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Abstract

The problem of allocating scarce items to individuals is an
important practical question in market design. An increas-
ingly popular set of mechanisms for this task uses the concept
of market equilibrium: individuals report their preferences,
have a budget of real or fake currency, and a set of prices
for items and allocations is computed that sets demand equal
to supply. An important real world issue with such mecha-
nisms is that individual valuations are often only imperfectly
known. In this paper, we show how concepts from classical
market equilibrium can be extended to reflect such uncer-
tainty. We show that in linear, divisible Fisher markets a ro-
bust market equilibrium (RME) always exists; this also holds
in settings where buyers may retain unspent money. We pro-
vide theoretical analysis of the allocative properties of RME
in terms of envy and regret. Though RME are hard to com-
pute for general uncertainty sets, we consider some natural
and tractable uncertainty sets which lead to well behaved for-
mulations of the problem that can be solved via modern con-
vex programming methods. Finally, we show that very mild
uncertainty about valuations can cause RME allocations to
outperform those which take estimates as having no underly-
ing uncertainty.

1 Introduction

A key problem in market design is ‘who gets what’ (Roth
2015). An important mechanism for the allocation of scarce
items to multiple individuals is the use of market equilib-
rium. In these mechanisms individuals have preferences over
scarce items and budgets of money. Prices are set for items
such that demand of individuals equals the supply of items.
A major issue in practice with such mechanisms is that the
utility of an individual is often not known exactly (some-
times even to the individuals themselves). In this paper, we
take up the question of computing a robust market equilib-
rium which takes this imperfect information into account.

Market equilibrium-based allocations are increasingly
prevalent in real world mechanisms and robustness is an im-
portant issue in many of these applications.

In the allocation of courses to students at business schools
students report preferences over courses, are given a budget
of ‘fake’ currency, and are allocated the courses they receive
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in the market equilibrium which matches supply of courses
to demand (Budish and Cantillon 2012). Here students may
not be fully aware of their own exact valuations for courses.

In online advertising advertisers report valuations for var-
ious impressions, enter budgets, and an auction mechanism
again sets supply equal to demand - finding an equilib-
rium of the market (Balseiro, Besbes, and Weintraub 2015;
Balseiro et al. 2017; Balseiro and Gur 2017). In practice ad-
vertisers’ bids in the auction (which are equivalent to a paced
version of their valuation in equilibrium (Borgs et al. 2007,
Conitzer et al. 2018; 2019)) come from a combination of
a per-interaction valuation and a machine learning model
which predicts the probability that a given user will inter-
act with that ad. For example, an advertiser might say they
are willing to pay $1 per click and a model could predict
that a user will click a particular ad with probability .1- this
would lead to a bid of 10 cents on the ad when combined
with the valuations. Here, again, the valuation is imperfectly
known as both the advertiser’s willingness to pay and, more
so, the click prediction model, come with noise.

We begin with the simplest workhorse model in this liter-
ature: linear Fisher markets. In such markets there are buy-
ers and items. Buyers have finite budgets. Items are scarce
and divisible. Buyers have utility for each item and value a
bundle as the utility-weighted sum of the items in the bun-
dle. We consider both standard Fisher markets where buyer
budgets do not have any use outside the market, and quasi-
Fisher markets where leftover money has a fixed value for
each buyer. Equilibria in such markets include allocations to
individuals and prices for items, so that buyer demands sum
up to supply and allocations satisfy buyer demands.

In this article, we show how to extend market equilibrium
to the notion of robust market equilibrium (RME). Here buy-
ers do not have point-valued utilities for each item, but rather
have ‘uncertainty sets’ of possible valuations. In this case a
buyer wants to purchase bundles that optimize their worst
case utility given prices. This can reflect risk aversion on the
part of the buyers (buyers are actually not perfectly aware
of item utility) or ignorance on the part of the market de-
signer if the market equilibrium is simply used as an alloca-
tive mechanism (e.g. CEEI). RME can be partly be viewed
as a model of classical equilibrium with a particular class of
nonlinear utility functions. Indeed, the existence of an RME
is no different than the existence of a classical equilibrium



with appropriate utilities; the main point of departure is how
the resulting equilibria are measured. We extend classical
notions of envy and regret to reflect uncertainty in buyer val-
uations, and we give bounds on these quantities as functions
of the size of the uncertainty sets.

It is well-known that computing market equilibria can be
computationally intractable for certain market models. One
of the earliest positive results in this area is the celebrated
Eisenberg-Gale convex program for Fisher markets (Eisen-
berg and Gale 1959); this convex program was first proposed
for linear utility functions, but was later shown to work for
any utilities which are homogeneous of degree one (Eisen-
berg 1961). In the past 20 years, this convex programming
approach has been extended to handle more general Fisher
markets such as spending constraint utilities (Birnbaum, De-
vanur, and Xiao 2011), utility-capped buyers, quasi-linear
buyers (Chen, Ye, and Zhang 2007; Cole et al. 2017), and
Fisher markets with transaction costs (Chakraborty, Deva-
nur, and Karande 2010).

Over the course of this article, we show how techniques
from the robust optimization literature can be combined
with the Eisenberg-Gale convex program to compute RME
in both Fisher and quasi-Fisher markets. In principle, this
means the existence of polynomial-time algorithms for com-
puting Fisher or quasi-Fisher RME reduces to the existence
of a polynomial-time algorithm for evaluating robust utili-
ties. In practice, we need to represent the value of a robust
utility as a tractable conic optimization problem. We propose
two types of uncertainty sets that lead to convex programs
which can be efficiently solved using modern solvers, and
we apply these proposals to study RME in real datasets.

To the best of our knowledge, we are the first to study ro-
bust market equilibria. However, the topic of robust variants
of optimization problems has been studied extensively (Ben-
Tal and Nemirovski 2002; Bertsimas and Sim 2004; Ben-
Tal, El Ghaoui, and Nemirovski 2009; Bertsimas, Brown,
and Caramanis 2011). There, some nominal mathematical
program is given, and then the robust variant of the pro-
gram requires that the constraints hold for every instanti-
ation of parameters from some uncertainty set. Our robust
market equilibrium approach can be viewed as the natural
uncertainty parameterization of Eisenberg-Gale style con-
vex programs. A similar uncertainty-parametrization of util-
ities was considered by Aghassi and Bertsimas (2006) in the
context of game-theoretic equilibrium where they provide
a robust analogue of Bayesian equilibrium. Robust game-
theoretic equilibria have also been considered in the con-
text of counterfactual prediction (Peysakhovich, Kroer, and
Lerer 2019). Finally, there is literature on robust mechanism
design (Bergemann and Morris 2005; Lopomo, Rigotti, and
Shannon 2018; Albert et al. 2017), where the goal is to de-
sign mechanisms that are robust either to uncertainty about
the distribution over agent payoffs, or the belief that an agent
holds about the types of other agents. Due to the close rela-
tionship between mechanism design and market equilibria it
would be interesting to understand what kind of robustness
properties RME has with respect to traditional robust mech-
anism design objectives.
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2 Fisher Markets

Consider a market where n buyers compete for m divisible
goods, each of unit supply. Each buyer brings a budget b;
of currency to this market, and a utility function u; over
allocations of the m goods. The problem of market equilibria
is to determine prices for goods and allocations of goods
to buyers which satisfy both supply constraints, and certain
optimality conditions for each buyer. The supply constraints
do not depend on further details of the market. If X is a
nonnegative matrix where x;; is the allocation of good j to
buyer 4, the allocation is feasible if >  x;; < 1 for all
goods j.

The precise form of the buyer optimality conditions de-
pends on whether or not money has value outside the market.
Suppose that the market has assigned each good j a price
pj, and assemble these prices into a vector p in R’'. When
money has no intrinsic value, we are in a Fisher market. A
market equilibrium is a feasible allocation X and a set of
prices p such that each buyer prefers what they are allocated
over anything else they could afford:

x; € argmax{u;(2) | z€ R andp* - 2 < b;}. (1)

When money has intrinsic value, buyer utilities become
(z,8) — u;(2z) + s, where s is the buyer’s retained budget.
Here the buyer optimality conditions for market equilibria
are that

(x,7;) € argmax{u;(z) +s |z € R, s € Ry,
andp-z+ s <b;}

2)

for the specific value r; = b; — p - ;. Throughout this arti-
cle we call this model a quasi-Fisher market, because the
effective utility functions (z,s) — w;(z) + s are broadly
known as quasilinear utilities in the economics literature.

Linear utility functions offer the simplest model for buyer
preferences in market equilibrium problems. In a linear
model, each buyer possesses a valuation vector v; € R'",
and assigns utility u;(z) = wv; - z to a bundle of goods z.
There is one serious drawback to using linear utilities: in
large markets, it is not realistic to assume that all v;’s are
known exactly— either by buyers, or by a market maker.

We thus propose a model where each buyer has an associ-
ated uncertainty set of valuations V; C R""; an uncertainty
set gives rise to a robust utility

3)

It is easy to see that for all nonempty V;, these robust util-
ities are concave, and positively homogeneous of degree 1.
We assume these uncertainty sets are nonempty, compact,
and satisfy u;(1) > 0. With regards to V; being nonempty,
we will often find it useful to suppose that each buyer has a
distinguished nominal valuation ©; € V;. We often call the
function z — ¥; - z the nominal utility of buyer .

u;(z) =min{z -v | v € V;}.

2.1 Computing market equilibria

In a foundational result, Eisenberg and Gale (1959) showed
that equilibria for Fisher markets with linear utility functions
can be computed by solving a particular centralized convex
program. In a follow-up work Eisenberg (1961) showed the



same convex program can be used to compute Fisher-market
equilibria whenever utilities are concave, and homogeneous
of degree one. Much later, Chen, Ye, and Zhang (2007) gave
a simpler proof for Eisenberg’s 1961 result, which extended
naturally to compute equilibria in quasi-Fisher markets. !
Chen et al’s result for quasi-Fisher markets requires a
very minor modification to the convex program originally
proposed by Eisenberg and Gale. We can state both convex
programs by considering a parametric optimization prob-
lem: let Q € {0, 1} be a parameter, where QQ = 1 indicates
a quasi-Fisher market model, and Q = 0 indicates a Fisher
market model. The Eisenberg-Gale convex program is

max Y ., b;log(t;) — Qr; 4)

S.t. (:I)i,ti,’/‘i) € RT+2 Vie [TL],
tigui(:ci)—i—Qn- ViE[n]7
Z?:ll‘ijgl V.]E[m

The results of Eisenberg and Chen et al. ensure that as long
as u; are concave and homogeneous of degree one, then for
p € R as the vector of dual variables to the capacity con-
straints, the matrix X whose rows are x; forms an equilib-
rium allocation with respect to prices p.

Because we defined our robust utilities as the minimum
over a set of linear functions, we get that robust utilities are
homogeneous with degree 1 and concave. This establishes
the following proposition:

Proposition 1. A solution to (4) with Q = 0 produces an
equilibrium for the Fisher market where u; are given by (3).
Optimal prices p and allocations X satisfy the following
properties:

1. Each x; is in the demand set of buyer 1, i.e. (1) holds.
2. Every item j with p; > 0 clears the market: ), x;; = 1.

3. For every buyer 1, there exists a v; € argmin, ¢y, v - ;
for which allocated items have the same bang per buck:

if xij,wix >0 then vj;/pj = viy/pr-

The first property in Proposition 1 is about individual op-
timality; every buyer seeking to optimize her own utility in
the robust sense will find the allocations in her demand set.
The second property shows market clearing. The third prop-
erty shows that the worst case utilities are in fact attained in
the allocation, and that an “equal rates” condition holds at
one of these worst-case utility vectors.

Proposition 2. A solution to (4) with Q = 1 produces an
equilibrium for the quasi-Fisher market with u; given by
(3). Analogous conditions to those in Proposition 1 hold for
prices p and allocations X. Furthermore, if 3 denotes opti-
mal dual variables to the utility hypograph constraints, then
for all buyers i

1. B; <1, and B; = 1 whenever p - x; < b;.
2. There is a v; € argmin, .y, v - x; so that 3; < pj/vi*j
for all j, and 3; = p; [v}; whenever x;; > 0.

'In situ, Chen et al. refer to quasi-Fisher markets as mixed
Fisher Arrow-Debreu markets.
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The additional conditions concern interpretation of the
dual variables (3; as pacing multipliers in a first-price auc-
tion (Conitzer et al. 2019). The allocation mechanism may
be viewed as a first price auction where buyer i competes for
item j with a modified or “paced” bid of 3;v;;. The pacing
multipliers are no greater than one (ensuring that no buyer
buys a good when its price exceeds its value), there is no un-
necessary pacing, and the robust bang-per-buck is equal for
all allocated items to buyer <.

Propositions 1 and 2 argue that a solution to (4) leads to
a reasonable solution concept: for risk averse agents that are
seeking to robustly maximize their utilities in the face of the
market uncertainty, it produces allocations in their individ-
ual demand sets. Moreover, it also leads to market clearing,
which is desirable for the market designer. Finally, the so-
lution is intuitive, and in fact corresponds to a “standard”
market equilibrium with respect to a set of attained (worst
case) realizations of the utilities.

From a theoretical perspective, computing market equilib-
ria with robust utilities is no harder than solving an appropri-
ate convex program. Unfortunately, not all convex programs
are tractable; the potential stumbling block in our case is the
need to represent the robust utilities via hypographs

Hi ={(t,2) | t <wi(2)}

using a limited library of convex constraints on ¢ and z.
When the uncertainty sets V; have an explicit convex de-
scription, the H; can be represented by appealing to convex
duality. For example, if V; = {v | |Jv — ©;]| < €} for the
nominal valuation 9; and some reference norm || - ||, the hy-
pograph can be represented as

Hy ={(t,2) | t +el|z|" < -2}

where || - ||* is the dual norm to || - ||. In cases such as this, we
can appeal to standard convex programming solvers, which
allow only specific convex operations.

In principle, the V; need not be convex. This is for the
following reason: if “conv’ is the operator that computes a
set’s convex hull, then

min{z-v | v € V;} =min{z-v | v € conv V;}

for all z in R™. Thus we may replace nonconvex uncer-
tainty sets by their convex hulls without loss of generality.
The challenge of nonconvex uncertainty sets then reduces to
the problem of efficiently representing their convex hulls.

2.2 A dual formulation

The literature on theoretical analysis of market equilibrium
often benefits from analyzing primal and dual formulations
in conjunction with one another. Given the nature of our util-
ity functions, it is reasonably straightforward to compute the
dual by appealing to Fenchel duality. The drawback to work-
ing with a Fenchel dual is that it can become harder to in-
terpret dual variables. To assist others in future theoretical
analysis of market equilibria with robust utility functions,
we provide the following result (the proof of which can be
found in a separate supplemental document, along with all
other omitted proofs of claims in this article):



Proposition 3. Let u; by given by (3) where V; C R are
nonempty compact convex sets, and u;(1) > 0. It can be
shown that the following problem is a dual to (4)

min p-1— Z {b; + b; log(B:i/bi)}

=1
st.pe R, BeRY
Ql-p]=0
p > Biv;
v, €V

Vi€ [n]
Vien].

The formulation is nonconvex as stated, due to bilinear
inequality constraints p > [3;v; in the variables 3; and v;,.
This bilinearity can be represented in a convex way by using
perspective functions. For each i € [n], set W; = R + ;.2
The W; are convex sets, and so their indicator functions

0 ify eW,;
ow; (y) = { ny

+o00  otherwise

are also convex. The bilinear constraints can thus be written

Bidw, (p/Bi) <0V i€ [n].

These constraints are convex, since the mappings on the left-
hand-side of the inequalities are the perspectives of the con-
vex functions dyy,. It can be shown that this formulation (in
terms of perspectives-of-indicators) is in fact precisely what
results when applying Fenchel duality to (4) directly.

3 Properties of Robust Equilibria

On the surface, the market equilibria considered in this ar-
ticle are no different than classical market equilibria with a
particular choice of nonlinear utility function. Thus there are
standard properties of market equilibria which are naturally
satisfied in our setting. For example, if (X, p) form an equi-
librium in a Fisher market, and all budgets b; = 1, then the
allocations are envy-free in the sense that for all buyers ¢

ul(wl) > U; (:cz/) for all 7;’ in [n]
Similarly, the allocations have no regret, in that for all ¢
Ri(y,p) = max{u;(z) —ui(y) | z€ R, p-z < b}

satisfies R;(x;, p) = 0. These classical measures of fairness
are important, but they do not reflect our reason for choosing
the robust utilities u;(z) = min{z - v | v € V;} in the first
place.

We assume that once a buyer has received a bundle of
goods x;, some v; € V; instantiates as the buyer’s true valu-
ation. This can occur, for example, if uncertainty came from
the fact that buyers did not have perfect clarity into what
they valued during evaluation time but gain this information
when they actually receive the good. In this model it is nat-
ural to evaluate metrics such as envy, regret, or Nash Social
Welfare with respect to these realizations of buyer uncer-
tainty. We focus on the scenarios when the valuation realizes
to its nominal value, and when it realizes adversarially.

2 Addition here denotes the Minkowski sum.
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3.1 Adversarially-robust envy

Let X denote a matrix whose rows x; are equilibrium allo-
cations with respect to prices p and robust utilities ;.

Also let r; = b;—p-a; denote the retained budget for each
buyer ¢ € [n] (understanding that r; = 0 in Fisher markets).
In these terms, robust envy is

E(X,p) = max (v @ir +70) = (v i +73)
stveV;, i eln].

In order to analyze robust envy, it is helpful to frame things
in terms of the underlying robust utility functions. One may
verify that the following identity holds

il

ax{m-/ — T — ui(:c,' — :Bi/)}.
€[n]

It is therefore evident that we can efficiently compute robust
envy whenever we can compute the utility functions u;.

3.2 Adbversarially-robust regret

Given prices p, the i buyer takes an action by drawing from
the following polytope

Zi(p)={z |0<z<1,p -z <b}.

Then given an allocation x;, we thus define a buyer’s robust
regret as

Ri(xi,p) =max [v—Qp]-z—[v—Qp] - x;
st. veV;, z <€ Z(p)

— where “Q” is 1 if the buyer is in a quasi-Fisher market,
and 0 if otherwise. Mirroring our approach to robust-envy,
robust-regret can be expressed with the robust utility func-
tions. Specifically,

Ri(zi,p) =max Qp - [x; — 2] — ui(x; — 2)
st. z € Zi(p).

Robust regret is harder to compute than robust envy. The
issue is that the objective appearing in the second expression
for R;(x;, p) is convex, rather than concave. From a com-
plexity perspective, it is very difficult to maximize convex
functions. Our one reason for hope is that we are trying to
maximize a convex function over the polytope Z;(p). In this
specific case we may use the fact that the maximum of a real-
valued convex function over a polytope is always attained at
one of the polytope’s extreme points. Thus in principle, it
is possible to compute R;(x;, p) by evaluating the objec-
tive function at each extreme point of Z;(p), and taking the
largest value. This approach may be viable in Fisher mar-
kets for buyers that are heavily budget constrained, since if
b; < p; for all goods j, then the extreme points of Z,(p)
are 2(9) = 0, and 20) = b, /pje; for all j € [m].> In other
contexts the extreme-point approach will likely be imprac-
tical. For example, in Fisher markets where prices are low
compared to a buyer’s budget, the set Z;(p) can contain as
many as 2™ extreme points.

*Here, e; denotes the j™ standard basis vector in R™.



3.3 Bounds in Fisher markets

In this section we describe elementary ways to bound robust
envy and robust regret for Fisher markets.

Lemma 1. Suppose the (1-width of V; is bounded above by
w. Then for all v in V; and all z with ||z|ec < 1, we have

—w+v-z<u(z)<v z+w.

Proof. Fix vin V; and z with ||z||» < 1. Since V; is com-
pact, there exists a v* € V; so that u;(z) = v* - z. Since the
£1-width of V; is bounded by w, we have that Av = v* — v
satisfies |Av||; < w. Writing u;(z) = v -z 4+ Av - z, we
can invoke duality between the ¢ and /., norms to see that
|Av - z| < w. The result follows. O

Lemma 1 is useful because the natural domain for u; in
robust regret and envy is the unit /., ball.

Proposition 4. Suppose the (1-width of V; is bounded above
by w. Then robust regret is bounded by 2w. If all budgets are
equal then robust is envy is bounded by 2w.

Proof. Let X, p be a robust market equilibrium. Let ¢*, v
be the maximizers of robust envy for buyer 7. We then have

£(X,p) = (0" @i +720) — (0" 2+ 7)
< (w4 wi(wie ) + 7rie ) — (—w + wi () +14)
= 2w + (wi(s) + 714+ ) — (ui(s) +174))
< 2w,

where the first inequality follows by Lemma 1 (since sup-
plies are 1), and the second inequality follows by the no-
envy property since X, p constitute a market equilibrium
with respect to the robust utilities and budgets are equal.
The proof for robust regret is analogous, but using the fact
that u;(x;) — Qp - x; > w;(z) — Qp - z where z is the
allocation for robust regret. O

While the above bounds hold uniformly for every agent
i, in the specific case when the ¢.,-width of the uncertainty
sets are small one can also obtain a bound on the average
robust regret of all the buyers.

Proposition 5. Suppose that for each buyer i € [n], we have
[vij —vi;| < Rforall j € [m]and all v;,v; € V;. Then the
following holds:

2Rm

1 n
- Z Robust-Regret; <
i=1

In a scarce market where the number of buyers far exceeds
the number of items, the bound in Proposition 5 guarantees
that the average regret is small.

4 Concrete Models for Buyer Uncertainty

We consider the case of low rank markets (Kroer et al. 2019;
Peysakhovich and Kroer 2019). In these markets, the valua-
tions individuals place on items are not independent, and can
be predicted from one another; this is common in most real-
world allocation problems (e.g. valuations for courses are
correlated within person, ratings of movies are correlated
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within person, willingness to pay for different impressions
are corrAelated within advertiser).

Let V' denote our estimated valuation matrix for the Fis-
cher market, i.e. 9;; is the value that individual i places on
1tem 7J. The low rank model assumes that V = ©®T where
© and ® are embedding matrices for individuals and items
respectively, of sizes n x d and m x d. The problem is typi-
cally interesting in the regime where where d << n, m.

In such a model, there are a few natural sources of uncer-
tainty. For example, in practice, individual and item embed-
dings would typically be estimated using some matrix com-
pletion procedure. The matrix completion procedure may in-
troduce errors (relative to the ground-truth completed ma-
trix), and these errors induce uncertainty on factors O or &.
There is also the possibility that the low-rank assumption
does not well reflect reality; this would correspond to uncer-
tainty in small-norm but high-rank perturbations to V.

When the embedding model is imperfect and subject to
uncertainty, a natural description one may consider is the
joint uncertainty model defined by the set V/ (€1, €2) as:

{0BT | 0 c R 0BT >0, [0 — 6|, < e1]|6:]],,
|® — @, < es]| D], 0BT -1=6,87 -1}.

This model captures uncertainty in both the buyer-side and
item-side embedding representations. The model parameters
include a pair of norms (the p-norm for the vector quantity,
and the ¢-norm for the matrix quantity),* as well as relative
radii €1, €5 € (0, 1)

Certain special cases of the joint uncertainty model are in-
teresting to consider. The direct model for uncertainty un-
der such parameters is realized when e; = 0, and ® = I,
the identity matrix. In this situation, we have:

Vip,e)={v |[veR™ v >0,
v = Billp < €|l
v-1=79; -1}
When ¢ = 0 but > is arbitrary, we obtain the
buyerside model, which is described by:

Vi(p,e) = {6DT |9 c R™*4 9T > 0,
10 = 6:,, < €6l
087 1=6,87-1}.

The linear equality constraints in these definitions require
that we conserve utility about the vector of all ones (“1”);
there are several compelling reasons for doing this. First,
it enforces a kind of regularity condition: assuming ¥, is
nonzero, the robust utilities will be positive under the uni-
form allocation @; = 1/m, regardless of ¢ > 0 and p > 1.
Positivity of robust utilities under the uniform allocation en-
sures that the convex program (4) will always be feasible.
The second reason for conserving utility about 1 is a con-
centration argument: although it is unrealistic to presume

“The “p” in “p-norm” should not be confused with vectors p of
market prices for goods.



that all entries ©;; are known to high precision, mild sta-
tistical assumptlons allow us to reliably estimate the sum
Z =1 ¥;; = ¥; - 1. Finally, because all v; in the uncer-
tainty sets are elementwise nonnegative, the conservation
constraint provides a scale-invariance: ||v;||y = ||9;]|1. This
prevents us from thinking that some v; in V; are more likely
than others, simply because they have smaller norm.

We now turn to a deriving a tractable representation for
the hypographs of w; under the direct model. Fix i € [n],
p>1,and e € (0,1). For Xin R’ and 1 in R, consider the
parameterized Lagrangian

L(v, 1)—v-A
where v is restricted to D; = {v | Hv = Billp < €l|Bslp 1.
Note how the Lagrangian is convex in v, concave in A, p,

and how D, is a compact convex set. We can thus invoke
strong duality in a minimax representation for u;(z):

)\,,u;z):'weru(volfﬁr

u;(z) = min

SR | Regte Az

HER

max min L(0; + Av, A\, ;2 }
Aég {|Av|p§e|fu|p{ ( wiz)}
m

demMzA+uum}

= max {1‘;1 lz—

A>0
pER

— where || -[|7 is dual to the p-norm. The third identity allows

us to represent the hypograph of u; in the direct uncertainty

model as

H; = {(2,1) [(z,t,p,7, A) € R™F x RY
Iz = A+ pdllp < 7/(ellBill)
t‘i’TSf)i'[Z*)\]}.

Now we address the buyerside uncertainty model. The
derivation proceeds in an identical fashion, by minimiz-
ing an appropriate Lagrangian over the compact convex set
{6 | 1|0 — 6, < €]|6;]|,}. The outcome of this process is
that u;(z) = min{z - v | v € V?(p, €)} has hypograph

H; ={(z,t) |(2,t,1n,7,A) € R™3 x R}
187z = A+ pd]l; < 7/(ellBill)
t+T§’l’3i'[Z—A}}.

In the next section, we provide numerical experiments that
investigate robust equilibria with respect to direct and buyer-
side models.

In contrast to the direct and the buyer-side uncertainty
models which have tractable representations, the convex
hull of the fully general joint uncertainty model given by
V/(€1,€2) does not seem to be amenable to an exact,
tractable representation. In the special case when p cor-
responds to the Euclidean norm and ¢ corresponds to the
Frobenius norm, we provide a tractable representation of an
outer approximation of this set. Robust equilibria may be
computed with respect to these outer approximations; since

vz e R™

< min
vEV,iJ (€1,€2)

min v-z<

VeV (e1,€2)

v-z
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the resulting allocations will be guaranteed to be robust
against all uncertainty realizations in V{ (e}, €2).

Lemma 2. Let V" (e1, €2) denote the set
{v:iv=p+ SBT & 0;,AT + éi(/I;H
v>0,v-1=%-1, |82 <ei]|fi]2,
[ell2 < ere2|0ill2[| @], [[A[lF < el|®F}-

Then
conv (V{ (e1,€2)) C V7 (e1, €2).

Note that V?“!(eq,€2) is a convex body, and that it is
tractable to optimize over since it only involves second-order
cone constraints.

5 Experimental Results

We construct low rank markets following Kroer et al. (2019).
We start with the MovieLens 1M dataset where ~ 6000 in-
dividuals give ratings to ~ 4000 movies. We use standard
techniques to complete the matrix and take the 200 individ-
uals with the most movies rated; these individuals are en-
dowed with a unit budget of fictitious currency. From this
we construct a “plentiful” market with m = 500 goods
(movies), and a “scarce” market with m 50 goods. We
consider these markets in Fisher and quasi-Fisher settings,
and with both direct and buyerside models from Section 4.
For the buyerside models, & are of size m x d, where d is the
rank of the nominal valuation matrix; our scarce and plenti-
ful markets had ranks 25 and 35 respectively. Experiments
here use the 2-norm; refer to supplementary material for the
same experiments under 1-norm uncertainty.

For our implementation we rely on CVXPY 1.0 (Dia-
mond and Boyd 2016; Agrawal et al. 2018) to interface with
solvers MOSEK (Mosek 2010; Dahl and Andersen 2019)
and ECOS (Domahidi, Chu, and Boyd 2013). MOSEK
is used to solve the equilibrium problems; although other
solvers exist which support the logarithmic terms in the ob-
jective, it is our experience that no other solver can reli-
ably handle equilibrium problems beyond very small scales.
EOCS is used to evaluate utility functions as part of com-
puting robust envy and robust-utility Nash welfare (the latter
metric we define momentarily).

5.1 Nash welfare

Nash Social Welfare (the product of agent’s utility functions)
is a popular measure of community utility. Here we adopt
a normalized version of Nash Social Welfare: the budget-
weighted geometric means of utility functions; we consider
this quantity with respect to nominal utilities x; — ¥, - x; +
r; and robust utilities &; — u;(x;) + r;. By evaluating the
nominal-utility Nash welfare at the robust solution, we get a
sense of the “price of robustness.” By evaluating the robust-
utility Nash welfare at the nominal solution, we can measure
the price of overconfidence in the point estimate {9, } ~ V.

In every single experiment we conducted, the nominal
Nash welfare of the robust solution decayed slower than the
robust Nash welfare of the nominal solution. This is to say:
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the potential price of robustness was usually modest, relative
to the potential price of optimism.

The robust Nash welfare of a nominal solution is very sen-
sitive to direct uncertainty, while it is relatively stable for
buyerside uncertainty. This trend holds in Fisher and quasi-
Fisher markets. In quasi-Fisher models, the nominal Nash
welfare of a robust solution can be larger than the nomi-
nal Nash welfare of the nominal solution. This is surprising,
since robust solutions are optimizing for a different objective
than nominal Nash welfare.

Nash welfare in scarce quasi-Fisher markets (2-norm)
direct model buyerside model
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Qualitatively, this can be attributed to uncertainty causing
some buyers to exit the market, which drives down prices for
those that remain in the market. We found that this mostly
happens with the buyerside uncertainty model in scarce mar-
kets. It is unclear why this happens more with buyerside than
direct uncertainty models, however it is very reasonable that
this happens more with scarce rather than plentiful markets.

5.2 Robust envy

In the last section we saw how the robust Nash welfare of a
nominal solution is very sensitive to direct uncertainty, and
is relatively stable for buyerside uncertainty. These trends
also hold for robust envy.

The benefits of a robust solution persist in scarce markets,
although the effects are less pronounced here. Out of all ex-
periments we conducted, the figure below illustrates the case
where robust envy distributions exhibited the most overlap.
Even in this case, there is a clear performance benefit of the
robust solution, compared to the nominal solution.
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Robust Envy in a plentiful Fisher market
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5.3 Equilibrium prices in quasi-Fisher markets

The figure below plots equilibrium prices of every good j
as the uncertainty radius € ranges from 0 to 0.5. These lines
have reduced opacity, so that areas of higher price density
can be easily discerned. The minimum, maximum, and mean
prices are traced by solid black lines.

Influence of direct-model uncertainty on equilibrium prices
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There are several trends of note in this figure. First, we
see that in the plentiful market, the average price remains
constant even as uncertainty increases. Thus in the plentiful
setting, even very large amounts of uncertainty may not dis-
suade buyers from participating in the market. In the scarce
market we see a different outcome: the average price drops
slowly and steadily, from just below 4.0 to just above 3.5.
There are still important commonalities between the plen-
tiful and scarce markets. The simplest properties are that
prices p; do not evolve monotonically as e increases, and
that uncertainty can cause changes in the order of goods
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when sorting by p;. Another crucial property is that as € gets
particularly large, the prices converge to a common value.
Such convergence agrees with our intuition that for large
enough e, all buyers’ uncertainty sets will reduce to scaled
standard simplices V¥(p,e) = {v | 0 < v, v-1 =9, - 1}.

As a final point, we consider how different pricing
schemes affect the purchasing decisions of buyers with ro-
bust utility functions. The following plot shows how ad-
justing prices to reflect uncertainty (in red) results in much
larger revenue than if prices were set as though there was no
uncertainty (in blue).

6 Acknowledgements

The majority of this research was conducted while the first
and second authors were employed by Facebook, as intern
and postdoc, respectively. The first author was supported (in
part) by a National Science Foundation Graduate Research
Fellowship.

References

Aghassi, M., and Bertsimas, D. 2006. Robust game theory. Math-
ematical Programming 107(1-2):231-273.
Agrawal, A.; Verschueren, R.; Diamond, S.; and Boyd, S. 2018.

A rewriting system for convex optimization problems. Journal of
Control and Decision 5(1):42-60.

Albert, M.; Conitzer, V.; Lopomo, G.; and Stone, P. 2017. Mech-
anism design with correlated valuations: Efficient methods for rev-
enue maximization. Under Submission at Operations Research.

Balseiro, S. R., and Gur, Y. 2017. Learning in repeated auctions
with budgets: Regret minimization and equilibrium. In Proceed-
ings of the 2017 ACM Conference on Economics and Computation,
EC ’17, 609-609. New York, NY, USA: ACM.

Balseiro, S. R.; Besbes, O.; and Weintraub, G. Y. 2015. Repeated
auctions with budgets in ad exchanges: Approximations and de-
sign. Management Science 61(4):864-884.

Balseiro, S.; Kim, A.; Mahdian, M.; and Mirrokni, V. 2017. Bud-
get management strategies in repeated auctions. In Proceedings
of the 26th International Conference on World Wide Web, 15-23.
International World Wide Web Conferences Steering Committee.

Ben-Tal, A., and Nemirovski, A. 2002. Robust optimization—
methodology and applications.  Mathematical Programming
92(3):453-480.

Ben-Tal, A.; El Ghaoui, L.; and Nemirovski, A. 2009. Robust
optimization, volume 28. Princeton University Press.

Bergemann, D., and Morris, S. 2005. Robust mechanism design.
Econometrica 73(6):1771-1813.

2199

Bertsimas, D., and Sim, M. 2004. The price of robustness. Opera-
tions research 52(1):35-53.

Bertsimas, D.; Brown, D. B.; and Caramanis, C. 2011. Theory and
applications of robust optimization. SIAM review 53(3):464-501.

Birnbaum, B.; Devanur, N. R.; and Xiao, L. 2011. Distributed
algorithms via gradient descent for fisher markets. In Proceedings
of the 12th ACM conference on Electronic commerce, 127-136.
ACM.

Borgs, C.; Chayes, J.; Immorlica, N.; Jain, K.; Etesami, O.; and
Mahdian, M. 2007. Dynamics of bid optimization in online adver-

tisement auctions. In Proceedings of the 16th international confer-
ence on World Wide Web.

Budish, E., and Cantillon, E. 2012. The multi-unit assignment
problem: Theory and evidence from course allocation at harvard.
American Economic Review 102(5):2237-71.

Chakraborty, S.; Devanur, N. R.; and Karande, C. 2010. Market
equilibrium with transaction costs. In International Workshop on
Internet and Network Economics, 496-504. Springer.

Chen, L.; Ye, Y.; and Zhang, J. 2007. A note on equilibrium pricing
as convex optimization. In International Workshop on Web and
Internet Economics, 7-16. Springer.

Cole, R.; Devanur, N. R.; Gkatzelis, V.; Jain, K.; Mai, T.; Vazi-
rani, V. V,; and Yazdanbod, S. 2017. Convex program duality,
fisher markets, and nash social welfare. In /8th ACM Conference
on Economics and Computation, EC 2017. Association for Com-
puting Machinery, Inc.

Conitzer, V.; Kroer, C.; Sodomka, E.; and Stier-Moses, N. E. 2018.
Multiplicative pacing equilibria in auction markets. In Interna-
tional Conference on Web and Internet Economics.

Conitzer, V.; Kroer, C.; Panigrahi, D.; Schrijvers, O.; Sodomka, E.;
Stier-Moses, N. E.; and Wilkens, C. 2019. Pacing equilibrium
in first-price auction markets. In Proceedings of the 2019 ACM
Conference on Economics and Computation. ACM.

Dahl, J., and Andersen, E. D. 2019. A primal-dual interior-point
algorithm for nonsymmetric exponential-cone optimization.
Diamond, S., and Boyd, S. 2016. Cvxpy: A python-embedded
modeling language for convex optimization. The Journal of Ma-
chine Learning Research 17(1):2909-2913.

Domahidi, A.; Chu, E.; and Boyd, S. 2013. ECOS: An SOCP
solver for embedded systems. In European Control Conference
(ECC), 3071-3076.

Eisenberg, E., and Gale, D. 1959. Consensus of subjective prob-
abilities: The pari-mutuel method. The Annals of Mathematical
Statistics 30(1):165-168.

Eisenberg, E. 1961. Aggregation of utility functions. Management
Science 7(4):337-350.

Kroer, C.; Peysakhovich, A.; Sodomka, E.; and Stier-Moses, N. E.
2019. Computing large market equilibria using abstractions. arXiv
preprint arXiv:1901.06230.

Lopomo, G.; Rigotti, L.; and Shannon, C. 2018. Uncertainty and
robustness of surplus extraction. arXiv preprint arXiv:1811.01320.
Mosek, A. 2010. The mosek optimization software. Online at
http://www. mosek. com 54(2-1):5.

Peysakhovich, A., and Kroer, C. 2019. Fair division without dis-
parate impact. arXiv preprint arXiv:1906.02775.

Peysakhovich, A.; Kroer, C.; and Lerer, A. 2019. Robust multi-
agent counterfactual prediction. arXiv preprint arXiv:1904.02235.

Roth, A. E. 2015. Who Gets What?and Why: The New Economics
of Matchmaking and Market Design. Houghton Mifflin Harcourt.



