacity m̂i and unit cost ĉi
of each bidder i are assumed to be known by the auction-
eer. Given the demand valuation function vr(·), the optimal
multi-price omniscient auction OPT m

r can be realized by
greedily buying the lowest cost unit (i, j) with a price equals
to its cost ĉi until the marginal value becomes lower than the
unit cost, breaking ties lexicographically. We denote the cost
of the ith lowest cost unit as qi, and denote the number of se-
lected items as km, then the obtained profit is:

Pm
r (m̂, ĉ) = maxj

j∑
i=1

(ri − qi) =

km∑
i=1

(ri − qi) (8)

The clear price adopted by the optimal single-price om-
niscient auction OPT s

r must just equal to the highest unit
cost of all the winner agents. Therefore, the profit obtained
by OPT s

r is:

P s
r (m̂, ĉ) = maxj

j∑
i=1

(ri − qj) =

ks∑
i=1

(ri − qks
) (9)

where ks is the number of selected units.
Lemma 2. P s

r (m̂, ĉ) ≥ 1
lnkm+O(1)P

m
r (m̂, ĉ).

Proof. The optimality of P s
r (m̂, ĉ) follows

∀j :

ks∑

i=1

(ri − qks) ≥
j∑

i=1

(ri − qj) ≥
j∑

i=1

(rj − qj) = j(rj − qj)

(10)
Accordingly, ∀j : (rj − qj) ≤ 1

j

∑ks

i=1(ri − qks
). So, by

equation 8 we can further obtain

Pm
r (m̂, ĉ) ≤

km∑

i=1

1

j

ks∑

i=1

(ri − qks) ≤ [lnkm +O(1)] · P s
r (m̂, ĉ)

(11)
Therefore, lemma 1 holds.

Thus, OPT s
r can be guaranteed to obtain a 1

O(1)+lnkm

sized fragment of the OPT m
r profit.

A Regional Truthful Profit Extractor

Feasible Clear Price and Purchasing Quota

First of all, the agents are divided into two partitions ran-
domly. Given a partition, we can first reorder the agents by
increasing unit cost bid, break ties randomly, and then all
the N =

∑n
i=1 mi units can be seen as having been ordered

lexicographically in a queueQ. Let Si denote the set of units
from the first i agents, and so we have |Si|=

∑i
j=1 mj . This

setting can be depicted graphically in figure 1, where the x
axis represents the number of the units, and the y-axis rep-
resents unit cost or price. The units of each agent are de-
picted as a rectangle and placed in order on the x-axis. The
height and width of each rectangle represent the unit cost
and capacity of the corresponding agent respectively. Mak-
ing a profit of R ultimately reduces to determining a feasible
combination (X,P ), with which we can buy X units from
the agents at the unit price P and obtain profit R.

• We call X ∈ N as a feasible (purchasing) quota if there is
a PX ∈ R

+ such that (X,PX) is a feasible combination;

• We call P ∈ R
+ as a feasible clear price if there is a

XP ∈ N such that (XP , P ) is a feasible combination.

Note that, since individual rationality must be guaranteed, at
a clear price of P we can only buy units from agents that bid
unit costs no higher than P . For an arbitrary (X,P ), we call
it as a possible combination if and only if

X∑
i=1

ri − PX = R. (12)

It is straightforward to verify the following result.

Proposition 3. (X,P ) is a feasible combination iff (X,P )
is a possible combination and there are at least X units
whose bid costs don’t exceed P .

Figure 1: An illustration for example 1

Example 1. Consider a partition with 2 agents: agent 1 with
capacity 1 and unit cost 1, agent 2 with capacity 2 and unit
cost 2. If R = 1.6, r1 = r2 = 3, ∀i ≥ 3 : ri = 0 and all
the agents truthfully bid their types, then both (X1, P1) =
(1, 1.4) and (X2, P2) = (2, 2.2) are feasible combinations.

1) Given a mechanism which adopts the clear price P1 =
1.4 to buy the first X1 = 1 unit in the queue G (i.e., the unit
of agent 1), agent 1’s utility will be 0.4. Actually, agent 1 can
obtain a higher utility by bidding her unit cost higher at 1.5:
In this case, (X1, P1) becomes infeasible, and P2 = 2.2 will
be adopted to buy 1 unit from agent 1 and 1 unit from agent
2, and so agent 1’s utility becomes 1.2.

2) To avoid the above issue, we can consider always
adopting the feasible combination with the highest feasi-
ble clear price. That is, (X2, P2) will be adopted. But this
still isn’t good enough, since agent 2 can misreport a unit
cost lower than 1, and then she will switch her position with
agent 1 and thus sells 2 units at the unit price 2.2, mak-
ing her utility doubled. Fortunately, the above issue can be
avoided by purchasing from the winner agents in a random
order.

Example 1 implies adopting a non-highest feasible clear
price may sometimes motivate misreporting. So, among all
the feasible combinations we always choose the one contain-
ing the highest feasible clear price. Now, we define:

X∗ = min{j ∈ [N ] :

j∑
i=1

(ri − rj+1) ≥ R} (13)
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P ∗ =

∑X∗

i=1 ri −R

X∗ (14)

Actually the search space can be constricted to [X∗]:

Lemma 4. If both (X,P ) and (X ′, P ′) are possible, then

1) if X ≤ X ′ ≤ X∗, then P ≤ P ′ ≤ P ∗;
2) if X∗ ≤ X ′ ≤ X , then P ∗ ≥ P ′ ≥ P ;
3) if P < P ′, X ≤ X∗ and X ′ ≤ X∗ then X < X ′.

Proof. From Equations 13 and 14, it follows:

r1 ≥ · · · ≥ rX∗ > P ∗ ≥ rX∗+1 ≥ · · · ≥ rN (15)

1) According to inequality 15, ri − P ∗ > 0 for all i ≤ X∗.
Therefore, from equation 12, we can derive

R =

X′∑
i=1

(ri − P ′) =
X∗∑
i=1

(ri − P ∗) ≥
X′∑
i=1

(ri − P ∗) (16)

and it immediately follows that P ′ ≤ P ∗. So, ri−P ′ > 0 for
all i ≤ X ′, and for the same reason, we can further obtain
P ≤ P ′. Therefore, P ≤ P ′ ≤ P ∗.
2) According to equation 15, ri − P ∗ ≤ 0 for all X∗ + 1 ≤
i ≤ N . So, equation 16 also holds, and it follows P ′ ≤ P ∗.
Therefore,

∑X∗

i=1(ri − P ′) ≥ R, so

0 ≥
X′∑

i=X∗+1

(ri − P ′) ≥ (X ′ −X∗)(rX′ − P ′) (17)

Accordingly, rX′ ≤ P ′, and it implies ri − P ′ ≤ 0 for
all X ′ + 1 ≤ i ≤ N . Therefore, similarly we can obtain
P ≤ P ′, and finally derive P ∗ ≥ P ′ ≥ P .
3) From equation 12, we can obtain

R =

X∑
i=1

(ri − P ) =

X′∑
i=1

(ri − P ′) (18)

Since ri − P > 0 for all i ≤ X , and ri − P ′ > 0 for all
i ≤ X ′, P ≤ P ′ in equation18 implies X ≤ X ′.

Corollary 5. If P is a feasible clear price then P ≤ P ∗.

Proof. It follows directly from lemma 4.

Intuitively, for all the possible combinations (X,P ), as X
gradually increases from 0 to N , P monotonously increases
until X = X∗, afterward P monotonously decreases. In this
sense, we refer to X∗ as the turning point.

Lemma 6. If X is the largest feasible purchasing quota
in [X∗], then P =

∑X
i=1 ri−R

X is the highest feasible clear
price.

Proof. Let X be the largest feasible purchasing quota in
[X∗]. Assume that there is another feasible X ′ s.t. P ′ =
∑X′

i=1 ri−R

X′ > P . There are only 2 cases, as shown in the
following:
Case 1 (X ′ ≤ X∗): Since X ′ < X ≤ X∗, and from
lemma 4, it follows P ≥ P ′. Contradiction!

Case 2 (X ′ > X∗): Since X ′ is feasible, there are at least X ′
units whose cost bids don’t exceed P ′. By lemma 5, P ′ ≤
P ∗, so the number of units whose cost bids don’t exceed P ∗
is more than X∗, and therefore P ∗ is a feasible clear price.
So, P = P ∗ ≥ P ′, and this is also a contradiction.

Finally, we can further constrict the search space to sev-
eral special points according to the following result.
Lemma 7. If X is a largest feasible purchasing quota in
[X∗], then X ∈ {X∗} ∪ {|Si|: |Si|< X∗}.
Proof. Assume that there is a X being a largest feasible pur-
chasing quota, satisfying |Si−1|< X < |Si|. By proposi-

tion 3, we have c1 ≤ · · · ≤ ci ≤
∑X

i=1 ri−R

X . By lemma 4,

X < |Si|< X∗, it follows
∑X

i=1 ri−R

X ≤
∑|Si|

i=1 ri−R

|Si| . So,
|Si| is also a feasible purchasing quota, and X can’t be the
largest feasible purchasing quota. This is a contradiction.
With the same approach, we can show that any X satisfying
max{|Si|: |Si|< X∗} < X < X∗ is also impossible.

The proposed profit extractor

Based on the results from the previous subsection, we can
now design a truthful profit extractor, as follows.

Mechanism PROFITEXTRACTr,R

Input: n′ agents with bid (m, c)

1. Reorder the agents by increasing unit cost, break ties
randomly and reorder m and c accordingly;

2. N ′ ←
∑n′

i=1 mi;
if
∑N ′

i=1 ri < R then return;
I ← {j ∈ [N ′] :

∑j
i=1(ri − rj+1) ≥ R};

if I = ∅ then X∗ ← N ; else X∗ ← min I;
�← min{j ∈ [n′] :

∑j
i=1 ri ≥ X∗};

3. if
∑X∗

i=1(ri − c�) ≥ R then X ← X∗;

P ←
∑X

i=1 ri−R

X ;
else

T ← {j ∈ [�− 1] : cj ≤
∑|Sj |

i=1 ri−R

|Sj | };
if T = ∅ then X ← 0;P ← 0;

else �∗ ← maxT ; X ← |S�∗ |; P ←
∑X

i=1 ri−R

X ;
end

4. BUY-IN-RANDOM-ORDER([n′], X, P );

Function BUY-IN-RANDOM-ORDER
Input: agent set S, clear price P , purchasing quota X

1. W ← S;
2. while X = 0 do

Select an agent i from W randomly and delete it;
if ci ≤ P then

Select X ′ = min{X,mi} units from agent i;
Pay P ·X ′ units of money to agent i;
X ← X −X ′;

end
end
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As shown in figure 2, firstly (in step 1), the mechanism
reorders the agents by increasing unit cost bid, break ties
randomly. Next, (in step 2) it tries to find out the turning
point X∗ and agent � who owns the X∗-th unit. Afterward,
(in step 3) it tries to find the largest element X which is fea-
sible in {X∗}∪{|Si|: |Si|< X∗}. According to lemma 7, X
must be the largest feasible purchasing amount in [X∗]; and
according to lemma 6, P must be the largest feasible clear
price; finally, (in step 4) it considers the agents in random
order (the necessity has been demonstrated by example 1),
and try to buy X units in total at unit price P . Note that, we
call all the agents with unit cost bids at most P as winner
agents, since all such agents have some chance to sell.

Figure 2: Basic idea of the profit extractor

With respect to truthfulness, since each agent i has two
private parameters, i.e., m̂i and ĉi, we must prove that no
agent can obtain a higher expected utility by combinatorially
misreporting m̂i and ĉi, despite what other agents bid.
Lemma 8. If (X,P ) is a feasible combination, and X =
|Si|< X∗ is a largest feasible quota, then P < ci+1.

Proof. Assume that P ≥ ci+1. Consider the possible
combination (X ′, P ′), where X ′ = min{|Si+1|, X∗}. By
lemma 4(1), X ′ > X implies P ′ > P ≥ ci+1. So, the
number of units with bid costs less than P ′ is at least |Si+1|.
According to proposition 3, X ′ > X is also feasible. This is
obviously a contradiction.

Theorem 9. PROFITEXTRACTr,R is truthful.

Proof. For an arbitrary agent i with capacity m̂i and unit
cost ĉi, if other agents have bid (m−i, c−i), her utility will
be determined by her bid. Let X,P,Ui be the purchasing
quota, clear price and agent i’s utility, respectively, when
agent i truthfully bid (m̂i, ĉi), and assume they become
X ′, P ′, U ′

i respectively, when agent i bid (m′
i, c

′
i) instead.

There are 2 cases in total as shown in the following:
Case 1 (X = X∗): P = P ∗, and by proposition 3, the total
number of units the winner agents have is no less than X∗.
So, the number of units each winner agent sell is a random
variable. The randomness comes from the order by which
the agents are considered.

(1.1) Agent i is a loser: We have E[Ui] = 0 and ĉi > P ∗.
E[U ′

i ] > E[Ui] = 0 requires P ′ > ĉi, and therefore P ′ >
P ∗. But according to corollary 5, this is impossible.

(1.2) Agent i is a winner: E[Ui] > 0, and there are the
following possibilities: (a) if agent i bid c′i > P then it will

be excluded from the winner set and obtain a lower expected
utility E[U ′

i ] = 0. Since according to corollary 5, there is no
feasible clear price which is higher than P ∗; (b) if agent i
bid m′

i = m̂i and c′i ≤ P , then by proposition 3, (X∗, P ∗)
is still feasible, the winner set is the same and P ′ = P . So,
E[U ′

i ] = E[Ui]. (c) if agent i bid m′
i > m̂i and c′i ≤ P ,

(X∗, P ∗) is still feasible and we have P ′ = P . If X∗ ≤
m̂i, E[Ui] = E[U ′

i ], else E[U ′
i ] = −∞. (d) if agent i bid

m′
i < m̂i and c′i ≤ P : if X ′ = X and P ′ = P , then the

winner set is the same, and E[U ′
i ] < E[Ui], else X ′ < X ,

and by lemma 4, P ′ < P . We let Δ = Ω − X∗, where
Ω is the total number of units of the winner agents when
agent i bid truthfully. It is clear that agent i has to at least
bid Δ + 1 units lower for X∗ to become infeasible. So, we
have m′

i < m̂i − Δ, and E[U ′
i ] < (m̂i − Δ)(P ′ − ĉi) <

(m̂i −Δ)(P − ĉi) < E[Ui]. Note that, the last “<” above is
due to the fact that the worst case for Ui is when agent i is
the last to sell her units, and in this case agent i sells m̂i−Δ
unit at unit price P .
Case 2 (X < X∗): X ∈ {|Si|: |Si|< X∗}, and according to
lemma 8, every winner agent sells all the units she has bid,
so there is no uncertainty.

(2.1) Agent i is a loser: P < ĉi and E[Ui] = 0. To ob-
tain a higher utility, it must be P ′ > ĉi, and P ′ > P , by
lemma 4(3) it follows X ′ > X . So, agent i must have higher
bid her capacity. Since mi < X ′, E[U ′

i ] = −∞. Contradic-
tion!

(2.2) Agent i is a winner: E[Ui] = (P − ĉi) · m̂i and
E[U ′

i ] = (P ′ − ĉi) · E[X ′
i] where E[X ′

i] is the expected
number of units agent i sells. Assume that E[U ′

i ] > E[Ui],
i.e., (P ′ − ĉi) · E[Xi] > (P − ĉi) · m̂i. It is obvious that
E[Xi] ≤ m̂i, since otherwise agent i must sometimes sell
more than her capacity m̂i, so E[Ui] = −∞. Thus, it must
be P ′ > P , and it will result in a contradiction just as above.

So, truthfulness holds in the sense that for each agent, the
expected utility is maximized by bidding her capacity and
unit cost truthfully, despite what the other agents bid.

Afterward, individual rationality follows directly from the
specification of the proposed profit extraction mechanism.

Theorem 10. PROFITEXTRACTr,R is individually rational.

Proof. For each agent i, if she bids (mi, ci) and the clear
price P ≤ ci, then at most mi items will be purchased from
her at the price P . By theorem 9, every agent will bid truth-
fully, so the utility of every agent must be at least 0.

Finally, we can show that, the proposed profit extractor
can always obtain any reasonable target profit R, which is
lower than the omniscient single-price auction profit.

Lemma 11. The mechanism PROFITEXTRACTr,R obtains
profit R if P s

r (m̂, ĉ) ≥ R and 0 otherwise.

Proof. If P s
r (m̂, ĉ) ≥ R, then by equation 9,

∑ks

i=1(ri −
qks

) ≥ R where ks ∈ [N ]. So there is a P ≥ qks
satisfying∑ks

i=1(ri − P ) = R, so (ks, P ) is a feasible combination.
Therefore, at least PROFITEXTRACTr,R can adopt (ks, P )

to obtain a profit of R. If P s
r (m, c) < R, then

∑k
i=1(ri −
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qk) < R for all k ∈ [N ], so there is no feasible combination,
thus PROFITEXTRACTr,R will obtain profit 0.

The Profit competitive mechanism

Finally, we can propose the following mechanism, which is
adopted in each region.

Mechanism PROFIT-PAr

Input: n agents with bid (m, c)

1. Partition the agents u.a.r. into two sets ΣA and ΣB with
bids (m′, c′) and (m′′, c′′) respectively.

2. RA ← P s
r (m

′, c′);
RB ← P s

r (m
′′, c′′);

3. With prob. 1
2 run PROFITEXTRACTr,RB

(m′, c′);
With prob. 1

2 run PROFITEXTRACTr,RA
(m′′, c′′);

This mechanism firstly divide the agents into 2 partitions
randomly (step 1), then theOPT s

r profit of each partition is
computed (step 2), and finally one of the partition’s OPT s

r
profit is used as target to generate profit from the other par-
tition (step 3). It is trivially computationally tractable, indi-
vidually rational and truthful.

Theorem 12. PROFIT-PAr is truthful.

Proof. For each agent, either she will be in a partition where
the utility is 0 despite how she bids, or she will take part in
an auction specified by PROFITEXTRACTr,R with a target
profit independent of her bid. Since PROFITEXTRACTr,R is
truthful, each agent’s best choice is to bid truthfully.

Lower bound The bidder dominance factor (Abrams
2006) is defined as α = ks

max{m̃1,...,m̃n} , in which ks is the
total number of units purchased byOPT s

r , m̃i (1 ≤ i ≤ n)
is agent i’s contribution, so actually ks =

∑n
i=1 m̃i.

Theorem 13. PROFIT-PAr is 8α
α−1 -competitive to OPT s

r .

Proof. Let Σs be the agents who contributes goods to
OPT s

r and Ps is the adopted clear price. Let Σs
A = Σs∩ΣA

and Σs
B = Σs ∩ ΣB . We denote k′ =

∑
i∈Σs

A
m̃i and

k′′ =
∑

i∈Σs
B
m̃i, so k′ + k′′ = ks. Moreover, it must be

P s
r (m

′, c′) ≥
∑k′

i=1(ri−Ps), since in this case, at least we
can obtain a profit of buying k′ items at the price Ps. Sim-
ilarly, P s

r (m
′′, c′′) ≥

∑k′′

i=1(ri − Ps). By Lemma 11, only
when min{P s

r (m
′, c′), P s

r (m
′′, c′′)} is adopted as target,

the profit extractor can succeed, and in this case (with prob.
≥ 1

2 ):

(19)

π(m, c) = min{P s
r (m

′, c′), P s
r (m

′′, c′′)}

≥ min{
k′∑
i=1

(ri − Ps),
k′′∑
i=1

(ri − Ps)}

≥ min{k′, k′′}
ks

·
ks∑
i=1

(ri − Ps)

and for all other cases, we have π(m, c) = 0. Moreover,
according to the results of (Abrams 2006), we have

E[min{k′, k′′}] ≥ α− 1

4α
ks (20)

Based on equations 19 and 20, we can further obtain:

(21)
E[π(m, c)] ≥ 1

2
· E[min{k′, k′′}]

ks
· P s

r (m̂, ĉ)

≥ α− 1

8α
P s
r (m̂, ĉ)

Hence, the expected profit is at least α−1
8α P s

r (m̂, ĉ).

In a fixed market, α is a constant and therefore the com-
petitive ratio is a constant. In a small market where only
1 agent’s good is purchased by the omniscient single-price
auction, we have α = 1, and in large markets where sin-
gle agent’s contribution is trivial, we have α → +∞. Thus
as the market starts from a small one and grows larger and
larger, the competitive ratio starts from +∞ and gradually
converges to 8. The following corollary follows.

Corollary 14. PROFIT-PAr is (8+ε)-competitive toOPT s
r

in large markets.

Upper bound With respect to the best possible perfor-
mance of the mechanism, it is easy to see it is upper bounded
by the OPT m

r performance, and we can further show this
bound is tight.

Proposition 15. There are cases with type profile (m̂, ĉ)
and valuation function vr satisfying π(m̂, ĉ) = 1

1+ε ·
Pm
r (m̂, ĉ).

Proof. Consider the following case: there are n agents, each
of which can provide 1 item at a price x, and r1 = v, ∀i ≥
2 : ri = 0, where v ≥ x. The omniscient multi-price auction
OPT m

r will purchase 1 item at the price x, and obtain the
profit equals to v − x, while PROFIT-PAr will extract the
profit v − x from one of the 2 partitions if both of them
are nonempty, otherwise it will return a profit equals to 0,
and the expected profit is n−1

n+1 (v − x). Therefore when the
number of agents is large enough the above result holds.

Note that, in the above proof, if we buy from both parti-
tions, the expected profit will become n−1

n+1 (v−2x), and this
means when v ≤ 2x the expected profit is unbounded low.
We actually circumvent this issue by always buying from at
most one partition.

Conclusion

We model cellular traffic offloading as problem of maximiz-
ing the profit of a multi-unit procurement auction with sym-
metric submodular demand valuation function in the prior-
free case. We solve this problem using the framework of
competitive analysis. The challenges we have faced are how
to design a truthful profit extractor which can be used to
guarantee any reasonable profit and how to correlate the two
sub-markets formed by random sampling to achieve a guar-
anteed global performance. We propose a computationally
tractable, truthful, individually rational and profit competi-
tive mechanism for this setting. The profit obtained by our
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mechanism is consistently competitive (to the omniscient
optimal single-price auction) for fixed markets and (8 + ε)-
competitive for large markets.

Acknowledgments

This paper was supported by the National Key Re-
search and Development Program of China (Grant Nos.
2017YFD0401001, 2018YFB1403400), the National Nat-
ural Science Foundation of China (Grant Nos. 91646204,
61876080, 71871109), the Key Research and Develop-
ment Program of Jiangsu Province (Grant No. BE2019105),
and the Collaborative Innovation Center of Novel Software
Technology and Industrialization at Nanjing University.

References
Abrams, Z. 2006. Revenue maximization when bidders have
budgets. In Proc. of 17th ACM-SIAM Symp. on Discrete Algo-
rithm (SODA-06), 1074–1082.
Balasubramanian, A.; Mahajan, R.; and Venkataramani, A.
2010. Augmenting mobile 3g using wifi. In Proc. of Int. Conf.
on Mobile Systems, Applications, and Services, 209–222.
Bei, X.; Chen, N.; Gravin, N.; and Lu, P. 2012. Budget feasible
mechanism design:from prior-free to bayesian. In Proc. of 44th
ACM Symp. on Theory of Computing (STOC-12), 449–458.
Biswas, A.; Jain, S.; Mandal, D.; and Narahari, Y. 2015.
A truthful budget feasible multi-armed bandit mechanism for
crowdsourcing time critical tasks. In Proc. of Int. Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS-15), 1101–
1109.
Borgs, C.; Chayes, J.; Immorlica, N.; Mahdian, M.; and Saberi,
A. 2005. Multi-unit auctions with budget-constrained bidders.
In Proc. of ACM Conf. on Electronic Commerce (EC-05), 44–
51.
Cary, M. C.; Flaxman, A. D.; Hartline, J. D.; and Karlin, A. R.
2008. Auctions for structured procurement. In Proc. of 19th
ACM-SIAM Symp. on Discrete Algorithms (SODA-08), 304–
313.
Chan, H., and Chen, J. 2014. Truthful multi-unit procurements
with budgets. In Proc. of Workshop on Internet and Network
Economics (WINE-14), 89–105.
Chen, N.; Gravin, N.; and Lu, P. 2011. On the approxima-
bility of budget feasible mechanisms. In Proc. of 22th ACM-
SIAM Symp. on Discrete Algorithms (SODA-11), volume 27,
685–699.
Chen, N.; Gravin, N.; and Lu, P. 2014. Optimal competitive
auctions. In Proc. of 46th ACM Symp. on Theory of Computing
(STOC-14), 253–262.
Cisco. 2019. Cisco visual networking index: Global mo-
bile data traffic forecast update, 2017-2022 white paper.
https://www.cisco.com/c/en/us/solutions/collateral/service-
provider/visual-networking-index-vni/white-paper-c11-
738429.html. [Online; Updated February-2019].
Clarke, E. H. 1971. Multipart pricing of public goods. Public
Choice 11(11):17–33.
Dong, W.; Rallapalli, S.; Jana, R.; Qiu, L.; Ramakrishnan,
K. K.; Razoumov, L.; Zhang, Y.; and Cho, T. W. 2014.
ideal:incentivized dynamic cellular offloading via auctions.
IEEE/ACM Trans. on Networking 22(4):1271–1284.

Fiat, A.; Goldberg, A. V.; Hartline, J. D.; and Karlin, A. R.
2002. Competitive generalized auctions. In Proc. of ACM
Symp. on Theory of Computing (STOC-02), 72–81.
Goldberg, A. V.; Hartline, J. D.; Karlin, A. R.; Saks, M.; and
Wright, A. 2006. Competitive auctions. Games & Economic
Behavior 55(2):242–269.
Goldberg, A. V.; Hartline, J. D.; and Wright, A. 2001. Compet-
itive auctions and digital goods. In Proc. of 12th ACM-SIAM
Symp. on Discrete Algorithms (SODA-08), 735–744.
Groves, T. 1973. Incentives in teams. Econometrica 41:617–
631.
Hartline, J., and Karlin, A. 2007. Algorithmic Game Theory.
Cambridge University Press. chapter Profit maximization in
mechanism design, 331–361.
Hartline, J. D., and Mcgrew, R. 2005. From optimal limited to
unlimited supply auctions. In Proc. of ACM Conf. on Electronic
Commerce (EC-05), 175–182.
Ichiba, T., and Iwama, K. 2010. Averaging techniques for com-
petitive auctions. In Proc. of Meeting on Algorithm Engineering
and Experiments, 74–81.
Myerson, R. B. 1981. Optimal auction design. Mathematics of
Operations Research 6(1):58–73.
Nisan, N., and Ronen, A. 2001. Algorithmic mechanism de-
sign. Games & Economic Behavior 35(1-2):166–196.
Paris, S.; Martisnon, F.; Filippini, I.; and Lin, C. 2013. A band-
width trading marketplace for mobile data offloading. In Proc.
of IEEE Int. Conf. on Computer Communications (INFOCOM-
13), 430–434.
Ray, A.; Mandal, D.; and Narahari, Y. 2015. Profit maximiz-
ing prior-free multi-unit procurement auctions with capacitated
sellers. In Proc. of Int. Conf. on Autonomous Agents and Mul-
tiagent Systems (AAMAS-15), 1753–1754.
Singer, Y. 2010. Budget feasible mechanisms. In Proc. of
IEEE Symp. on Foundations of Computer Science (FOCS-10),
765–774.
Vickrey, W. 1961. Counterspeculation, auctions, and competi-
tive sealed tenders. Journal of Finance 16(1):8–37.
Wang, W.; Wu, X.; Xie, L.; and Lu, S. 2015. Femto-matching:
Efficient traffic offloading in heterogeneous cellular networks.
In Proc. of IEEE Int. Conf. on Computer Communications
(INFOCOM-15), 325–333.
Wu, J.; ; Zhang, Y.; Qiao, Y.; Zhang, L.; Wang, C.; and Xie,
J. 2019. Multi-unit budget feasible mechanisms for cellular
traffic offloading. In Proc. of Int. Conf. on Autonomous Agents
and Multiagent Systems (AAMAS-19), 1693–1701.
Zhang, Y.; Tang, S.; Chen, T.; and Zhong, S. 2016. Competi-
tive auctions for cost-aware cellular traffic offloading with op-
timized capacity gain. In Proc. of IEEE Int. Conf. on Computer
Communications (INFOCOM-16), 1–9.
Zhuo, X.; Gao, W.; Cao, G.; and Dai, Y. 2011. Win-coupon: An
incentive framework for 3g traffic offloading. In Proc. of IEEE
Int. Conf. on Network Protocols (ICNP-11), 206–215.
Zhuo, X.; Gao, W.; Cao, G.; and Hua, S. 2014. An incentive
framework for cellular traffic offloading. IEEE Trans. on Mo-
bile Computing 13(3):541–555.

2301


