
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Adaptive Quantitative Trading: An
Imitative Deep Reinforcement Learning Approach

Yang Liu,1 Qi Liu,1∗ Hongke Zhao,2 Zhen Pan,1 Chuanren Liu3

1Anhui Province Key Laboratory of Big Data Analysis and Application, School of Data Science &
School of Computer Science and Technology, University of Science and Technology of China

2College of Management and Economics, Tianjin University
3Department of Business Analytics and Statistics, University of Tennessee

{liuyang0, pzhen}@mail.ustc.edu.cn, qiliuql@ustc.edu.cn, hongke@tju.edu.cn, cliu89@utk.edu

Abstract

In recent years, considerable efforts have been devoted to
developing AI techniques for finance research and applica-
tions. For instance, AI techniques (e.g., machine learning)
can help traders in quantitative trading (QT) by automating
two tasks: market condition recognition and trading strate-
gies execution. However, existing methods in QT face chal-
lenges such as representing noisy high-frequent financial data
and finding the balance between exploration and exploita-
tion of the trading agent with AI techniques. To address the
challenges, we propose an adaptive trading model, namely
iRDPG, to automatically develop QT strategies by an intel-
ligent trading agent. Our model is enhanced by deep rein-
forcement learning (DRL) and imitation learning techniques.
Specifically, considering the noisy financial data, we formu-
late the QT process as a Partially Observable Markov Deci-
sion Process (POMDP). Also, we introduce imitation learn-
ing to leverage classical trading strategies useful to balance
between exploration and exploitation. For better simulation,
we train our trading agent in the real financial market using
minute-frequent data. Experimental results demonstrate that
our model can extract robust market features and be adaptive
in different markets.

Introduction

In financial security investment, quantitative trading (QT) is
characterized by its high degree of automation and conti-
nuity. With the assistance of computer technology, quanti-
tative traders aggregate information and place orders more
and more efficiently. Instead of active judgments, quantita-
tive traders can efficiently reduce irrational trading decisions
by trading programs. To date, quantitative hedge funds have
become the mainstream of security investment. To meet the
great demand for financial innovation, leveraging machine
learning in QT is becoming a central topic of Fintech.

In real financial market, unpredictable trading behaviors
and economic events lead to the noisy and non-stationary
financial data. Security prices reflect little part of market in-
formation, which means that we can never directly observe

∗Corresponding Author.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: A diagram of Dual Thrust strategy comprised
of OHLC price and volumes chart, where trading signals
(down/up triangles) are formed once current price breaks
through the BuyLine (green line) /SellLine (red line).

the actual market states. In the field of QT, technical anal-
ysis (Murphy 1999) is the most widely used method. Tech-
nical analysis aims at building technical indicators mainly
using charts of Opening-High-Low-Closing prices (OHLC)
and trading volumes. Dual Thrust strategy (Pruitt and Hill
2012) is a good example of technical analysis as shown in
Figure 1. However, these predefined and handcraft technical
indicators are frequently criticized for their poor generaliza-
tion capacity (Deng et al. 2016). For instance, an identical
technical strategy may perform differently in two similar fi-
nancial markets. Thus, this brings a big challenge to repre-
sent robust features directly from financial data.

Machine learning approaches are helpful to improve the
generalization ability. Previous studies concentrate on price
trend prediction by approaches based on deep neural net-
works (Feng et al. 2019; Jin et al. 2019; Zhao et al. 2017a;
Li et al. 2015; Zhao et al. 2017b). But price trend prediction
is not the only thing in QT, we also need well-designed trad-
ing strategies. As an area of machine learning, reinforcement
learning (RL) proposes a framework for sequential decision-
making problems. The agent in RL learns a policy concerned
with how to take actions in an environment to maximize cu-
mulative reward (Sutton and Barto 2018). It seems suitable
to build trading strategies by RL approaches. However, the

2128

agent in RL faces the problem of balancing exploration (of
uncharted territory) and exploitation (of current knowledge)
(Kaelbling, Littman, and Moore 1996). In the real trading
environment, constrained by the market friction factors (e.g.,
transaction fee, slippage, and market capacity), random ex-
ploration without goals may bring great losses. However, the
agent can hardly learn an effective policy without adequate
trials and errors, especially on trading tasks. Therefore, here
comes another distinct challenge to “nd a balance between
exploration and exploitation of the trading agent.

To address above challenges, we proposeimitative Recur-
rent Deterministic Policy Gradient(iRDPG). To be speci“c,
for the “rst challenge about representing the noisy high-
frequent “nancial data, we model the whole QT process as
a Partially Observable Markov Decision Process (POMDP)
(Kaelbling, Littman, and Cassandra 1998). The POMDP
aims at modeling the process where the underlying states
cannot be observed. In this work, considering the inevitable
noise in “nancial data, we deem that our trading agent can-
not directly observe market states. Studies suggest that the
POMDP can be solved by approaches with recurrent neu-
ral networks e.g., Recurrent Deterministic Policy Gradient
(RDPG) (Heess et al. 2015) , an off-policy deep reinforce-
ment learning (DRL) algorithm. For the second challenge
concerned with balancing exploration and exploitation of the
agent, we draw lessons from the technical analysis by imita-
tion learning techniques (i.e., demonstration buffer and be-
havior cloning). Speci“cally, we set a demonstration buffer
initialized by actions from Dual Thrust. With the help of it,
we shorten the inef“cient random exploration phases. To fur-
ther keep the action continuity of the trading agent, we intro-
duce the behavior cloning technique. By incorporating these
imitation learning techniques to the POMDP framework, the
trading agent can be enhanced by “nancial domain knowl-
edge. Our proposed model, iRDPG, is tested on real “nan-
cial data of futures. Compared with baseline trading strate-
gies, iRDPG can learn pro“table trading policies and has
better generalization ability on different futures markets.

Related work
In general, the related work of our research could be classi-
“ed into the following two categories.

Technical Analysis. Technical analysis (Murphy 1999) is
the most widely used method of interest in QT. Techni-
cians believe that part of market information is re”ected
in price and volume data (Malkiel and Fama 1970). They
tend to build technical indicators to generate trading signals.
Technical indicators are mathematical formulas for model-
ing some aspects of the security price trends. Two primary
types of indicators are those based on moving averages and
the oscillators. Those based on moving averages tend to
identify price trends through data smooth, while strategies
based on the oscillators (e.g., Dual Thrust) are employed for
identifying momentum(Kim and Shin 2007). However, tech-
nical indicators cannot adapt to different market patterns.

Reinforcement Learning for Quantitative Trading. Re-
cent years have witnessed the successful marriage of

machine learning and security investment. Reinforcement
learning (RL) is an area of machine learning and special-
izes in the sequential decision-making process. Although
innovating QT with RL is still under-explored, many trails
have been made. Neuneier (1996) made the “rst attempt to
solve trading problems using Q-learning, a typical value-
based RL algorithm. The value-based approaches learn the
optimal policy through state-action value functions. How-
ever, the value-based approaches are not good at large
scale problems. Sutton et al. (2000) found that policy-
based RL enables a simpler problem representation than that
in value-based algorithms. Moody and Saffell(1999) intro-
duced a policy-based approach, namely recurrent reinforce-
ment learning (RRL).

Nevertheless, classical reinforcement learning approaches
have dif“culties in the choice of market features. Deep learn-
ing approaches are well-suited to deal with large input states.
The combination of RL and DL, called deep reinforcement
learning (DRL) performs well in problems with high dimen-
sional data. DRL has achieved great strides in complex tasks,
such as video games (Mnih et al. 2015). Meanwhile, DRL
also has the potential for QT. For instance, Jiang, Xu, and
Liang (2017) uses the model-free Deep Deterministic Policy
Gradient (DDPG) (Lillicrap et al. 2015) to dynamically opti-
mize cryptocurrency portfolios. The fuzzy learning and deep
neural networks (DNNs) are extended to improve “nancial
signal representation (Deng et al. 2016). However, these
model-free RL algorithms are sampling inef“cient for the
large state space problem like QT. Yu et al. (2019) proposed
a model-based RL framework for daily frequency portfolio
trading. Instead of daily-frequency, minute-frequent data are
commonly used in QT (Pruitt and Hill 2012). On minute
timescale, human traders cannot synthesize information as
fast as algorithms.

Different from previous work, in this paper, we intro-
duce continuous-time policy-based RL enhanced by Recur-
rent Neural Networks (RNNs). Our adaptive DRL model is
designed for representing minute-frequent “nancial data and
adapting to different “nancial markets.

Problem De“nition

In this section, we “rst clarify mathematical symbols then
formally introduce the quantitative trading problem in detail.

Preliminaries

At time stept, we denote the OHLC price vector aspt =�
po

t , ph
t , pl

t , pc
t

�
. The price sequence of a “nancial security is

written asP = [p1, · · · , pt , · · ·]. We simplify the historical
price sequence at a time period asPt Š n :t , wheren is a win-
dow length. We denotet technical indicator vector at time
t asqt =

�
j qj

t ,whereqj
t is related to historical price se-

quence with :qj
t = f

�
Pt Š n :t ; � j

�
, and� j is the parameter

of technical strategyj . We write the technical indicator se-
quence asQ = [q1, · · · , qt , · · ·]. Similarly, at time stept,
we denote the account pro“t asr t . And the account pro“t
sequence is written asR = [r 1, · · · , r t , · · ·].

2129

Partially Observable MDP

In this subsection, we introduce domain-specific character-
istics in QT and further explain the reason why it is suit-
able to model the whole QT process as a partially observable
Markov Decision Process (POMDP).

In the financial market, security prices are formed by or-
ders from bulls (investors with optimistic market outlooks)
and bears (investors with pessimistic market outlooks). At a
high level, prices are influenced by macroeconomic and mi-
croeconomic activities. The unpredictable events and trading
behaviors lead to the noisy financial market. Thus We can-
not directly observe the actual market states. For instance,
no one knows exactly whether a piece of good news leads
the price up or whether orders can be executed at expected
prices. The only data we can use are historical prices and
volumes. In other words, the price and volume is a part
of the underlying market state. The technical indicators in
technical analysis can be treated as the observations of the
prospective price trends. In general, QT is exactly a sequen-
tial decision-making problem about what and when to trade.

The POMDP is a realistic generalization of a Markov De-
cision Process (MDP) for model the QT problem. In gen-
eral, an MDP is a 5-tuple 〈S,A, T, R, γ〉. Specifically, S
is a finite set of states. A is a finite set of action set. T :
S ×A×S → [0, 1] is a state transition function, which con-
sists of a set of conditional transition probabilities between
states. R : S ×A → R is the reward function, where R is a
continuous set of possible rewards. R indicates the immedi-
ate reward from taking an action in a state. And γ ∈ [0, 1) is
the discount factor. For the deterministic policy, the goal of
an agent is to learn a policy µ : S → A, which maximizes
the expected discounted reward J = E

[∑�
t=1 γ

tŠ 1Rt
]
.

The action-value function Qμ = E
[∑�

t=1 γ
tŠ 1Rt|µ

]
is in-

troduced to estimate the performance of policy µ. When it
comes to the POMDP, O and Z are incorporated, where O
is a set of observation and Z : S × A × O → [0, 1] is
the observation transition function. At each time period, the
agent takes an action at ∈ A in a particular environment
state st ∈ S , which leads to the transition to state st+1 with
probability T (st+1|st, at). Meanwhile, the agent receives an
observation ot+1 ∈ O on the state st+1, with probability
Z (ot+1|st+1, at). In particular, it is helpful for the decision
maker to take into account the observable history up to time
t. In other word, a history of observations can be used as a
pseudo-state (François-Lavet et al. 2018).

Observation. Considering the particularity of financial
market, we divide the observation set ot ∈ O into two parts:
the account observation set oat ∈ Oa and the market ob-
servation set omt ∈ Om, where oat denotes the cumulative
account profit

∑t
k=1 rk ∈ R, and omt is related with the

price pt ∈ P and technical indicator qt ∈ Q. For most of
RL tasks, states are directly transformed by actions. Differ-
ent from the general situations, trading actions from an in-
dividual investor have little impact on the entire market. In
other words, trading actions are irrelevant to market observa-
tion transition function, which means Z = Z

(
omt+1|st+1

)
.

While the personal account observation set is totally depen-
dent on actions. However, if we sum up these two parts, the

transition function of the whole observation set O can fit the
POMDP framework: Z = Z (ot+1|st+1, at) . That is why
we regard the entire observation set as two different parts.

The general price trends can be treated as a crucial part of
the actual market state. Drawing on the experiences of tech-
nical analysis, we select the technical indicators (BuyLine,
SellLine) from the Dual Thrust strategy as observations of
price trends. As thus, th whole observation set can be denote
by O = {P,Q,R}.

Action. To compare different trading strategies, we stipu-
late that the agent makes trades with the minimum security
amount. The trading action here is defined as a continuous
probability vector at = [Plong,Pshort]. The agent executes
the action with the maximum probability. At time t, actions
can be written as at ∈ {long1, short2} = {1, -1}. To a cer-
tain extent, this setting can ease the challenge of position3

management. Also, the influence from market capacity4 can
be alleviated. Especially, considering the trading action con-
tinuity, we regard the actions from a certain policy just as
trading signals, which means the actual executed actions de-
pend on the positions. In practice, rules are described below:

• A new position will be taken (long or short the target secu-
rity at a certain price) following the signal (except ‘close’
signal) if it is empty.

• The original position will not be changed until receiving
a different signal. At the same time, the position will be
closed (place a contrary direction order). Then, a new po-
sition will be taken according to the new signal.

Reward. To narrow the gap between the simulation and
reality, we simulate trading with practical constraints. To be
specific, we take into account the crucial parts of market fric-
tion factors, i.e., trading transaction fee δ and slippage ζ 5.
With these pratical market constraints, at time t, the account
profit rt is calculated as:

rt =
(
pct − pctŠ 1 − 2ζ

)
atŠ 1 − δ |at − atŠ 1| pct . (1)

However, previous work suggets that the account profit rt
maybe not an effective reward function for QT problems.
(Moody and Saffell 1999). Using the reward function in
RRL algorithm (Moody and Saffell 1999) for reference, we
select the differential Sharpe ratio (D) as our reward func-
tion. Here, the Sharpe ratio (Sr) (Sharpe 1966) is an evalua-
tion for risk-adjusted return. The Sharpe ratio (Sr) indicates
the ratio of the excess return (cumulative return minus risk-
free return) over one unit of total risk. Without the loss of
mathematical generality, at time t, Srt is defined as:

Srt =
E [RtŠ n:t]

σ [RtŠ n:t]
. (2)

1Buy the security now for resale later.
2Sell the security now to buy later.
3The ratio of investment capital to total capital.
4Orders may not be traded at the expected price.
5A constant added/subtracted into the quote price for simulation

where a long/short order is usually traded at a higher/lower price.

2130

o1

h1

Critic

Actor

Reward: r1

Price: p1

Indicator: I1

Profit: r1

+

Target
Agent

o2

h2

Critic

Actor

Reward: r2

Price: p2

Indicator: I2

Profit: r2

+

Target

oT

hT

Critic

Actor

Reward: rT

Price: pT

Indicator: IT

Profit: rT

+

...
GRU Layer

Observations

Target

BC Loss BC Loss BC Loss

Demonstration
Buffer

Figure 2: The overview of iRDPG model

After expanded to first order in the adaptation rate η, Srt
can be denoted as:

Srt ≈ SrtŠ 1 + η
dSrt
dη

|η=0 +O
(
η2
)
. (3)

Since only the first order term in Equation (3) depends
on the account profit rt, at time t, we define the differential
Sharpe ratio dt as:

dt :=
dSrt
dη

=
βtŠ 1Δαt − 1

2αtŠ 1Δβt

(βtŠ 1 − α2
tŠ 1)

3
2

, (4)

where αt and βt are exponential moving estimates of the
first and second moments of rt. They can be written as:

αt = αtŠ 1 + ηΔαt = αtŠ 1 + η(rt − αtŠ 1),
βt = βtŠ 1 + ηΔβt = βtŠ 1 + η(r2t − βtŠ 1),

(5)

where we treat αtŠ 1, βtŠ 1 as numerical constants. Actu-
ally, η in the update Equation (5) control the magnitude of
the influence of account profit rt on the Sharpe ratio Srt.
Therefore, dt actually represents the influence of rt on Srt.
To sum up, the differential Sharpe ratio has several attrac-
tive properties involving facilitating recursive updating, en-
abling efficient on-line optimization, weighting recent re-
turns more and providing interpretability (Moody and Saf-
fell 2001). Note that dt indicates the value of reward func-
tion R at time t, rather than account profit rt.

Imitative RDPG

In this section, we introduce our model, iRDPG, which is
designed to solve the POMDP framework for the QT prob-
lem. We introduce Recurrent Deterministic Policy Gradient
and imitation learning orderly. In additon, we present the
overview of our iRDPG framework in Figure 2.

Recurrent Deterministic Policy Gradient

Deterministic Policy Gradient (DPG) (Silver et al. 2014)
is a class of off-policy RL algorithm designed for contin-
uous control. At a high level, high-frequent QT is actually
of interest in continuous control. Note that QT cares much
about trading continuity because shifting trading actions fre-
quently is costly. Thus, QT problems can be better addressed

by the algorithm of DPG class, such as Recurrent Determin-
istic Policy Gradient (RDPG) (Heess et al. 2015), a recurrent
extension of DPG.

In our POMDP framework for QT, the agent receives
an observation ot from the market and personal account at
each time period. The observation consists of the market
price, technical indicators and the account profit. Though
the underlying market state cannot be observed directly, our
trading agent may benefit from considering the history H.
The observation-action history H can be described as ht =
(o1, a1, · · · , otŠ 1, atŠ 1, ot). RDPG makes use of the recur-
rent neural networks (RNNs) to effectively synthesize his-
torical information. Meanwhile, our agent in RDPG learns to
preserve beneficial information for the trading decision pro-
cess. Specifically, RDPG is an actor-critic approach, which
bridges the gap between policy gradient methods and value
approximation methods for RL. In an actor-critic frame-
work, the agent learns an action-value function (critic) by
minimizing the TD error like Equation (8). Simultaneously,
the agent learns a deterministic policy µ (actor) by directly
maximizing the estimated action-value function Qμ. Requir-
ing the access to the history H, RDPG maintains an actor
function µ(h) with parameters θ, a critic function Q(h, a)
with parameters ω as well as a replay buffer as a set of
episodes (o1, a1, r1, · · · , oT , aT , rT).

In this work, we introduce the Gate Recurrent Unit (GRU)
(Chung et al. 2015) to the QT domain. We treat the previous
observation-action history htŠ 1 as the hidden state returned
by the RNN at time step t−1. In that case, history ht can be
written as:

ht = GRU (htŠ 1, atŠ 1, ot) . (6)

At each training step, the training rollouts are collected
with extra noise from a stochastic process N . The agent
action can be written as: at = µθ(ht) + ε, ε ∼ N . Af-
ter the agent performs a trading action (place orders), it
will receive the reward dt and next observation ot+1 re-
turned from the market and personal account. Upon the
maximum time length T is arrived, the whole episode
(o1, a1, d1, · · · , oT , aT , dT) is stored to the prioritized re-
play buffer D. Subsequently, a minibatch comprised of N
complete episode is sampled from D for model updating.

2131

For each episode i, RDPG minimizes the following loss L
w.r.t ω to update the critic:

yit = dit + γQω′
(hit+1, µ

θ(hit+1)), (7)

L = E
[
(yit −Qω(hit, a

i
t))

2
]
. (8)

The actor is updated using the sampled policy gradient
∇θJ with backpropagation through time (BPTT):

∇θJ = E

[
∇aQω(h, a)|h=hi

t,a=μ
θ(hi

t)
∇θµθ(h)|h=hi

t

]
,
(9)

where θ and θ� as well as ω and ω� are two copy parameters
of the value function Q and policy µ respectively. θ and ω are
the parameters updated during training; θ� and ω� track them
with some delay. In other words, θ� and ω� are the target
values for updating.

Imitative Learning

The dynamic financial market data leads to an exponentially
growing value space for exploration. The agent with the
model-free RL algorithm can hardly learn a profitable policy
in QT. In addition, considering trading continuity and market
friction factors, random exploration without goals may be
inefficient. However, the model-free RDPG can be leveraged
with training goals. As an off-policy algorithm, RDPG can
suit the auxiliary data. In particular, we introduce Demon-
stration Buffer and Behavior Cloning to guide our RDPG
agent, where these two modules respectively represent the
passive and active imitation learning algorithms.

Demonstration Buffer. Initially, we set a prioritized re-
play buffer D. And D is filled with demonstration episode
(o1, a1, r1, · · · , oT , aT , rT) from the Dual Thrust strategy
in advance. Drawing on the lessons from DQfD (Hester et
al. 2018) and DDPGfD (Večerı́k et al. 2017), we pre-train
the agent using demonstrations before the actual interaction.
With the help of technical analysis pre-training, the agent
can learn a fundamental trading strategy at the start. During
the training process, each minibatch consisting of demon-
stration and agent episode is sampled by prioritized expe-
rience replay (PER) (Schaul et al. 2015). PER encourages
to sample more valuable episodes more frequently. And the
probability of the episode P (i) is proportional to its prior-

ity, namely: P (i) =
pφt∑
i p

φ
i

, where pi is the priority of the

episode i and φ is a constant. In practice, we modify the
episode priority definition in (Večerı́k et al. 2017). In this
work, pi is defined as:

E
[|yit −Qω(hit, a

i
t)|+ λ0|∇aQω(hit, a

i
t)|

]
+ εD, (10)

where the first term represents the loss Li in Equation (8) of
the episode i; the second term indicates the absolute value of
actor gradient in Equation (9); εD is a positive constant for
demonstration episode to increase the probability of getting
sampled; and λ0 weighs the contributions to the actor gradi-
ent. Considering the change in the sample distribution, up-
dates to the network are weighted with importance sampling

weights, wi =
(

1
N · 1

P (i)

)ψ
where ψ is a constant. In this

(a) IF (b) IC

Figure 3: Closing price sequences of IF and IC stock-index
futures in our test set.

way, the prioritized demonstration buffer controls the ratio
of data between the demonstration and agent episode. More
importantly, it enables the efficient propagation of reward.

Behavior Cloning. To set a goal for each trading action,
we introduce intra-day greedy actions as the expert actions
ā. In hindsight, we can create a prophetic trading expert who
always takes a long position at the lowest price and takes a
short position at the highest price. For each training step, we
use Behavior cloning technique (Ross and Bagnell 2010) to
measure the gap between agent actions and the actions from
the prophetic expert. In addition, we record behavior cloning
losses (BC Loss) only when the critic Q(h, a) indicates that
the expert actions perform better than the actor actions:

L� = −E

[∥∥µθ(hit)− āit
∥∥2 1Q(hi

t,ā
i
t)>Q(hi

t,μ
θ(hi

t)

]
. (11)

This modification is called Q-Filter in (Nair et al. 2018).
In general, the behavior cloning loss L� is an auxiliary loss
for updating. As thus, a modified policy gradient ∇θJ̄ is ap-
plied to the actor:

∇θJ̄ = λ1∇θJ + λ2∇θL� , (12)

where ∇θJ is the policy gradient in Equation (9); λ1 and
λ2 control the weights between the losses. With the help of
expert actions, we set goals for each training step. The expert
actions shorten the inefficient exploration phases.

Experiments

We back-test our model on the minute-frequent futures data
with practical constraints. Specifically, we collect minute-
frequent data of IF and IC financial futures. Both of them
are representative stock-index futures in China. The IF data
are based on the index calculated on account of the prices
of the top 300 stocks from both Shanghai and Shenzhen ex-
change centers. The IC data are based on another similar
index, which focuses on the stocks with mid and small cap-
italization. The minute-frequent closing prices series of IF
and IC futures are shown in Figure 3.

Experimental Setup

In our experiment, we use minute-bar OHLC prices of fu-
tures. One minute bar reflects fluctuations within 1 minute.
For RL, it is difficult to keep action continuity on such high-
frequency data. But in the real financial market, minute-
frequent data are quite common. We collect minute frequent

2132

data. In addtion, we implemented imitation learning tech-
niques to balance the exploration and exploitation of the
trading agent. Our model was tested on the real stock-index
futures data with practical constraints. The profitability and
ability to resist risks of iRDPG were verified. Furthermore,
comparison experiments provided its generalization ability
for different financial markets. Overall, our iRDPG suggests
that the trading agent in real financial market can benefit
from experiences of classical trading strategies.

Acknowledgements

This research was supported by grants from the National
Natural Science Foundation of China (Grants No. 61922073,
61672483, U1605251, 71790594). Qi Liu acknowledges the
support of the Young Elite Scientist Sponsorship Program of
CAST and the Youth Innovation Promotion Association of
CAS (No. 2014299).

References
Chung, J.; Gulcehre, C.; Cho, K.; and Bengio, Y. 2015. Gated
feedback recurrent neural networks. In ICML.
Deng, Y.; Bao, F.; Kong, Y.; Ren, Z.; and Dai, Q. 2016. Deep
direct reinforcement learning for financial signal representation
and trading. IEEE transactions on neural networks and learn-
ing systems 28(3):653–664.
Feng, F.; He, X.; Wang, X.; Luo, C.; Liu, Y.; and Chua, T.-S.
2019. Temporal relational ranking for stock prediction. ACM
Transactions on Information Systems (TOIS) 37(2):27.
François-Lavet, V.; Henderson, P.; Islam, R.; Bellemare, M. G.;
Pineau, J.; et al. 2018. An introduction to deep reinforcement
learning. Foundations and Trends in Machine Learning 11(3-
4):219–354.
Heess, N.; Hunt, J. J.; Lillicrap, T. P.; and Silver, D. 2015.
Memory-based control with recurrent neural networks. arXiv
preprint arXiv:1512.04455.
Hester, T.; Vecerik, M.; Pietquin, O.; Lanctot, M.; Schaul, T.;
Piot, B.; Horgan, D.; Quan, J.; Sendonaris, A.; Osband, I.; et al.
2018. Deep q-learning from demonstrations. In Thirty-Second
AAAI Conference on Artificial Intelligence.
Jiang, Z.; Xu, D.; and Liang, J. 2017. A deep reinforce-
ment learning framework for the financial portfolio manage-
ment problem. arXiv preprint arXiv:1706.10059.
Jin, B.; Zhao, H.; Chen, E.; Liu, Q.; and Ge, Y. 2019. Esti-
mating the days to success of campaigns in crowdfunding: A
deep survival perspective. In Thirty-Third AAAI Conference on
Artificial Intelligence.
Kaelbling, L. P.; Littman, M. L.; and Cassandra, A. R. 1998.
Planning and acting in partially observable stochastic domains.
Artificial intelligence 101(1-2):99–134.
Kaelbling, L. P.; Littman, M. L.; and Moore, A. W. 1996. Rein-
forcement learning: A survey. Journal of artificial intelligence
research 4:237–285.
Kim, H.-j., and Shin, K.-s. 2007. A hybrid approach based on
neural networks and genetic algorithms for detecting temporal
patterns in stock markets. Applied Soft Computing 7(2):569–
576.
Li, Q.; Jiang, L.; Li, P.; and Chen, H. 2015. Tensor-based learn-
ing for predicting stock movements. In Twenty-Ninth AAAI.

Lillicrap, T. P.; Hunt, J. J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa,
Y.; Silver, D.; and Wierstra, D. 2015. Continuous control with
deep reinforcement learning. ICLR.
Magdon-Ismail, M., and Atiya, A. F. 2004. Maximum draw-
down. Risk Magazine 17(10):99–102.
Malkiel, B. G., and Fama, E. F. 1970. Efficient capital markets:
A review of theory and empirical work. The journal of Finance
25(2):383–417.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness, J.;
Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidjeland, A. K.;
Ostrovski, G.; et al. 2015. Human-level control through deep
reinforcement learning. Nature 518(7540):529.
Moody, J. E., and Saffell, M. 1999. Reinforcement learning for
trading. In NeurIPS, 917–923.
Moody, J., and Saffell, M. 2001. Learning to trade via direct re-
inforcement. IEEE transactions on neural Networks 12(4):875–
889.
Murphy, J. J. 1999. Technical analysis of the financial markets:
A comprehensive guide to trading methods and applications.
Penguin.
Nair, A.; McGrew, B.; Andrychowicz, M.; Zaremba, W.; and
Abbeel, P. 2018. Overcoming exploration in reinforcement
learning with demonstrations. In ICRA.
Neuneier, R. 1996. Optimal asset allocation using adaptive
dynamic programming. In NeurIPS, 952–958.
Pruitt, G., and Hill, J. R. 2012. Building Winning Trading
Systems with Tradestation,+ Website, volume 542. John Wiley
& Sons.
Ross, S., and Bagnell, D. 2010. Efficient reductions for imita-
tion learning. In AISTATS, 661–668.
Schaul, T.; Quan, J.; Antonoglou, I.; and Silver, D. 2015. Pri-
oritized experience replay. arXiv preprint arXiv:1511.05952.
Sharpe, W. F. 1966. Mutual fund performance. The Journal of
business 39(1):119–138.
Silver, D.; Lever, G.; Heess, N.; Degris, T.; Wierstra, D.; and
Riedmiller, M. 2014. Deterministic policy gradient algorithms.
In ICML.
Sutton, R. S., and Barto, A. G. 2018. Reinforcement learning:
An introduction. MIT press.
Sutton, R. S.; McAllester, D. A.; Singh, S. P.; and Mansour, Y.
2000. Policy gradient methods for reinforcement learning with
function approximation. In NeurIPS, 1057–1063.
Večerı́k, M.; Hester, T.; Scholz, J.; Wang, F.; Pietquin, O.;
Piot, B.; Heess, N.; Rothörl, T.; Lampe, T.; and Riedmiller, M.
2017. Leveraging demonstrations for deep reinforcement learn-
ing on robotics problems with sparse rewards. arXiv preprint
arXiv:1707.08817.
Yu, P.; Lee, J. S.; Kulyatin, I.; Shi, Z.; and Dasgupta, S. 2019.
Model-based deep reinforcement learning for dynamic portfo-
lio optimization. arXiv preprint arXiv:1901.08740.
Zhao, H.; Liu, Q.; Zhu, H.; Ge, Y.; Chen, E.; Zhu, Y.; and Du,
J. 2017a. A sequential approach to market state modeling and
analysis in online p2p lending. IEEE Transactions on Systems,
Man, and Cybernetics: Systems 48(1):21–33.
Zhao, H.; Zhang, H.; Ge, Y.; Liu, Q.; Chen, E.; Li, H.; and
Wu, L. 2017b. Tracking the dynamics in crowdfunding. In
SIGKDD, 625–634. ACM.

2135

