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Abstract

The problem of lifting a preference order on a set of objects
to a preference order on a family of subsets of this set is a
fundamental problem with a wide variety of applications in
AI. The process is often guided by axioms postulating prop-
erties the lifted order should have. Well-known impossibility
results by Kannai and Peleg and by Barberà and Pattanaik
tell us that some desirable axioms – namely dominance and
(strict) independence – are not jointly satisfiable for any lin-
ear order on the objects if all non-empty sets of objects are
to be ordered. On the other hand, if not all non-empty sets of
objects are to be ordered, the axioms are jointly satisfiable for
all linear orders on the objects for some families of sets. Such
families are very important for applications as they allow for
the use of lifted orders, for example, in combinatorial voting.
In this paper, we determine the computational complexity of
recognizing such families. We show that it is Πp

2-complete
to decide for a given family of subsets whether dominance
and independence or dominance and strict independence are
jointly satisfiable for all linear orders on the objects if the
lifted order needs to be total. Furthermore, we show that the
problem remains coNP-complete if the lifted order can be in-
complete. Additionally, we show that the complexity of these
problem can increase exponentially if the family of sets is not
given explicitly but via a succinct domain restriction.

Introduction

Modeling preferences over alternatives is a major challenge
in many areas of AI, for example in knowledge represen-
tation and, especially, in computational social choice. If
the number of alternatives is small enough, preferences are
most often modeled as a total order. However, in many
applications the alternatives are ’combinatorial’, for exam-
ple bundles of objects in packing or allocation problems
(Bouveret, Chevaleyre, and Maudet 2016), or committees
in voting (Brandt and Brill 2011; Lang and Xia 2016;
Brandt, Saile, and Stricker 2018). In such situations, the
number of alternatives grows exponentially with the number
of objects which makes it unfeasible for agents to specify a
full preference relation over all alternatives.
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Figure 1: The use of lifted orders in voting

Different approaches to solving this problem have been
discussed in the context of voting. Lang and Xia (2016) give
a thorough overview of the most promising ideas. The eas-
iest solution is often to vote on each candidate separately.
However, this approach only works well if the voters have
separable preferences, i.e. if the preference on having a can-
didate in the committee is independent on who else is in the
committee. Another option is eliciting the top ranked com-
mittee. Then one can, for example, infer a preference order
on the committees via a distance measure like the Hamming
distance. This approach minimizes the communication cost
but only takes very little of the agent’s full preferences into
account. Alternatively, one can ask the agents to specify their
preferences using a CP-net or similar representations. This
can be very effective but requires the agents to learn a non-
trivial preference representation. In many cases this is an un-
acceptable requirement. Finally, there are some voting rules
that select a winning committee directly from a preferences
over candidates. This approach has been mainly explored
for committees of fixed size. In this paper we consider a dif-
ferent approach, namely inferring an order on sets of alter-
natives from an order on the alternatives. Then, traditional
voting rules can be applied to the inferred orders on sets.
Figure 1 shows how this approach can work in voting. Bar-
berà, Bossert, and Pattanaik (2004) give an excellent survey
on the progress that has been made to solve this question.

Essentially, there are two ways to study this approach.
First, one can analyze specific methods to infer an order
on sets from an order on the objects, see e.g. (Moretti and
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Tsoukiàs 2012). Second, one can analyze which properties
an optimal order on the sets should have in a given setting.
These desirable properties can then be formulated as axioms
and one can try to identify orders that satisfy these axioms.
In some settings, it is possible to find orders that satisfy all
properties deemed desirable in the setting, see e.g. (Pattanaik
and Xu 1990). Unfortunately, in many other settings no or-
der can satisfy all desirable properties at once. One of the
most important of these so-called impossibility results states
that two axioms called Dominance and Independence are in
general incompatible (Kannai and Peleg 1984). Dominance
states, intuitively, that removing the least preferred element
from a set improves the set and removing the most preferred
element worsens the set. Independence states, roughly, that
if a set is preferred to another set and the same element is
added to both sets, this preference can not be reversed.

Kannai and Peleg (1984) showed that dominance and in-
dependence are incompatible if one wants to order all sub-
sets of a set with at least six elements. In the same year
Barberà and Pattanaik (1984) showed that dominance and
a strengthening of independence called strict independence
are incompatible already if one wants to order all subsets
of a three element set. We write ‘(strict) independence’ as
a shorthand for ‘independence or strict independence’. Re-
cent research focused on new impossibility results, e.g. Geist
and Endriss (2011), as well as weakenings and variations
of dominance and independence, e.g. Bossert and Suzumura
(2000) and Larbi, Konieczny, and Marquis (2010).

All of the results above assume that all subsets of a given
set need to be ordered, but in many applications only some
of these subsets are possible alternatives. For example, it
is very common in multiwinner or combinatorial voting to
have some form of domain restrictions (Lang and Xia 2016;
Kilgour 2016). Now, it is possible to construct arbitrary large
families of sets – for example families of disjoint sets –
that can be ordered with an order satisfying dominance and
(strict) independence. Motivated by this observation, Maly
and Woltran (2017) have shown that it is NP-complete to
decide whether a given order on elements can be lifted to an
order satisfying dominance and (strict) independence.

However, for applications in voting or other social choice
problems, it is necessary to fix a voting method before the
ballots are collected. Therefore, it is more important to know
for a given family of sets if dominance and (strict) indepen-
dence are compatible for any preference order the agents
may report.1 Following Maly, Truszczyński, and Woltran
(2018) we call families of sets for which any possible
order on the elements can be lifted to an order satisfy-
ing dominance and (strict) independence strongly orderable
with respect to dominance and (strict) independence. Maly,
Truszczyński, and Woltran (2018) studied this concept for a
specific class of families of sets, namely for families of sets
that can be represented as the family of all sets of vertices

1Observe that the hardness of this problem does not fol-
low from the hardness of the aforementioned problem treated by
Maly and Woltran (2017). For example, the question whether a
given boolean formula over a set of variables is satisfiable is NP-
complete, but the question whether all or at least one boolean for-
mula over a set of variables is satisfiable is trivial.

that induce a connected subgraphs in a given graph. One of
their main results is a classification result that implies that
strong orderability with respect to dominance and strict in-
dependence can be decided in polynomial time for families
in this restricted class.

In this paper, we show that this result can not be gen-
eralized to arbitrary families of sets. We show that it is in
general Πp

2-complete to decide whether a family of sets is
strongly orderable with respect to dominance and strict in-
dependence. The result also holds if we replace strict inde-
pendence by independence. These results assume that we re-
quire the order on the family of sets to be total. However,
some authors argue that it is more sensible to only require
incomplete preferences in combinatorial domains (Boutilier
and Rosenschein 2016). Voting rules that facilitate the ag-
gregation of partial orders or even weaker preference mod-
els exist (Xia and Conitzer 2011; Terzopoulou and Endriss
2019). Therefore, we investigate how much the complexity
of the studied problems can be reduced by dropping the re-
quirement that the lifted order needs to be total. In particular,
we show that it is coNP-complete to decide whether a fam-
ily of sets is strongly orderable if we require the order on the
family to be a partial order.

These results assume that the family of sets is given ex-
plicitly. However, the domain in combinatorial voting is of-
ten given as a condition that has to be satisfied by the ad-
missible sets. Such conditions can for example be formu-
lated as propositional formulas (Lang and Xia 2016). These
formulas are normally exponentially smaller than the actual
family of sets, which can increase the complexity of decid-
ing if the family is strongly orderable. On the other hand,
families of sets must have some internal structure to be suc-
cinctly represented. This internal structure may decrease the
complexity of the problem, as is the case for the domain
restrictions considered by Maly, Truszczyński, and Woltran
(2018). We show – for a specific succinct representation that
is well studied in the literature – that succinct representation
can lead to a massive blow up in complexity. It turns out
that it can be NEXP-hard to decide whether a succinctly rep-
resented family is strongly orderable with respect to domi-
nance and strict independence for total orders and coNEXP-
complete for partial orders. The first result also holds if only
independence is required instead of strict independence.

After formally introducing our research questions in the
next section, we will present our main contributions in the
third section. These are:

1. We show that it is Πp
2-complete to decide whether a fam-

ily of sets is strongly orderable with respect to dominance
and (strict) independence. This result implies also that it
is not possible to find an order satisfying dominance and
(strict) independence in polynomial time even if one al-
ready knows that a given family is strongly orderable.

2. For dominance and strict independence, we prove that
it is still coNP-complete to decide if a family of sets is
strongly orderable if one only requires a partial order on
the family of sets.

3. We show that the we can have an exponential blow up in
complexity if the family of sets is represented succinctly.
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Using a so-called conversion lemma, we show that our
hardness results imply NEXP- resp. coNEXP-hardness
for a specific succinct representation.

Background

First, we recall some general background. All sets we con-
sider in the paper are finite. A binary relation is called a pre-
order if it is reflexive and transitive. A preorder that is anti-
symmetric is called a partial order. A preorder that is total
is called a weak order. A weak order is linear if it is also
antisymmetric. If � is an order on a set X , then the corre-
sponding strict order � on X is defined by x ≺ y if x � y
and y �� x, where x, y are arbitrary elements of X . Further,
the corresponding equivalence or indifference relation ∼ is
defined by x ∼ y if x � y and y � x. For a linear order
� on a set A, we write max�(A) for the maximal element
of A with respect to �. Similarly, we write min�(A) for the
minimal element of A with respect to �. If no ambiguity
arises, we omit the � in the subscript.

We assume that the reader is familiar with the classes NP
and coNP. We will write SAT for the NP-complete prob-
lem of deciding if a 3-CNF is satisfiable and TAUT for the
coNP-complete problem of deciding if a 3-DNF is a tautol-
ogy. We additionally use the class NEXP of problems solv-
able by a nondeterministic Turing Machine in exponential
time, its complement class coNEXP and Πp

2, the class of
problems that are in coNP using an NP-oracle. An example
for a Πp

2-complete problem is Π2-SAT i.e. the problem of
deciding whether a quantified boolean formula of the form
∀ �W∃�V ψ( �W, �V ), where ψ is a formula in 3-CNF, is satis-
fiable. For more details the reader is referred to the famous
textbook by Papadimitriou (1994).

Next, we review the relevant background on lifting or-
ders from objects to sets of objects. Formally, we model
this problem using a set X , a family X ⊆ P(X) \ {∅} of
non-empty subsets of X and a linear order ≤ on X . Then,
we want to infer from ≤ an order � on X , guided by ax-
ioms formalizing certain desiderata for such lifted orders.
We call this the order lifting problem. We recall the ax-
ioms that are relevant for this paper, i.e. dominance, inde-
pendence and strict independence. They are natural exten-
sions of the versions of those axioms considered in the case
when X = P(X) \ {∅}. The extensions consist of adding
conditions of the form Y ∈ X not needed in the original
formulations (Maly and Woltran 2017).
Axiom 1 (Dominance). For all A ∈ X and all x ∈ X , such
that A ∪ {x} ∈ X :

y < x for all y ∈ A implies A ≺ A ∪ {x},
x < y for all y ∈ A implies A ∪ {x} ≺ A.

Axiom 2 (Independence). For all A,B ∈ X and for all
x ∈ X \ (A ∪B), such that A ∪ {x}, B ∪ {x} ∈ X :

A ≺ B implies A ∪ {x} � B ∪ {x}.
Axiom 3 (Strict Independence). For all A,B ∈ X and for
all x ∈ X \ (A ∪B), such that A ∪ {x}, B ∪ {x} ∈ X :

A ≺ B implies A ∪ {x} ≺ B ∪ {x}.

Dominance is often desirable if the order � should reflect,
to some extent, the average quality of a set or committee. If
we assume, for example, that the sets represent incompat-
ible alternatives from which one will be chosen randomly,
then dominance is a natural desideratum (Can, Erdamar, and
Sanver 2009). Independence and strict independence on the
other hand are simple monotonicity axioms. They are sen-
sible desiderata in many interpretations, for example if sets
are bundles of objects that are compared according to their
overall goodness according to some additive utility (Kraft,
Pratt, and Seidenberg 1959).

There is some tension between the motivations for domi-
nance and (strict) independence, as dominance is more re-
lated to average utility while independence and strict in-
dependence are more related to total utility. Nevertheless,
there are important settings where both axioms are natural
desiderata. One example for such a situation is choice un-
der complete uncertainty (Bossert, Pattanaik, and Xu 2000;
Barberà, Bossert, and Pattanaik 2004), i.e. the situation that
the set represents mutually exclusive alternatives that are
chosen with a unknown probability. In combinatorial voting
comparable situations occur, for example, when the agents
are unaware of the influence of any given candidate in the
elected committee.
Example 1. Let X = {a, b, c} be a set of candidates from
which a committee should be elected. Assume further, that
any winning committee must contain either a or b. Then, the
family of possible winning committees C contains all possi-
ble committees except {c}. Now assume one voter reports
the preference order a < b < c. Then these preferences can
be lifted to a linear order on C that satisfies dominance and
strict independence. For example:

{a} ≺ {a, b} ≺ {b} ≺ {a, b, c} ≺ {a, c} ≺ {b, c}
Now, if an agent reports the preference order a < c < b,
then no linear order on C satisfies dominance and strict in-
dependence with respect to the agents preferences. However,
if we replace strict independence by independence and do
not require the order to be strict, then for example

{a} ≺ {a, b} ≺ {a, b, c} ∼ {a, c} ≺ {b, c} ≺ {c}
satisfies dominance and independence with respect to the
agents preferences.

We observe that dominance and strict independence only
mention strict preferences. Therefore, we can expect the or-
der � to additionally be strict if we consider dominance
and strict independence. This extra requirement is natural
in computational social choice as most voting rules assume
strict orders as input. Furthermore, it does simplify some of
the proofs. However, is not necessary for the results to hold.
If we consider dominance and independence, we only as-
sume that � is a (pre-)order, as independence coincides with
strict independence on strict orders. We use the following
notation to simplify presentation.
Definition 2. Let X be a set and X ⊆ P(X) \ {∅}. We say
X is DI-orderable with respect to a linear order ≤ on X if
there exists a weak order � on X satisfying dominance and
independence with respect to ≤.
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Orderability Dom + Ind Dom + strict Ind

partial ord. w.r.t. ≤ always† in P†
partial strong ord. always coNP-c.
ord. w.r.t. ≤ NP-c.† NP-c.†
strong ord. Πp

2-c. Πp
2-c.

succ. part. strong ord. coNEXP-c. coNEXP-c.
succinct ord. w.r.t. ≤ NEXP-c. NEXP-c.
succinct strong ord. NEXP-hard NEXP-hard

Table 1: Complexity of orderability with respect to domi-
nance and (strict) independence.

We say X is DIS-orderable with respect to a linear or-
der ≤ on X if there exists a linear order � on X satisfying
dominance and strict independence with respect to ≤.

Observe that for X �= P(X)\{∅}, dominance and (strict)
independence do not imply the extension rule, which is a
minimal requirement on lifted orders in many applications.
Axiom 4 (The extension rule). For all x, y ∈ X , such that
{x}, {y} ∈ X , if x < y then {x} ≺ {y}.

However, adding the extension rule has no effect on com-
plexity (see Remark 15). To be able to talk about complexity
we have to consider the corresponding decision problems.

DIS -ORDERABILITY
Input: A set X , a family of sets X ⊆ P(X) \ {∅}

and a linear order ≤ on X .
Question: Is X DIS-orderable with respect to ≤?

DI -ORDERABILITY is defined analogously by re-
placing DIS-orderable with DI-orderable. Maly and
Woltran (2017) showed that DI -ORDERABILITY and DIS -
ORDERABILITY are NP-complete.

The main focus of this paper is not DI- or DIS-
orderability with respect to a specific linear order ≤ on X
but with respect to every linear order on X .
Definition 3. We say X is stronglyDI- resp.DIS-orderable
if it is DI- resp. DIS-orderable with respect to every linear
order on X .

Using this notation, we can say that the family considered
in Example 1 isDIS-orderable with respect to the order a <
b < c. It is not DIS-orderable with respect to the order
a < c < b though and therefore not stronglyDIS-orderable.
On the other hand, the family is DI-orderable with respect
to the order a < c < b and it is easy to check that it is even
strongly DI-orderable.

Results

In this section we will cover our results. First, we consider
the problem of determining if a set is strongly DI or DIS-
orderable. Then, we will investigate how the complexity of
these problems is affected if we drop the requirement that
the lifted order needs to be total. Finally, we will look at
the effect of succinct domain restrictions on complexity. An
overview over all our main results is given in Table 1

†(Maly and Woltran 2017)

The Complexity of Strong Orderability

In this section, we consider the following decision problems.

STRONG DIS -ORDERABILITY
Input: A setX and a family of sets X ⊆ P(X)\{∅}.
Question: Is X strongly DIS-orderable?

STRONG DI -ORDERABILITY
Input: A setX and a family of sets X ⊆ P(X)\{∅}.
Question: Is X strongly DI-orderable?

We only present prove sketches due to space limitations.
First, we proof that STRONG DIS -ORDERABILITY is NP-
hard. This result will be superseded when we prove that the
problem is Πp

2-hard. However, it allows us to present in some
detail the simplest form of a reduction that can be used with
some modifications to prove Theorem 5, 6, 13 and 14.
Proposition 4. STRONG DIS -ORDERABILITY is NP-hard.

Proof (Sketch). Let φ be a instance of SAT with n variables
and m clauses. We produce an instance (X,X ) of STRONG
DIS -ORDERABILITY. We produce this instance in a way
that there is a linear order ≤ such that X is DIS orderable
with respect to ≤ only if φ is satisfiable. Intuitively, we will
code the truth value of a variable Vi as a preference between
two sets Xt

i and X f
i by equating Xt

i ≺ X f
i with Vi is false

andX f
i ≺ Xt

i with Vi is true. Then, for every clause, we add
sets such that dominance and strict independence can not be
jointly satisfied with respect to ≤ on these sets by any linear
order that codes a truth assignment that does not satisfy the
clause. This ensures that dominance and strict independence
can only be satisfied with respect to ≤ by a linear order that
codes a satisfying assignment of φ.

First, we construct the set of elements X . For every vari-
able Vi, the set X contains elements x−i,1, x

−
i,2, x

+
i,1 and

x+i,2. Furthermore, it contains for every clause Ci variables
zai , y

a
i ,minai and maxai for a ∈ {1, 2, 3}. Finally, it contains

two elements v1 and v2. Then we define the following linear
order ≤ on X:

min11 < min2
1 < · · · < min3

m < x−1,1 < x−1,2 < . . .

< x−n,2 < v1 < v2 < z11 < z21 · · · < z3m <

y11 < y21 < · · · < y3m < x+1,1 < x+1,2 < . . .

< x+n,2 < max1
1 < max2

1 < · · · < max3
m

Next, we construct the family X . In the following, we write
Y := {x ∈ X | v1 ≤ x ≤ ym3 }. First, we add for every vari-
able Vi setsXt

i = Y ∪{x−i,1, x+i,1} andX f
i = Y ∪{x−i,2, x+i,2}.

Now, let Ci be a clause with variables Vj , Vk, Vl. We add

Xt
j \ {y1i }, X f

j \ {y1i }, Xt
k \ {y2i },

X f
k \ {y2i }, Xt

l \ {y3i } and X f
l \ {y3i }.

By “reverse strict independence”2 we know that the prefer-
ence between Xt

j \ {y1i } and X f
j \ {y1i } must be the same

2Every linear order satisfying strict independence has to satisfy
reverse strict independence, i.e. A ∪ {x} ≺ B ∪ {x} implies A ≺
B: Assume otherwise B ≺ A holds, then by strict independence
B∪{x} ≺ A∪{x} must hold, contradicting A∪{x} ≺ B∪{x}.
Hence by the totality of � we have A ≺ B.
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as the preference between Xt
j and X f

j . The same holds for
the other two variables. Now, if all variables occur posi-
tively in Ci, we add sets such that X f

j \ {y1i } ≺ Xt
k \ {y2i },

X f
k \ {y2i } ≺ Xt

l \ {y3i } and X f
l \ {y3i } ≺ Xt

j \ {y1i } must
hold in any order � on X that satisfies dominance and strict
independence with respect to ≤. We call this enforcing these
preferences. Then we get a contradiction if Vj , Vk and Vl are
false because

Xt
j \ {y1i } ≺ X f

j \ {y1i } ≺ Xt
k \ {y2i } ≺ X f

k \ {y2i } ≺
Xt

l \ {y3i } ≺ X f
l \ {y3i } ≺ Xt

j \ {y1i }
holds. If a variable, say Vj , occurs negatively in Ci, we
switch Xt

j and X f
j and enforce Xt

j \ {y1i } ≺ Xt
k \ {y2i }

and X f
l \ {y3i } ≺ X f

j \ {y1i }.
Next, we show how we can enforce these preference. As-

sume we want to enforce Xa
j \ {y1i } ≺ Xb

k \ {y2i } for a, b ∈
{t, f}. We add {z1i }, {zi,max1

i } and (Xa
j \{y1i })∪{max1i }.

Our goal is to enforce (Xa
j \ {y1i })∪{max1i } ≺ {z1i ,max1

i }
which forces by reverse strict independence Xa

j \ {y1i } ≺
{z1i }. Then we enforce {z1i } ≺ Xb

k \ {y2i } to get by transi-
tivity Xa

j \ {y1i } ≺ Xb
k \ {y2i } as desired. To enforce (Xa

j \
{y1i }) ∪ {max1

i } ≺ {zi,max1i } we add a sequence of sets
A1, A2, . . . , Al such that A1 = (Xa

j \ {y1i , z1i )} ∪ {max1i },
Ai+1 = Ai \ min≤(Ai) and Al = {max1

i }. This enforces
by dominance A1 ≺ A2 ≺ · · · ≺ Al which enforces by
transitivity

A1 = (Xa
j \ {y1i , z1i }) ∪ {max1i } ≺ {max1

i } = Al.

Finally, this enforces by strict independence the desired
(Xa

j \ {y1i }) ∪ {max1i } ≺ {zi,max1i }. Using the same idea
and min1i we enforce {z1i } ≺ Xb

k \ {y2i } finishing the con-
struction for Xa

j \ {y1i } ≺ Xb
k \ {y2i }. We enforce the other

preferences for that clause Xc
k \ {y2i } ≺ Xd

l \ {y3i } and
Xe

l \ {y3i } ≺ Xa
j \ {y1i } for c, d, e ∈ {t, f} similarly us-

ing z2i ,max2i and min2
i resp. z3i ,max3

i and min3
i . We repeat

this procedure for every clause. Now, by construction, X can
only be DIS-orderable with respect to ≤ if φ is a positive
instance of SAT.

We omit how to construct a linear order � on X that sat-
isfies dominance and strict independence with respect to ≤′
for an arbitrary linear order ≤′ on X if φ is satisfiable.

We observe that this reduction also works as a reduc-
tion from SAT to DIS -ORDERABILITY, as the constructed
family is strongly DIS-orderable if and only if it is DIS-
orderable with respect to a fixed linear order ≤. Next, we ex-
tend the construction to prove the Πp

2-hardness of STRONG

DIS -ORDERABILITY.

Theorem 5. STRONG DIS -ORDERABILITY is Πp
2-

complete.

Proof (Sketch). Πp
2-membership is clear as we can univer-

sally guess a linear order ≤ onX and then check via the NP-
oracle if X is DIS-orderable with respect to ≤. It remains

to show that STRONG DIS -ORDERABILITY is Πp
2-hard. We

do this by extending the reduction above to a reduction from
a Π2-SAT instance φ = ∀ �W∃�V ψ( �W, �V ). Let w1 . . . wl be
the universally quantified variables. We set up the reduc-
tion similarly to the one for Proposition 4. Additionally, we
add for every universally quantified variable wi represented
by Xt

i and X f
i sets Xt

i \ {yqi }, X f
i \ {yqi }, {wt

i}, {wf
i} and

{wt
i , w

f
i}, where yqi , w

t
i and wf

i are new elements. Then, we
enforce – with the same method as above – Xt

i \ {yqi } ≺
{wt

i} and {wf
i} ≺ X f

i \ {yqi } using new elements minqi and
maxqi . Now, let ≤′ be a linear order onX such thatwt

i <
′ wf

i

holds. ThenXt
i ≺ X f

i must hold for every order � on X that
satisfies dominance and strict independence with respect to
≤′. Analogously, we add sets and new elements such that
X f

i ≺ Xt
i must hold for every order � on X that satisfies

dominance and strict independence with respect to any lin-
ear order ≤′′ on X such that wf

i <
′′ wt

i holds.
We claim that (X,X ) can only be a positive instance of

STRONG DIS -ORDERABILITY if φ is satisfiable. First, we
fix the same order ≤ as in the proof of Proposition 4 on the
elements that occur already in that reduction. Then, for every
truth assignment T to the variables in �W there is a linear or-
der ≤∗ on X that coincides with ≤ on the old elements such
that wt

i <
∗ wf

i if wi is assigned false in T and wf
i <

∗ wt
i

if wi is assigned true in T . Now, if there is no satisfying
assignment to φ that extends T , then there can be no order
on X satisfying dominance and strict independence with re-
spect to ≤∗. Hence (X,X ) can only be DIS-orderable with
respect to every linear order ≤∗ if φ is satisfiable.

We omit showing that if φ is satisfiable then (X,X ) is a
positive instance of STRONG DIS -ORDERABILITY.

It is also possible to extend the construction to prove the
Πp

2-completeness of STRONG DI -ORDERABILITY using an
idea from Maly and Woltran (2017). We only give a brief
description of the proof idea.

Theorem 6. STRONG DI -ORDERABILITY is Πp
2-complete.

Proof idea. We need to change the construction in two
places compared to Theorem 5. First, to enforce a strict pref-
erence between the two sets Xa

i \ {ybj} and Xc
k \ {ydj } using

independence instead of strict independence we can enforce
Xa

i \ {ybj} � {zej} and {zej} � Xc
k \ {ydj } following the

construction above. Then, if we add {zej , zej} to X and set
zej < zej this enforces Xa

i \ {ybj} ≺ Xc
k \ {ydj } by dom-

inance. Second, we have to make sure that all preferences
between all pairs of sets Xt

i and X f
i are strict. We refer the

reader to Maly and Woltran (2017) for a description how this
can be achieved.

One important consequence of Theorem 5 and 6 is that,
under some very mild complexity assumptions, it is not easy
to lift an order on the objects to an order on a family of sets
that satisfies dominance and (strict) independence even if the
family is known to be strongly DI(S)-orderable.

Corollary 7. Given a set X , a linear order ≤ on X and a
strongly DI-orderable family of sets X ⊆ P(X) \ {∅}. If
coNP �= Πp

2, then there exists no polynomial time algorithm
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that produces on input (X,X ,≤) a weak order � on X that
satisfies dominance and independence. The same holds if we
replace independence by strict independence.

Incomplete Preferences

In this section, we investigate the effect of dropping the re-
quirement that the lifted order should be total. It can be seen
by carefully checking the proofs of Maly, Truszczyński, and
Woltran (2018) that this has no effect for the special type
of families considered in their paper if dominance and strict
independence are considered. On the other hand, Maly and
Woltran (2017) have shown that the order lifting problem
becomes trivial if one only requires a preorder on the family
of sets that satisfies dominance and independence.

Theorem 8 (Maly and Woltran 2017). For every set X , lin-
ear order ≤ on X and family of sets X ⊆ P(X)\{∅}, there
is a preorder that satisfies dominance and independence.

In other words, every family of sets is strongly DI-
orderable if we only require the lifted order to be a preorder.
However, most voting rules for incomplete preferences re-
quire partial orders as input (Xia and Conitzer 2011). If we
require the ranking on X to be a partial order, then strict in-
dependence and independence coincide. Therefore, we will
consider strongly partially DIS-orderable families of sets,
i.e. families of sets X ⊆ P(X) \ {∅} such that for every lin-
ear order ≤ on X there exists a partial order on X that sat-
isfies dominance and strict independence with respect to ≤.
For that we recall a results from Maly and Woltran (2017).

Proposition 9 (Maly and Woltran 2017). Let be X a set, ≤
a linear order on X and X ⊆ P(X) \ {∅} a family of sets.
If there is partial order on X that satisfies dominance and
strict independence then there is a unique subset-minimal
partial order �min that satisfies dominance and strict in-
dependence with respect to ≤. Furthermore, �min can be
computed in polynomial time.

This gives us a constructive polynomial time procedure
for deciding partial DIS-orderability. However, it turns out
that it is still difficult to decide whether a given family of
sets is strongly partially DIS-orderable.

STRONG PARTIAL DIS -ORDERABILITY
Input: A setX and a family of sets X ⊆ P(X)\{∅}.
Question: Is X strongly partially DIS-orderable?

Theorem 10. STRONG PARTIAL DIS -ORDERABILITY is
coNP-complete.

Proof (Sketch). Let φ be an instance of TAUT. We con-
struct an instance (S,X ) of STRONG PARTIAL DIS -
ORDERABILITY. For every variable Xi in φ we add new el-
ements x1i and x2i to S. We call the set of these elements X .
We will treat every order on S as encoding a truth assign-
ment by equating xfi < xti to Xi is true and xti < xfi to Xi is
false. Then, we add for every disjunct new variables ytj , y

f
j .

We call the set of these elements Y . Essentially, we want to
add sets such that {ytj} ≺ {yfj} holds for the minimal partial
order satisfying dominance strict independence with respect
to ≤ if and only if Cj is not satisfied by the truth assignment

coded by ≤. Then we will add sets that lead to a contradic-
tion if {ytj} ≺ {yfj} holds for all disjuncts.

To achieve this, we add for every disjunct Cj elements cj
as well as dkj and ekj for k ≤ 3. Finally, we add new variables
u, v, z1 and z2. In the following we call any linear order on S
that is derived by replacing X with an arbitrary linear order
on the elements in X in the following linear order

u < c1 < · · · < cm < yt1 < · · · < ytm <

d11 < · · · < d3m < X < e11 < · · · < e3m < yf1 < · · · <
yfm < z1 < z2 < v

a critical linear order. In the following, we write �min for
the minimal partial order satisfying dominance and strict in-
dependence with respect to some linear order on S.

Next, we build the family X . We do this in a way such that
X is not strongly DIS-orderable if there is a non-satisfying
assignment of φ. First, we add singletons for all elements of
X and Y , and {xfi, xti} for all elements ofX . Then, for every
linear order ≤ we have{xfi} ≺min {xti} if xfi < xti and, on
the other hand, {xti} ≺min {xfi} if xti < xfi

Next, we add sets such that there is a critical linear or-
der ≤ on S such that we have {yti} ≺min {yfi} for all
i ≤ m if and only if φ is not a tautology. For every disjunct
Cj = Xi1 ∧Xi2 ∧Xi3 we add sets {ytj , dkj }, {ytj , dkj , xfik},
{dkj , xfik} for all k ∈ {1, 2, 3} as well as

{xtik , ekj }, {xtik , ekj , z1}, {xtik , ekj , z1, z2},
{ekj , z1, z2}, {ekj , z1, z2, yjf}, {z1, z2, yjf}, {z2, yjf}.

If any of the variables occurs negatively in Cj , we switch
xfik and xtik in the construction. We claim that these sets en-
sure that {ytj} ≺min {yfj} holds for any critical linear order
whenever at least one literal in Cj is false. We have

{ytj} ≺min {y1j , dkj } ≺min

{ytj , dkj , xfik} ≺min {dkj , xfik} ≺min {xfik}
by dominance and, hence, by transitivity {ytj} ≺min {xfik}.
Similarly, we have {xtik} ≺min {yfj}. Hence, {xfik} ≺min

{xtik} implies {ytj} ≺min {yfj} by transitivity.
Now, we add sets that lead to a contradiction if {ytj} ≺min

{yfj} holds for all j. First we add {u}, {u, c1}, {u, c1, yt1},
{u, c1, yt1, v} and {u, v}. Then we know for any critical
linear order by dominance and transitivity {u, v} ≺min

{u, c1, yt1, v}. Similarly, we add sets such that

{u, c1, . . . , cj , yfj , . . . , yf1, v} ≺min

{u, c1, . . . , cj+1, y
t
j+1, y

f
j , . . . , y

f
1, v}

and {u, c1, . . . , cm, yfm, . . . , yf1, v} ≺min {u, v} hold for
any j and critical linear order. Finally, we add sets such that

{u, c1, . . . , cj , ytj , . . . , yfj−1, v} ≺min

{u, c1, . . . , cj , yfj , . . . , yf1, v}
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holds for any linear order on X if and only if {ytj} ≺min

{yfj} holds for that linear order. Now it can be checked that
for every critical linear order

{u, v} ≺min {u, c1, yt1, v} ≺min

{u, c1, yf1, v} ≺min {u, c1, c2, yt2, yf1, v} ≺min . . .

≺min {u, c1, . . . , cm, yfm, . . . , yf1, v} ≺min {u, v}
holds if {ytj} ≺min {yfj} holds for all disjuncts, i.e. if the
critical linear order codes an unsatisfying assignment. It fol-
lows that if φ is not a tautology, then (X,X ) is not strongly
partial DIS-orderable. We omit showing that (X,X ) is
strongly partial DIS-orderable if φ is a tautology.

Succinct domain restrictions

Finally, we turn our attention to succinctly represented fam-
ilies of sets. First, we will quickly review the basic results
on succinctly represented problems from the literature and
recall the definitions and lemmas we need. The study of suc-
cinct problems goes back to Galperin and Wigderson (1983)
for graphs that are succinctly represented by a Boolean cir-
cuit. Later this approach was extended by Balcázar, Lozano,
and Torán (1992) to arbitrary problems that are succinctly
represented by boolean circuits in the following way.

Definition 11. We say a Boolean circuit Cw with two output
gates represents a binary string w if for every input of a
binary number i the following holds:

• the first output is 1 if and only if i ≤ |w|
• if the first output is 1 then the second output equals the
i-th bit of w.

The succinct version QS of a problem Q is: Given a
Boolean circuit Cw representing a boolean string3 w decide
whether w ∈ Q.

For example, SUCCINCT SAT – the succinct version of
SAT – can be defined as follows:
SUCCINCT SAT
Input: A Boolean circuit Cw representing a word w.
Question: Is the 3-CNF represented by w satisfiable?

SUCCINCT SAT is known to be NEXP-complete (Pa-
padimitriou 1994). Hence, SUCCINCT TAUT is coNEXP-
complete. Succinct versions of the problems considered in
this paper be can defined similarly. The main tool to de-
termine the complexity of succinct problems are so-called
Conversion Lemmas. We use the Conversion Lemma by
Balcázar, Lozano, and Torán (1992). Stronger versions of
this lemma exist, for example by Veith (1998). However, the
Conversion Lemma of Balcázar, Lozano, and Torán (1992)
suffices for our purposes and has the advantage that only
comparably simple reductions are used, namely ptime re-
ductions and polylogtime reductions. Polylogtime reduc-
tions are reductions that – given random access to the input

3It is not important what specific encoding is used as long as the
number of variables and clauses as well as the i-th variable in the
j-th clause can be read in polylog time. Any reasonable encoding
will satisfy this requirement.

– need onlyO(logc(n))-time to output an arbitrary bit of the
output. For a formal definition see for example (Murray and
Williams 2017).
Lemma 12 (Conversion Lemma). LetQ andQ∗ be decision
problems. If Q ≤polylogtime Q∗ then QS ≤ptime Q∗

S .

We recall that the reduction used to prove that STRONG
DIS -ORDERABILITY is NP-hard also reproves that DIS -
ORDERABILITY is NP-hard. Therefore, we can use the Con-
version Lemma to prove the following theorem.
Theorem 13. SUCCINCT DIS -ORDERABILITY is NEXP-
complete. SUCCINCT STRONG DIS -ORDERABILITY and
SUCCINCT STRONG DI -ORDERABILITY are NEXP-hard.

Proof (Sketch). SUCCINCT DIS -ORDERABILITY can be
solved in NEXP-time by explicitly computing the family X
and then solving the (exponentially larger) explicit problem
in NP-time. For the hardness, we only have to check that the
reduction presented in this paper is computable in polylog-
time. We observe that the number and size of the sets in the
family X only depends on the number of variables and not
on the structure of the formula φ. Using this observation, it
is possible to prove that for a suitable encoding of (X,X )
resp. (X,X ,≤) the value of a bit can be decided by looking
at one clause and which clause again only depends on the
number of variables. Determining the number of variables
and clauses and reading one clause can be done in polylog-
time for any reasonable encoding of SAT. A similar argu-
ment works for strong DI-orderability.

Moreover, we note that the Conversion Lemma can also
be applied to the reduction from TAUT to STRONG PARTIAL
DIS -ORDERABILITY.
Theorem 14. SUCCINCT STRONG PARTIAL DIS -
ORDERABILITY is coNEXP-complete.

The extension rule

Finally, we observe that adding the extension rule indeed has
no influence on the complexity of the discussed problems.
Remark 15. It can be checked in polynomial time if an
order satisfies the extension rule. Therefore, all arguments
about containment in a complexity class stay valid. Further-
more, all reductions presented in this paper also work, with
minimal changes, if the extension rule is additionally re-
quired. In the reductions for Proposition 4 and Theorem 5, 6
and 13 it is possible to construct an order that satisfies dom-
inance, (strict) independence and the extension rule when-
ever is possible to construct an order that satisfies dom-
inance and (strict) independence. The reduction for Theo-
rem 10 and 14 needs to be changed slightly if the extension
rule is required. Namely, every occurrence of ytk and yfk must
be replaced by two elements ytk and yt

∗
k resp. yfk and yf

∗
k i.e.,

the truth value of disjunct k is coded by the preference be-
tween {ytk, yt

∗
k } and {yfk, yf

∗
k }.

Discussion

Our results show that we cannot easily recognize families of
sets that are strongly DI resp. DIS-orderable. Furthermore,
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they show that it is hard to compute a total order satisfy-
ing dominance and (strict) independence even on strongly
DI or DIS-orderable families. This limits the usefulness of
the order lifting approach to combinatorial voting as voters
may want the ability to easily reproduce the lifting process.
However, this does not hold true if one only requires the
lifted order to be partial. The coNP-hardness of STRONG
PARTIAL DI -ORDERABILITY is not as problematic if the
family of sets is of tractable size. Determining if the family
of sets is strongly orderable is important but often not time-
sensitive. Therefore, we believe that lifting orders on can-
didates to partial orders on committees may be a promising
approach to deal with the problems of combinatorial voting.
However, future work is needed on the interplay between
lifting procedures and voting rules, as well as on axioms be-
sides dominance and (strict) independence.

Unfortunately, in many applications, the set of possible
winning committees is too large to handle directly, making
a succinct representation necessary. Our results show that
this can lead to a rise in complexity that may make recog-
nizing strongly orderable families intractable even in appli-
cations that are not time-critical. On the other hand, Maly,
Truszczyński, and Woltran (2018) showed that less expres-
sive succinct representations can avoid this problem. Unfor-
tunately, the representation considered in their paper is very
limiting. Therefore, future research is needed to identify suc-
cinct representations that are as expressive as possible with-
out an exponential blow up in complexity,
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