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In human forecasting, proper scoring rules are used to
elicit effort in providing accurate probability forecasts of
future events. A challenge, though, is that users do not re-
ceive feedback about their forecasts until the outcomes are
realized. Nor is it clear whether these schemes are effective
in motivating continual attention, and updating forecasts on
difficult or dynamically changing problems, for which there
is a continuous inflow of new information over time.

Through a large-scale experiment on Amazon Mechan-
ical Turk (MTurk), we investigate whether peer prediction
methods can be used to complement methods of proper scor-
ing rules, and improve engagement of users and ultimately
the quality of forecasts. Peer prediction provides immedi-
ate feedback, by comparing one forecaster’s prediction with
that of another, this feedback provided as rank placement or
through incentive payments. One of a very small number of
experimental studies into peer prediction, ours is the first to
test peer prediction in this hybrid role.

We show that providing daily feedback through peer pre-
diction has a significant effect in increasing engagement
with the forecasting platform. Moreover, a hybrid scheme
that combines scoring rules with peer prediction feedback
(via rank feedback) is, together with the basic scoring rule
method, generally the best for accuracy. Since the hybrid
scheme also improves user engagement, this suggests that
the hybrid scheme would provide the best accuracy for
longer term forecasting events.

1 Introduction

In contrast to fully automated systems, many application do-
mains are expected to rely on combined human-AI intelli-
gence, a good example of which would be forecasting sys-
tems. Recently, the Intelligence Advanced Research Projects
Activity (IARPA)1 organized the Hybrid Forecasting Com-
petition2(HFC) program to promote the next generation of
geopolitical forecasting systems based on human-AI collab-
oration: human experts provide information that is supported
by AI tools, such as aggregation methods.

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1https://www.iarpa.gov/
2https://www.hybridforecasting.com/

One of the key challenges in forecasting uncertain events
is the time changing nature of their underlying best esti-
mates, requiring frequent updating of existing information
content upon which forecasts were made. The new informa-
tion content is often obtained by querying multiple human
experts, and to ensure its quality, these experts can be paid
in proportion to the marginal information gain they bring to
the forecasting system.

One possible information that experts can provide to the
system are their own forecasts, which the system can ag-
gregate to produce a final estimate. A standard way to mea-
sure the quality of experts’ forecasts, and thus assign scores,
is through strictly proper scoring rules - a class of scoring
techniques that are maximized in expectation for the best
prediction. A well known example of a strictly scoring rule
is Brier score (Brier, 1950).

While such scoring techniques are strictly proper (accu-
racy rewarding), they do not provide any immediate sig-
nal to experts regarding their performance, lacking a form
of implicit incentives in interim periods, before the event
is realized. This kind of interim incentive might effectively
encourage an expert to update their (low quality) forecasts
more frequently since they indicate the quality of the ex-
pert’s current estimates, which is in turn correlates to the
expert’s score. As empirically shown by Ungar et al. (2012),
the number of forecasts that an expert makes tends to cor-
relate with an expert’s performance, and this is in part ex-
plained by up-to-date forecasts being more accurate.

To provide interim incentives, the system can score ex-
perts based on the consistency of experts answers— such
an approach leads to peer-prediction mechanisms. Peer-
prediction mechanisms can provide more frequent rewards
than scoring rules, but the properness of peer-prediction
scores depends not only on a participant’s subjective belief,
but also on the strategy that all experts adopt. Fortunately, a
wide range of manipulation strategies can be avoided with
careful design.

The third possibility is a hybrid incentive approach that
seeks to combine the best of both worlds, that is, in which
a scoring rule is supported by a peer-prediction mecha-
nism. By carefully tuning the weights put on scores derived
from the scoring rule and scores derived from the peer-
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prediction, the hybrid approach can control the theoretical
non-manipulability of the overall incentive with the desired
strength of interim incentives.

In this paper we aim to answer two main questions:
1. Which incentive approach leads to the highest fre-

quency of updates in forecasts?
2. Which incentive approach leads to the highest predic-

tion accuracy?
Additionally, we are interested to see whether a particu-

lar kind of question responds better to a particular kind of
incentive approach. In this regard, we consider two different
partitions of the set of questions. First, we consider parti-
tioning the questions based on information inflow — static
(information inflow from experts and other relevant factors
are expected to be low), and dynamic (information inflow is
expected to be high). Second, we consider a partition based
on the hardness of the question— hard (questions that are
harder to predict and the average accuracy under the baseline
scoring rule treatment is below a given threshold), and easy
(questions that are easier to predict and the average accuracy
under the scoring rule treatment is above a given threshold).

To answer these questions, we conducted a large scale
experiment on Amazon Mechanical Turk (MTurk) over
the course of several days. Our main result is that peer-
prediction incentives, whether in monetary or in non-
monetary form such as rank, significantly improve engage-
ment with the forecasting platform compared to basic, scor-
ing rule based incentives. Furthermore, we used various ag-
gregators to evaluate the accuracy of aggregated forecasts in
different treatments, and found that two treatments, the ba-
sic scoring rule and a hybrid scheme which, in addition to
the scoring rule based payments, sends daily non-monetary
feedback to the users, perform best for both dynamic and
easy questions, and signifcantly outperform the other treat-
ments for some aggregators. Moreover, because the new
hybrid scheme improves user engagement compared to the
scoring rule treatment, we believe that such hybrid scheme
will outperform basic scoring rule based incentive schemes
for longer term forecasting events.

To the best of our knowledge, this is the first long-term ex-
periment to emprically test the performance of hybrid incen-
tive schemes. Here we focus on forecasting problems, but we
believe that the results are likely to hold for other elicitation
settings in which elicited information varies over time. Of
independent interest, we show how to elicit forecasts using
a detail-free peer-prediction, which is, to our knowledge, the
first results of such type reported in the literature.

1.1 Related Work

Our work is most closely related to the literature on infor-
mation elicitation, out of which we emphasize two incentive
approaches that are most relevant for this work.

Scoring rules. When the mechanism designer has access
to the ground truth, she can use the ground truth to eval-
uate the users’ responses. To incentivize truthful reporting
of probability forecasts, one can use strictly proper scoring
rule (Brier, 1950; Gneiting and Raftery, 2007)— any ratio-
nal agent who faces a strictly proper scoring rule will always
report her probability assessment of an event truthfully to

the mechanism designer to maximize her expected payment.
Examples of strictly proper scoring rules include quadratic
scoring rule and logarithmic scoring rule. We use a variant
of the quadratic scoring rule, which we define in later sec-
tions.

Peer prediction. In contrast to incentives based on di-
rect verification, peer prediction mechanisms construct in-
centives by comparing a user’s response with those of their
peers (Miller, Resnick, and Zeckhauser, 2005; Prelec, 2004;
Jurca and Faltings, 2009; Witkowski and Parkes, 2012; Das-
gupta and Ghosh, 2013). These techniques assume that users
have correlated information. However, unlike scoring rules,
they are applicable even when the the ground truth is not
known to the mechanism, e.g. because the elicited informa-
tion contains probability estimates about an event that real-
izes in a distant future. In recent years, such methods have
been studied in several domains, including massively open
online courses (MOOCs) (Shnayder et al., 2016), for elicit-
ing feedback on local places in a city (Mandal et al., 2016),
and also in the context of collaborative sensing platforms
(Radanovic and Faltings, 2015). We use Correlated Agree-
ment (CA) of (Shnayder et al., 2016), which has provable
guarantees on collusion resistance for a wide variety of re-
porting strategies, and we adopt it to our forecasting setting.

Experimental work. While different incentive mecha-
nism designs have been experimentally tested, especially
for the purposes of crowdsourcing (e.g., see Shaw, Hor-
ton, and Chen (2011)), much of the work on hybrid designs
that combine peer prediction with gold standard incentives
is grounded in theory and simulations (Gao, Wright, and
Leyton-Brown, 2016; Goel and Faltings, 2019). This is not
surprising given that experimental work on peer prediction
has only focused on a few particular cases. These include:
(a) Garcin and Faltings (2014) showing that peer predic-
tion can elicit forecasts which accuracies are comparable to
those elicited via prediction markets3; (b) Gao et al. (2014)
showing that collusion can occur if a small group of users
is repeatedly asked to report their private information; (c)
Radanovic, Faltings, and Jurca (2016) showing that robust
peer prediction designs perform well in peer grading. More
general overview of the literature on incentive mechanism
design can be found in Faltings and Radanovic (2017).

2 Experiment

We ran our experiment on Amazon Mechanical Turk
(MTurk), a popular crowdsourcing marketplace, where users
complete various tasks virtually in exchange of monetary
payments. On MTurk, a Human Intelligence Task (HIT) rep-
resents a single, self-contained task that a worker can work
on. Each HIT is posted by a recruiter and has a unique
HIT identifier. Moreover, a HIT can be assigned to multi-
ple workers. Each such assignment is uniquely identified by
an assignment id.

Our experiment consisted of two HITs: a recruitment HIT
(restricted to US only) and a forecasting HIT, where the re-

3Prediction markets require the ground truth for scoring, and
some designs are closely related to strictly proper scoring rules
(Hanson, 2012).
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cruited workers were participating in the actual study. We
use two separate HITs because we need to send daily feed-
back to the workers (monetary and / or non-monetary) and
the MTurk platform does not allow to send bonus payments
on an ongoing HIT. For the forecasting HIT, we use the HIT
ID and the assignment id of the recruitment HIT to provide
bonus payments to the workers. Our experiment consists of
four treatments:

1. Scoring Rule (SR): The workers are paid according to
the Brier Scoring rule once the outcomes of the events
are realized at the end of the study. We also provide a
daily reminder, suggesting workers should come back to
the platform and update their predictions if they have any
new information.

2. Peer Prediction (PP): The workers are paid daily ac-
cording to a peer prediction method. We use the corre-
lated agreement mechanism (Shnayder et al., 2016) to
compute daily bonus payments. The details of the mech-
anism is discussed later.

3. Scoring Rule + Peer Prediction (Rank)
(SR+PPRank): The workers are paid according to
the Brier Scoring Rule once the outcomes of the events
are realized at the end of the study. Each day we compute
the peer prediction score based on the latest predictions
of the users. Instead of providing users with actual bonus
payments, we provide them with ordinal feedback, i.e.
we mention which quartile the user belongs to in terms
of her daily peer prediction score (top 25%, 25%-50%,
50%-75%, or bottom 25%). 4

4. Scoring Rule + Peer Prediction (SR+PP): The work-
ers are provided with two types of bonus payments: (a)
they are paid according to the Brier Scoring Rule once
the outcomes of the events are realized at the end of the
study, and (b) they are provided daily bonuses based on
the peer prediction score computed using their latest pre-
dictions. We normalize the payments so that the expected
payments from (a) and (b) are the same.

2.1 Experimental Workflow

The recruitment HIT was posted on October 6, 2018, while
the forecasting HIT was posted on October 7 and was on-
line till October 13. Overall, 945 workers out of the 1400
workers who participated in the recruitment HIT signed up
for the forecasting HIT, but we considered only 891 of the
945 workers— those who joined the forecasting HIT on Oc-
tober 7th and were present for seven days. The following
table shows the breakdown of the 891 workers across the
four treatments.

Treatment # Workers

Scoring Rule 207
Peer Prediction 220

Scoring Rule + Peer Prediction (Rank) 238
Scoring Rule + Peer Prediction 226

4We decided to provide ordinal feedback instead of the actual
peer prediction score because the scores are not converted to pay-
ment for this treatment and the workers can assess how well she is
doing relative to the whole population from the rank / quartile.

Figure 1: Experimental Workflow

Figure 1 shows the details of the experiment including the
payments. We asked the workers to provide forecasts on 18
different questions. There were three different categories of
questions: (a) Sports, (b) Politics and Economy and (c) En-
tertainment, with six questions from each category. The sup-
plementary material includes the questions along with their
outcomes.

For our analysis, we consider two types of partitions of
the 18 questions. First, we had nine dynamic questions and
nine static questions. A question is dynamic if there is a con-
tinuous inflow of information for that question over the span
of seven days. An example of a dynamic question is:

• “Will the price of Bitcoin in USD on Sat Oct 13th (EST
time zone) be, at any point of the day, above 6500? ”

On the other hand, the workers do not receive new informa-
tion for static questions, e.g.:

• “Will D.C. United win the D.C. United vs. FC Dallas soc-
cer game (Major League Soccer) on Sat Oct. 13th?”

In addition, we also partition the questions based on how
hard they are to predict. An example of a hard question is

• “Will the price of Bitcoin in USD on Sat Oct 13th (EST
time zone) be, at any point of the day, above 6500?”

This is a hard question because leading to the week of Octo-
ber 7th, the price of Bitcoin in USD has been around 6500.
In general, different forecasters might have different opin-
ions about what makes a question easy. So we computed the
average accuracy of all the questions after they were real-
ized and decided that questions with average accuracy above
0.71 will be labelled as easy. We chose 0.71 as the threshold
because the average accuracy of the hard (resp. easy) ques-
tions were over (resp. below) 0.71 for the whole week.We
had seven hard questions and eleven easy questions.

2.2 Payment Scheme

For each question, we provide a base payment of $0.20 for
the recruitment HIT and a base payment of $0.20 for the
forecasting HIT. The payments of the four treatments are
based on the Brier scoring rule Brier (1950) and the corre-
lated agreement (CA) mechanism Shnayder et al. (2016). In
particular, the payment for SR is completely determined by
the Brier scoring rule. The payment for PP is determined
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by the CA mechanism. The treatment SR+PPRank uses
the Brier scoring rule for payment, but uses CA to provide
non-monetary feedback. The treatment SR+PP uses both
the Brier scoring rule and the CA mechanism. Next, we ex-
plain the Brier Scoring Rule and the CA mechanism.

Brier Scoring Rule To explain the payments obtained via
the Brier scoring rule, let us fix an event and suppose that on
day j a worker has a forecast of fj for the outcome of that
event. In case the worker does not enter a forecast on a par-
ticular day, we carry forward her forecast from the previous
day. Once the outcome of the event is realized, the payment
to the worker is given as

∑d
j=1 sj . Here sj is computed us-

ing the Brier scoring rule as :

sj =

{
1− (1− fj)

2 if the outcome is one
1− f2

j if the outcome is zero

To summarize, once the outocme of the event has been real-
ized, the worker is rewarded for each of her daily forecast.
In case the worker comes back to the platform several times
on a day we pick the latest forecast to compute the reward.

CA Mechanism Unlike the Brier scoring rule which de-
termines the score (payment) for each question separately,
CA uses the fact that each user is assigned multiple ques-
tions. In the absence of the actual outcome, CA computes the
payment (score) depending on its reports and the reports of
its peers. The main idea behind CA is that it rewards agree-
ment on the same question and punishes agreement on two
separate questions. For an agent p, the reward for her re-
sponse on question j is computed in the following way.

1. Pick two questions t′ and t′′ different from j (penalty
questions) such that p has completed question t′.

2. Randomly select an agent q �= p such that q has com-
pleted question j and t′′.

3. Let the reports of agent p on questions j and t′′ be rjp and
rt

′
p respectively. Let the reports of agent q on questions j

and t′′ be rjq and rt
′′
q respectively.

4. The payment of agent p for question j is S(rjp, r
j
q) −

S(rt
′
q , r

t′′
q ).

Here S : [n]× [n] → {0, 1} is a scoring matrix which maps
two signal reports (with at most n possible values) to a 0−1
score. CA uses the following scoring matrix :

S(i, j) = Sign(P (i, j)− P (i)P (j)) = Sign(Δ(i, j))

Here P (i, j) is the joint probability of observing the signal
pairs i and j and Δ(i, j) measures the correlation between
the signals i and j. Suppose the signals are positively corre-
lated i.e. Δ(i, i) > 0 and Δ(i, j) � 0 for i �= j. In that case,
CA rewards for an agreement on the same question and pun-
ishes for an agreement on two separate questions. We make
the following adjustments to the CA mechanism described
above.

1. On a given day, CA awards a given response to a ques-
tion by pairing it with a response from another user. This

might produce a reward with high variance, so we com-
pute the reward by averaging the scores obtained by pair-
ing with 100 users.

2. We defined the scoring matrix so that it takes as input
two continuous forecasts instead of two discrete signals.
In order to achieve this, we discretize the interval [0, 1]
into 10 bins and compute the delta matrix using reports
from the good judgement platform Ungar et al. (2012).
Figure 2 displays the scoring matrix for two reports.

Figure 2: Score Matrix

Finally, we adjust the payments so that the workers get
paid 4 cents on average for each task and each day. We did so
by collecting the reports from the good judgement platform
and then normalizing both the CA score and Brier score so
that in expectation both of them pay 4 cents. This implies
that for each question and each task, the treatments SR, PP
and SR+PPRank pays 4 cents on average. The treatment
SR+PP uses both CA and Brier score. So, only for this
treatment we normalized the scores so that on average both
CA and Brier score pay 2 cents. This guarantees that each
treatment provides the same payment in expectation for all
the questions.

2.3 The Task

The main HIT starts with a tutorial of the payment method.
We did not provide explicit formula for the payment, but
provided an interface where the players can change their
forecast and observe how their bonus payments change.
When the workers accept the HIT, they go therough the tu-
torial corresponding to their treatments. Then they provide
forecasts for the questions. The HIT was open for seven
days and the workers could have come back to the platform
anytime during the seven days, retake their tutorials if they
wanted to, and update their forecasts.

3 User Engagement

Providing intermediate feedback, either in terms of money
or in terms of rank, should motivate the workers to come
back to the platform more often and update their predictions.
This implies that the treatment SR should have the least up-
dates and/or changes in forecast among the four treatments.
We next verfiy this is indeed the case by comparing the four

2163



different treatments across three possible statistics that cap-
tures how users engage with the platform. Figure 3 plots the
following three statistics and the corresponding 95% confi-
dence intervals.

1. Updates: the total number of updates made by a user over
the whole week on a question.

2. Returns: the frequency of returns of a user on the plat-
form.

3. Change: the average amount of change made to a ques-
tion by a user.

Note that the three statistics progressively capture finer
details about the user’s engagements with the platform. Up-
dates indicate the total number of updates made by a user
over the whole week and might be misleading if the users
make most of their updates at the start of the experiment.
Returns account for such events but fail to capture the mag-
intude of changes made by a user on a forecast. Change, on
the other hand, computes the exact amount of changes made
by a user on forecasts for a question.

We observe that the treatments SR+PP and PP performs
significantly better than SR for all three statistics (top row
of figure 3). However, SR+PPRank performs significantly
worse than SR for the number of daily returns. To under-
stand this phenomenon, we further investigate what happens
if we consider “good” users, i.e. the top-75 most updating
users on the final day of the prediction. 5 We see a similar
pattern for treatments PP and SR+PP (bottom row of figure
3, but SR+PPRank performs significantly better than SR
in terms of updates and change, and shows no siginifcant
difference in terms of daily returns. Since providing mone-
tary or non-monetary feedback increases users’ engagement
with the platform, we posit that such increase in engagement
brings more information to the platform and should increase
accuracy of the forecasts.

4 Average Final Score

We first compare the average score of the final forecasts un-
der the four treatments. This is calculated by first computing
the brier score of each forecast on the final day under each
treatment and then averaging the scores. If a particular pay-
ment scheme incentivizes the users to provide higher quality
forecasts, then all the forecasts under that treatment will also
have higher Brier score and this should provide a higer av-
erage of final Brier scores.

We start with a simple null hypothesis: the distribution of
the final score is the same under the four treatments. 6 To
test this hypothesis, we run Kruskal-Wallis test Kruskal and
Wallis (1952), a non-parametric method to check whether
two or more groups of samples originate from the same dis-
tribution. This test rejects the null hypothesis with p-value

5We will later see that considering only the top-k users im-
proves the accuracy.

6As an alternative, we could have considered the following: the
final accuracy is the same under the four treatments. However, the
data fails the normality test. So we cannot use a parametric test
like one-way ANOVA test to reject the null hypothesis Casella and
Berger (2002).

0.0075. However, it does not idetify which pairs of treat-
ments are different. So we run a pairwise Wilcoxon rank sum
test with the false discovery rate controlled by Benjamini
and Hochberg (1995) and found that the treatment SR+PP
is siginificantly different from the other three treatments.

Treatment Mean Final Accuracy
SR 0.725 (0.713, 0.736)
PP 0.720 (0.709, 0.731)

SR+PPRank 0.726 (0.715, 0.737)

SR+PP 0.717 (0.706, 0.728)

Table 1: Mean Final Score and its 95% Confidence Interval.
The boldface entry indicates highest mean score. Statistical
tests show that the distribution of SR+PPRank is signifi-
cantly different than the other three treatments, but the dif-
ferences among their means are not signficant.

Table 1 lists the average final score under the four treat-
ments. Although, the treatment SR+PPRank has higher
mean than the other treatments, there is no significant dif-
ferecne among the means of different treatments. So, we
next consider average final score separately for dynamic
and static questions and easy and hard questions. Table 2
shows the average final scores for (dynamic,static) split and
(hard,easy) split of the questions. We repeated the same
analysis as before, and found that the statistical test cannot
reject the null (the distributions of scores are the same) for
both static and easy questions. However, we do find that the
distribution of the final scores for SR+PP is significantly
different than SR+PPRank and SR under both dynamic
and hard questions.

5 Accuracy Under Different Aggregators

We now investigate how different treatments perform when
we use the same aggregator to produce an estimate of the
event for the days the experiment was run. In particular, we
consider two classes of aggregators. The first class (aggre-
gators 1.a through 1.d) are based on the mean aggregator.

1.a: Mean: aggregator computes the sample mean.

1.b: Weighted Mean: aggregator computes weighted mean
where the weights are proportional to the number of
updates made by an individual on a particular question.

1.c: Top-k + Weighted Mean: aggregator computes
weighted mean using the forecasts of the top k users
in terms of the number of updates. 7

1.d: Top-k + Weighted Mean + Extremize: After comput-
ing the weighted mean of the top-k users, the aggrega-
tor extremizes the forecast using the following formula
Atanasov et al. (2016): f̄e = f̄a/(f̄a + (1− f̄)a).
Atanasov et al. (2016) found that the optimal value of

7We used k = 75 for our setting. The choice of k exhibits a
bias-variance trade-off. Picking a small k improves accuracy but in-
creases the variance. We saw that the aggregated forecast remained
unchanged unless k was less than 90 (# users > 200 for each treat-
ment). We leave the choice of optimal k for future work.
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(a) Average Number of Updates over the Week (b) Daily Returns (c) Average Change in Forecast

(d) Average Number of Updates over the Week
(Top 75 Users) (e) Daily Returns (Top 75 Users) (f) Average Change in Forecast (Top 75 Users)

Figure 3: The top row shows the three statistics (updates, returns, and change) for the four treatments. Treatments SR+PP
and PP performs significantly better than SR for all three statistics, however, SR+PPRank performs significantly worse than
SR for the number of daily returns. To understand this phenomenon, the bottom row shows the corresponding figures when
we only consider “good” users i.e. top-75 most updating users on the final day of the prediction. We see a similar pattern for
treatments PP and SR+PP, but SR+PPRank performs significantly better than SR in terms of updates and change, and shows
no siginifcant difference in terms of daily returns.

Treatment Dynamic Static Easy Hard
SR 0.702 (0.683, 0.721) 0.747 (0.730, 0.765) 0.777 (0.763, 0.792) 0.641 (0.619, 0.664)
PP 0.696 (0.678, 0.715) 0.744 (0.726, 0.761) 0.769 (0.754, 0.783) 0.643 (0.622, 0.666)

SR+PPRank 0.703 (0.685, 0.720) 0.750 (0.733, 0.766) 0.772 (0.757, 0.786) 0.655 (0.635, 0.675)

SR+PP 0.690 (0.672, 0.707) 0.744 (0.728, 0.760) 0.761 (0.747, 0.776) 0.647 (0.627, 0.666)

Table 2: Mean Final score and its 95% confidence intervals for (dynamic,static) split and (hard,easy) split of the questions.
Statistical tests show that the distribution of the final scores for SR+PP is significantly different than SR+PPRank and SR
under both dynamic and hard questions. The boldface entries indicate the best treatment in terms of mean final score. We
see that the treatment SR+PPRank performs well for many cases, but we did not find any statistically significant difference
betweeen the means for different partitions of the questions.

a was 2 for the good judgement project and we use the
same for our setting.

The second set of aggregators (2.a to 2.d) are based on the
logit aggregation rule Satopää et al. (2014) and are similar
to the aggregators 1.a to 1.d.
2.a: Logit: aggregator computes the average logit ȳ =

1/n
∑n

i=1 log
fi

1−fi
and then computes the inverse-

logit for the final forecast, f̄ = exp(ȳ)
1+exp(ȳ) .

2.b: Weighted Logit: aggregator computes weighted logit
and then computes the inverse-logit as before.

2.c: Top-k + Weighted Logit: computes weighted logit
over the top-75 users according to their updates.

2.d: Top-k + Weighted Logit + Extremize: aggregator ex-
tremizes the forecast provided by 2.c.

Table 3 lists the performances of the four treatments. We
see that 1.d (resp. 2.d) gives the highest accuracy among the

mean (resp. logit) based aggregators. Therefore, we focus on
comparing the performance of the four treatments for these
two aggregators. We computed the 95% confidence intervals
using bootstrap, but found no significant difference in the
final accuracy averaged over all the questions. However, we
again see that the treatment SR+PPRank performs best for
many types of questions (table 4).

We now summarize our main findings.

1. For the static questions, there are no significant differ-
ences among the performances of the four treatments.

2. For both dynamic and easy questions, treatments SR and
SR+PPRank work best, and signifcantly outperform the
other two treatments for some aggregators.

3. For hard questions, treatment SR+PPRank provides
highest final accuracy, but there are no significant differ-
ences among the four treatments.
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Treatment 1.a 1.b 1.c 1.d 2.a 2.b 2.c 2.d

SR 0.804 0.810 0.819 0.847 0.842 0.859 0.876 0.872
PP 0.799 0.797 0.794 0.817 0.826 0.828 0.825 0.834

SR+PPRank 0.805 0.812 0.822 0.856 0.836 0.857 0.882 0.891

SR+PP 0.790 0.794 0.798 0.823 0.818 0.829 0.834 0.851

Table 3: Final Accuracy under Different Aggregators. We see that 1.d (resp. 2.d) gives the highest accuracy among the mean
(resp. logit) based aggregators. The boldface entries highlight the treatment with the highest final accuracy under a given
aggregator. We see that the treatment SR+PPRank performs best under many aggregators.

Treatment Dynamic Static Easy Hard
SR 0.834 0.861 0.929 0.718
PP 0.794 0.841 0.876 0.724

SR+PPRank 0.839 0.874 0.912 0.769

SR+PP 0.779 0.867 0.893 0.714

Aggregator 1.d

Treatment Dynamic Static Easy Hard
SR 0.854 0.890 0.991 0.684
PP 0.840 0.829 0.921 0.698

SR+PPRank 0.909 0.872 0.963 0.778

SR+PP 0.784 0.919 0.950 0.697

Aggregator 2.d

Table 4: Final accuracy under aggregators 1.d and 2.d for
two different partitions – (dynamic, static) and (easy, hard).
We see that the treatment SR+PPRank peforms best for
many types of questions.

6 Conclusion

We started this paper with two main questions, whether pro-
viding intermediate feedback (monetary or non-monetary)
increases users’ engagement to the platform and whether
they boost the accuracy of the forecasts. The answer to
the first question is positive as we saw that the treatments
providing monetary and/or non-monetary feedback perform
significantly better than the treatment SR for various statis-
tics capturing user engagement to the platform. On the other
hand, the answer to our second question is more subtle.
Whether an increase in updates boosts the overall perfor-
mance depends on the particular type of aggregator, and also
on the kind of questions considered. We considered eight
aggregators in total and found that the treatments SR and
SR+PPRank perform best for both dynamic and easy ques-
tions, and signifcantly outperform the other two treatments
for some aggregators. Since SR+PPRank improves user
engagement compared to SR, this leads us to recommend
providing non-monetary feedback based on peer prediction
scores for improving the performance of various forecasting
platforms.

We observed that providing monetary feedback (treat-
ments SR+PP and PP) signifcantly improves user engage-
ment compared to SR. However, for easy questions, they
hurt the accuracy of the forecast under some aggregators. We
believe this is because providing monetary feedback creates
wrong incentives for easy questions, which require very few

updates in forecasts over the duration of the experiment. It
will be interesting to further investigate the nature of such
interim monetary incentives on forecasting in future.

We found no significant difference in final accuracy be-
tween the treatments SR+PPRank and SR, even though
SR+PPRank improves user engagement significantly com-
pared to SR. We think that the duration of our experi-
ment was too short to differentiate these two treatments and
SR+PPRank will indeed be the best treatment for longer
term forecasting events. However, we would like to note that
it is quite challenging to run such an experiment for a long
term (say several months) on the Amazon Mechanical Turk,
since the users tend to communicate among each other Yin et
al. (2016) and this defeats the whole purpose of running dif-
ferent treatments in parallel. One major direction for future
work is to run such an experiment in a properly controlled
setting.
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Satopää, V. A.; Baron, J.; Foster, D. P.; Mellers, B. A.; Tet-
lock, P. E.; and Ungar, L. H. 2014. Combining multiple

probability predictions using a simple logit model. Interna-
tional Journal of Forecasting 30(2):344–356.
Shaw, A. D.; Horton, J. J.; and Chen, D. L. 2011. Designing
incentives for inexpert human raters. In Proceedings of the
ACM 2011 conference on Computer supported cooperative
work, 275–284. ACM.
Shnayder, V.; Agarwal, A.; Frongillo, R.; and Parkes, D. C.
2016. Informed truthfulness in multi-task peer prediction.
In Proceedings of the 2016 ACM Conference on Economics
and Computation, 179–196. ACM.
Ungar, L.; Mellors, B.; Satopää, V.; Baron, J.; Tetlock, P.;
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