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Abstract

We investigate strategyproof mechanisms for Friends and En-
emies Games, a subclass of Hedonic Games in which every
agent classifies any other one as a friend or as an enemy. In
this setting, we consider the two classical scenarios proposed
in the literature, called Friends Appreciation (FA) and Ene-
mies Aversion (EA). Roughly speaking, in the former each
agent gives priority to the number of friends in her coalition,
while in the latter to the number of enemies.
We provide strategyproof mechanisms for both settings.
More precisely, for FA we first present a deterministic n-
approximation mechanism, and then show that a much bet-
ter result can be accomplished by resorting to randomiza-
tion. Namely, we provide a randomized mechanism whose
expected approximation ratio is 4, and arbitrarily close to 4
with high probability. For EA, we give a simple (1 +

√
2)n-

approximation mechanism, and show that its performance
is asymptotically tight by proving that it is NP-hard to ap-
proximate the optimal solution within O(n1−ε) for any fixed
ε > 0.
Finally, we show how to extend our results in the presence of
neutrals, i.e., when agents can also be indifferent about other
agents, and we discuss anonymity.

Introduction

Hedonic Games (HGs), introduced by (Dreze and Green-
berg 1980), are Coalitions Formation Games (CFGs) where
agents have hedonic preferences, i.e., the preference of each
agent depends only on the coalition she belongs to and not
on how the other agents aggregate.

HGs have been widely studied in the literature (see for in-
stance (Aziz, Brandt, and Harrenstein 2013; Aziz, Brandt,
and Seedig 2013; Banerjee, Konishi, and Sönmez 2001;
Bogomolnaia and Jackson 2002; Elkind and Wooldridge
2009; Elkind, Fanelli, and Flammini 2016; Gairing and
Savani 2019)). According to the assumptions made on
the preference profiles, we distinguish different sub-
classes, among others Additively Separable Hedonic Games
(ASHGs) (Banerjee, Konishi, and Sönmez 2001; Aziz,
Brandt, and Seedig 2011) and Fractional Hedonic Games
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(FHGs) (Aziz et al. 2019; Bilò et al. 2018). In ASHGs the
utility achieved by an agent in a coalition is the sum of the
values she gives to the single participants, and in FHGs the
same summand is divided by the size of her coalition. For a
clear picture of HGs, their subclasses, and the main investi-
gates stability concepts, see (Aziz and Savani 2016).

Traditionally, in HGs and CFGs the focus has been
put onto the existence and efficiency of several solution
concepts, based either on individual (Bloch and Diaman-
toudi 2011; Feldman, Lewin-Eytan, and Naor 2015; Gair-
ing and Savani 2019) or group deviations (Bogomolnaia
and Jackson 2002; Banerjee, Konishi, and Sönmez 2001;
Elkind and Wooldridge 2009; Gairing and Savani 2019;
Igarashi and Elkind 2016), Nash stability and core stability
being the main non-cooperative and cooperative notions, re-
spectively. In this setting, given agents’ preferences, one can
compute an outcome, i.e., a partition of the agents, which
is stable, while trying to maximize the global happiness of
the participants, also called social welfare. However, while
most of the work in the literature implicitly assumes that
preferences are known in advance, agents may act strategi-
cally by misreporting them in order to achieve a better indi-
vidual outcome. To avoid this situation, the mechanism de-
sign framework allows to split agents into coalitions in a way
such that they are incentivized to truthfully report their pref-
erences (Nisan et al. 2007).

In such a setting, we focus on a subclass of HGs in which
agents have only either a positive or a negative opinion of the
others, considering them either friends or enemies. This type
of games, called Friends and Enemies Games, have been in-
troduced by (Dimitrov et al. 2006), where two different types
of preference profiles are studied: Friends Appreciation (FA)
and Enemies Aversion (EA). Under FA, agents prefer coali-
tions with a higher number of friends. When the number of
friends is equal, they prefer a coalition with a smaller num-
ber of enemies. Conversely, under EA, agents always prefer
coalitions with a smaller number of enemies and, in case of
a tie, they prefer coalitions with a bigger number of friends.

Our aim is to design strategyproof mechanisms for both
FA and EA preference profiles, improving upon the pre-
viously proposed solutions to this problem (Dimitrov and
Sung 2004), both in terms of social welfare of the computed
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outcome and/or time complexity.

Our Contribution We investigate Friends and Enemies
Games under FA and EA preference profiles. For FA we pro-
vide both a deterministic and a randomized truthful mecha-
nism. While the deterministic mechanism has an approxi-
mation ratio of n, where n is the number of agents, the ran-
domized one has an expected approximation ratio of 4 and
4(1 + ε) with high probability, for any fixed ε > 0. For EA
profiles, we first show that no polynomial time algorithm
can have an approximation ratio that is in O(n1−ε), since
this problem is as hard to approximate as the MAXCLIQUE
problem. Then, we give a simple polynomial time mecha-
nism reaching an approximation ratio of (1 +

√
2)n, which

we show is asymptotically tight. Finally, we show how to
extend our results to the case of neutrals, and we discuss
anonymity.

Related Work Friends and Enemies Games with FA and
EA preference profiles are an example of ASHGs. This
model has been introduced in (Dimitrov et al. 2006), where
the authors focus on weak and strong core stability notions.
While for FA it is always possible to compute a strict core
stable coalition structure in polynomial time, for EA, even if
it always exists, it is NP-hard to find a core stable outcome.
Moreover, in (Sung and Dimitrov 2007) it is shown that, for
EA, determining whether a coalition structure is core stable
is co-NP complete. In (Dimitrov and Sung 2004) individ-
ual deviations are considered: the authors study Nash stable,
individually and contractually individually stable outcomes.
While Nash existence is not always guaranteed, individually
stable, and thus also contractually individually stable, out-
comes always exist.

Subsequent works on Friends and Enemies Games still
focus on core and strict core stability notions but allow the
presence, beside friends and enemies, also of neutrals that
have no impact on agents’ preferences (Ohta et al. 2017).
In (Barrot et al. 2019) neutrals can have a lower order posi-
tive or negative impact on the preferences. More specifically,
the authors focus on FA preference profiles and distinguish
Friends Appreciation with extroverted and with introverted
agents, where for the same number of friends and enemies
it is more preferable having a higher or a lower number of
neutrals, respectively. They consider core stable and individ-
ually stable outcomes, studying also the hardness of decid-
ing their existence.

In the study of HGs, another interesting challenge is to
control the agents’ strategic behavior through mechanism
design. The goal here is to provide algorithms resistant to
input manipulations. Such algorithms, also called mecha-
nisms, are said to be strategyproof. In the classical frame-
work of mechanism design, payments are used to achieve
strategyproofness. However, this is not always possible, both
for legal and ethical issues (Nisan et al. 2007), or simply be-
cause allowing payments is not feasible (Procaccia and Ten-
nenholtz 2013). Thus, in (Wright and Vorobeychik 2015) the
authors focus on strategyproof mechanisms without money
for ASHGs with positive preferences. They provide a mech-

anism which returns the grand coalition, and investigate the
same problem with constraints on the coalitions size and
with respect to (approximate) envy-freeness. A study of the
properties of strategyproof core stable solutions for hedonic
games is also provided in (Rodrı́guez-Álvarez 2009).

Strategyproof deterministic and randomized mechanisms
for ASHGs and FHGs are provided in (Flammini, Monaco,
and Zhang 2017), where different types of valuations are
considered. Of particular interest for our work are ASHGs
with individual duplex valuations, that is, having values in
{−1, 0, 1}. They can be seen as an HG with friends and en-
emies, where friends have the same impact as enemies. De-
termining a better mechanism for our EA model but with the
inclusion of neutrals would, therefore, yield a better mech-
anism for duplex valuations in (Flammini, Monaco, and
Zhang 2017), because in our EA setting enemies have a neg-
ative effect that is higher than the positive effect of friends.

Finally, in (Dimitrov and Sung 2004), the authors also
propose strategyproof mechanisms for both FA and EA pref-
erence profiles. However, they do not consider the efficiency
(both in terms of quality of the returned solutions and of
time complexity) of their mechanisms. We significantly im-
prove over their results. For friends appreciation, the algo-
rithm from (Dimitrov and Sung 2004) has an unbounded
approximation ratio, while we provide a deterministic n-
approximation and a randomized 4(1 + ε)-approximation
(both in expectation and with high probability). For enemy
aversion, (Dimitrov et al. 2006) only gives a non-polynomial
algorithm, while we provide a polynomial one that has
bounded approximation. More precisely, we prove that it has
linear approximation and show that a sublinear approxima-
tion cannot be achieved in polynomial time.

Model and Preliminaries
In the classical framework of HGs we are given a set of self-
ish agents N = {1, . . . , n}, and the goal of the game is to
partition them into disjoint coalitions C = {C1, . . . , Cm}
such that ∪mi=1Ci = N . Such a partition is also called an
outcome or a coalition structure. The grand coalition GC
is a coalition structure which consists of only one coalition
containing all of the agents and a singleton coalition is any
coalition of size 1. We denote by C the set of all possible
outcomes, and by C(i) the coalition that agent i belongs to in
an outcome C ∈ C . We assume that agent i has a preference
relation ≺i over Ni, where Ni is the family of subsets of N
containing i. According to ≺i, for every X,Y ∈ Ni, we say
that agent i prefers X to Y whenever Y ≺i X . A preference
profile is a collection of agents’ preferences P = {≺i}i∈N .

In the special case of HGs with friends and enemies, every
agent i partitions the other agents into a set of friends Fi and
a set of enemies Ei, with Fi∪Ei = N \{i} and Fi∩Ei = ∅.
Using such a partition, different settings can be defined.

For every i ∈ N and for every X,Y ∈ Ni, if coalition X
is more or equally preferred than coalition Y by the agent
i, we write X �i Y . A preference profile P is based on
Friends Appreciation (FA) when X �i Y iff

|X ∩ Fi| > |Y ∩ Fi| or
|X ∩ Fi| = |Y ∩ Fi| and |X ∩ Ei| ≤ |Y ∩ Ei| ,
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and it is based on Enemies Aversion (EA) when X �i Y iff

|X ∩ Ei| < |Y ∩ Ei| or
|X ∩ Ei| = |Y ∩ Ei| and |X ∩ Fi| ≥ |Y ∩ Fi| .

In other words, under FA a coalition is preferred over an-
other one if it contains a higher number of friends; if the
number of friends is the same, the coalition with less ene-
mies is preferred. On the other hand, under EA a coalition
is preferred if it contains a smaller number of enemies; if
the number of enemies is the same, the coalition with more
friends is preferred.

Friends and Enemies Games are a proper subclass of
ASHGs, because each agent i has valuation vi(j) for every
other agent j (she considers j to be either a “friend” or an
“enemy”), and her utility for being in a given coalition C is
ui(C) =

∑
j∈C\{i} vi(j). In the FA case, setting the valu-

ation functions in such a way that, for every agent i ∈ N ,
vi(j) = 1 if j ∈ Fi, i.e., if j is a friend, and vi(j) = −1/n if
j ∈ Ei, i.e., if j is an enemy, correctly encodes the setting.
In other words, the positive effect of one friend is greater
than the overall possible negative effect due to the enemies.
Similarly, in the EA case, the valuations can be set in such
a way that, for every agent i ∈ N , vi(j) = 1/n if j ∈ Fi,
and vi(j) = −1 if j ∈ Ei (see for instance (Dimitrov et al.
2006)). ASHGs have generally been widely investigated in
the literature, as they are both able to capture several realistic
scenarios in coalition formation games, and they allow for a
succinct graph representation in which the node set is N ,
i.e., nodes represent agents, and every arc (i, j) has weight
vi(j). In this work, we will use the just introduced valuation
functions and the aforementioned graph representation.

Each agent i will have to communicate her preferences.
Without loss of generality we assume that, both in the FA
and the EA case, this is accomplished by declaring di =
(Fdi , Edi) where Fdi is the declared set of friends, and
Edi = N \(Fdi∪{i}) the declared set of enemies of agent i.
Notice that, as agents are self-interested entities, each decla-
ration may differ from the actual sets of friends and enemies
of agent i, vi = (Fi, Ei), i.e., it is possible that Fi �= Fdi

and Ei �= Edi
.

Let d = (d1, . . . , dn) be the profile of the agents’ declara-
tions, and d−i be the subprofile of all the reported valuation
functions, except di. Let (d′i,d−i) be the profile obtained by
substituting d′i to di in d.

A deterministic mechanismM maps every profile d to a
set of disjoint coalitionsM(d) ∈ C . We denote byMi(d)
the coalition thatM assigned to agent i. The utility of agent
i is given by ui(Mi(d)). A deterministic mechanism M
is strategyproof if for every i ∈ N , every subprofile d−i,
every vi and every di, it holds that ui(Mi(vi,d−i)) ≥
ui(Mi(di,d−i)).

A randomized mechanism M maps every profile d to a
distribution Δ over the set of all possible outcomes C . The
expected utility of agent i is given by E[ui(Mi(d))] =
EC∼Δ[ui(C(i))]. A randomized mechanism M is strate-
gyproof in expectation if for every i ∈ N , every sub-
profile d−i, every vi and every di, E[ui(Mi(vi,d−i))] ≥
E[ui(Mi(di,d−i))].

We are interested in strategyproof mechanisms that per-
form well with respect to the goal of maximizing the classi-
cal utilitarian social welfare, that is, the sum of the utilities
achieved by all the agents. Namely, the social welfare of a
given outcome C is SW(C) = ∑

i∈N ui(C(i)). We denote by
SW(C) =

∑
i∈C ui(C) the overall social welfare achieved

by the agents belonging to a given coalition C.
In the following, given an FA or an EA profile d, C∗(d)

will denote an optimal outcome for the game instance ex-
pressed by d, and opt(d) its social welfare.

We measure the performance of a mechanism by com-
paring the social welfare it achieves to the optimal one.
More precisely, the approximation ratio of a deterministic
mechanism M is defined as rM = supd

opt(d)

SW(M(d))
. For

randomized mechanisms, the approximation ratio is com-
puted with respect to the expected social welfare, that is,
rM = supd

opt(d)

E[SW(M(d))]
.

We say that a deterministic mechanism M is admissi-
ble if it always guarantees a non negative social welfare,
i.e., if SW(M(d)) ≥ 0 for any possible list of preferences
d. Similarly, a randomized mechanism M is admissible if
E [SW(M(d))] ≥ 0 holds for every d. In the following,
we will always implicitly restrict our attention to admissi-
ble mechanisms. In fact, a simple admissible strategyproof
mechanism can be trivially obtained by putting every agent
into a separate singleton coalition, regardless of the declared
valuations.

Graph Representation As already mentioned, Friends
and Enemies Games, being a proper subclass of ASGHs, can
be suitably represented by means of graphs. More specif-
ically, the following representations will be useful for our
purposes. For a given profile d,

• G+
d = (N,Fd) is a directed graph with the edge set Fd =

{(i, j) | i, j ∈ N, j ∈ Fdi}, i.e., G+
d contains only edges

corresponding to friendship relations.

• G∗
d = (N,F+

d ) is an undirected graph with the edge set
F+
d =

{{i, j} | i, j ∈ N, j ∈ Fdi ∧ ∈ Fdj

}
, i.e., each

edge corresponds to a mutual friendship relation.

Examples of G+
d and G∗

d w.r.t. d are depicted in Figure 1.

(a) Profile d (b) G+
d

(c) G∗
d

Figure 1: An example of graphs G+
d and G∗

d. Solid (resp.
dashed) edges represent friendship (resp. enemy) relations.

Given a directed graph G and a pair of nodes x, y in G, x
and y are weakly connected if they are connected in the undi-
rected version of G. Moreover, a weakly connected compo-
nent in G is a maximal subset of nodes in G that are weakly
connected. Similarly, given a directed graph G and a pair
of nodes x, y in G, x and y are strongly connected if there
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i. . . . . .2 n

(a) Instance I1

1

i. . . . . .2 n

(b) Instance I2

Figure 2: The lower bound instances for deterministic strat-
egyproof mechanisms in the FA case.

exists a directed path both from x to y and from y to x in
G. Thus, a strongly connected component in G is a maximal
subset of nodes in G that are strongly connected.

In what follows, for the sake of simplicity, we will often
identify a coalition C with the subgraph it induces in G+

d
or G∗

d. Furthermore, we will denote by f = fd = |Fd| the
overall number of friendship relations in the profile d.

Friends Appreciation

FA preference profiles can be suitably analyzed exploiting
the representation graph G+

d . The following simple lemma
will prove to be useful in the sequel.

Lemma 1. Let C be any coalition inducing a subgraph of g
edges in G+

d , or analogously containing g positive relations,
and let k = |C|. Then, SW(C) = g · (1 + 1

n

)− k(k−1)
n .

A useful topology for proving some of our results is given
by a directed star, consisting of one central node and n − 1
remaining leaf nodes having an edge toward it (see Fig-
ure 2a). The following lemma concerns optimal solutions in
directed stars.

Lemma 2. Given an FA profile d, if G+
d is a directed star of

n agents, then n2−1
4n ≤ opt(d) ≤ n

4 .

Proof. We show that an optimal solution C∗(d) can be ob-
tained by an outcome with one coalition containing the cen-
ter and n

2 or n±1
2 leaf agents (depending on the parity of n),

while all other agents are in singleton coalitions. To this aim,
notice first that any coalition without the central agent does
not have a strictly positive social welfare.

Given a coalition Ck of size k that forms a star (or, in fact,
any tree) in G+

d , by applying Lemma 1 with g = k − 1, we
obtain

u(Ck) = (k − 1)

(
1− k − 1

n

)
(1)

A standard mathematical argument shows that u(Ck) is
maximized for k = n

2 + 1 if n is even and k = n±1
2 + 1

if n is odd, thus, yielding the lemma.

Strategyproof Mechanisms

In (Dimitrov and Sung 2004) the authors show that for FA re-
turning the strongly connected components of G+

d is a strat-
egyproof mechanism. However, this mechanism has a very
bad performance. In fact, if we consider the example of a

directed star depicted in Figure 2a, the achieved social wel-
fare is 0, since agents are split into singleton coalitions. On
the other hand, as shown in Lemma 2, the social optimum is
linear in the number of agents, and, thus, the mechanism has
an unbounded approximation ratio.

One might wonder whether returning the social optimum
is strategyproof. Unfortunately, this is not the case. It is easy
to check that a mechanism always returning an optimal out-
come is not strategyproof.

Let us start with one of the simplest examples of a deter-
ministic strategyproof mechanism.
Mechanism M1. Given an FA preference profile d, M1

returns the grand coalition GC.

Mechanism M1 is strategyproof, as the outcome does
not depend on the agents’ declared profile d. However, it
does not always return an admissible outcome, e.g., for any
profile with the total number of friendship relations f < n−
1. Indeed, by applying Lemma 1 with g = f and k = n, we
see that u(GC) = f · (1 + 1

n

)− (n− 1) < 0.
Our goal is not only to find admissible, but also, and more

importantly, to find good approximation mechanisms. To
this aim, we will first identify a broad class of strategyproof
mechanisms, to which our aforementioned deterministic and
randomized mechanism for FA profiles will belong to.
Definition 3. We define M as the class of mechanismsM
that, given an FA preference profile d, work as follows:

1. M selects, independently from d, deterministically or at
random, a partition P of N ;

2. M computes a coalition structure C s.t. for each agent
i ∈ N , C(i) is the (maximal) weakly connected compo-
nent containing i in the subgraph of G+

d induced by P(i).
In other words, once P is computed, an agent will be as-

signed to a subset of P(i) containing all friends she has in
P(i), and such a set is the minimal one guaranteeing the
same property for all the other agents in C(i).
Theorem 4. M is an admissible and strategyproof class for
FA profiles.

Proof. First, note that for any M ∈ M , if M returns an
agent i in a coalition that is larger than a singleton, this
means that her contribution to the social welfare of the coali-
tion is at least 1 (as there exists at least one agent who con-
siders her to be a friend) and ui(Mi(d)) ≥ −n−1

n . There-
fore,M is admissible.

Next, note that by the definition of the class M , the decla-
ration di of i cannot influence the partitionP selected byM.
Given any subprofile d−i declared by the remaining agents,
consider now the weakly connected components in the sub-
graph of G+

d induced by the agents in P(i) and d−i, that
is, by deleting the outgoing edges of i in G+

d . By the defini-
tion of M , all the agents belonging to each of these compo-
nents will never be split into different coalitions. Since one
friend contributes more to the utility of i than all her enemies
subtract, the best utility that agent i can hope to achieve is
obtained when she is put together with all the agents in the
weakly connected component determined by P(i),d−i and
Fi, which will containing all her friends in P(i). But this
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exactly is the outcome selected by M if i simply declares
her true valuation vi, and therefore reporting any different
declaration di cannot achieve a better utility.

While every mechanism in the class M is always strate-
gyproof, it is not true that every strategyproof mechanism is
in M . A simple counter-example is given by the mechanism
of (Dimitrov and Sung 2004), which computes the strongly
connected components.

Deterministic Mechanisms We present a mechanism
from the just described class M and give a bound on its
approximation ratio.

Mechanism M2. Given an FA preference profile d, M2

outputs as coalitions the weakly connected components of
G+

d .

Theorem 5. Mechanism M2 is admissibile, strategyproof
and has an approximation ratio rM2 ≤ n.

Proof. Mechanism M2 belongs to the class M , and thus,
by Theorem 4, it is admissible and strategyproof.

For what concerns its approximation ratio, let us first as-
sume that G+

d is weakly connected, so then f ≥ n − 1.
Since, by Lemma 1, SW(M2(d)) = f · (1 + 1

n

)− (n− 1)

and opt(d) ≤ f , then rM2 ≤ f

f ·(1+ 1
n )−(n−1)

. Such a ratio

is decreasing in f , and at most equal to n for f = n − 1,
thus, implying the claim.

If G+
d is not weakly connected, the same argument can be

repeated on each weakly connected component. In fact, the
worst case is reached when G+

d is weakly connected.

Notice that the poor performance of mechanism M2 is
due to instances for which the number of friendship rela-
tions f is very close to n. However, as soon as G+

d becomes
denser, and in particular when f is at least c · n for any
fixed constant c > 1, the ratio becomes constant. That is,
for f ≥ 2(n− 2), the ratio is f

f ·(1+ 1
n )−(n−1)

< 2.

It is possible to show the following lower bound on the ap-
proximation ratio achievable by deterministic mechanisms.
The lower bound example uses the two instances shown in
Figure 2a and 2b, which differ only by the reported prefer-
ences of agent i.

Theorem 6. No deterministic strategyproof mechanism for
FA profiles can have an approximation ratio of less than 2.

Randomized Mechanisms So far, we have provided a de-
terministic strategyproof mechanism achieving a linear ap-
proximation ratio. We now present a randomized mechanism
which improves upon this ratio, reaching a constant approx-
imation factor in expectation and with high probability.

Mechanism M3. Given an FA preference profile d, M3

first randomly generates a partition P = {P1, P2}, by plac-
ing every agent i ∈ N in P1 or P2 uniformly and inde-
pendently at random (i.e., i is put in P1 with probability 1

2 ,
and in P2 otherwise), and then outputs the weakly connected
components of P1 and P2 in G+

d .

The idea underlying the definition ofM3 is firstly main-
taining the good performance of the deterministic mecha-
nism M2 when f ≥ 2(n − 2). This is accomplished by
retaining, with respect to the coalitions formed by M2,
each friendship relation with probability 1/2 and each en-
emy relation with probability at most 1/2, thus, yielding
an expected social welfare which is at least half of the one
of M2. At the same time, M3 avoids the pathological in-
stances causing M2 to have an approximation ratio linear
in n. Such instances occur when f ≈ n and the graph con-
tains a large weakly connected component of size close to
n. In these cases, it is possible to achieve a better social wel-
fare by splitting the large weakly connected component into
smaller coalitions. This can be accomplished by creating a
partition P whose expected number of agents on one side
is n/2. A paradigmatic example of the difference between
M2 and M3 is exhibited by considering directed stars, for
whichM2 achieves an approximation ratio of n, whileM3

returns an almost optimal solution in expectation and also
with high probability. In fact, as shown in Lemma 2, the op-
timal solution for a star is obtained by putting roughly half
of the leaves in the same coalition with the center and the
other leaves in singletons. Mechanism M3 does the same
by exploiting the partition P .

Theorem 7. M3 is admissible and strategyproof, and
rM3 ≤ 4 in expectation. Moreover, for any fixed ε > 0,
rM3 ≤ 4(1 + ε) with high probability.

Proof (Sketch). The mechanism belongs to the class M , and
therefore it is admissible and strategyproof. We now prove
the upper bound on the expected approximation ratio.

Given the FA profile d as input, let f be the expected
number of positive relations with both endpoints either in
P1 or in P2. Then, f = f

2 . Moreover, the expected number
of agents in P1 is n/2. Recalling that opt(d) ≤ f , in our
analysis we distinguish 3 cases.
Case 1: f ≤ n

2 − 1 (and thus, f ≤ n − 2). In this scenario
the worst case outcome I occurs when all of the f posi-
tive relations contribute to just one weakly connected com-
ponent T that forms a tree on one side of the partition (ei-
ther in P1 or P2), while the other side is completely discon-
nected. Then, SW(I) = SW(T ) and, according to Eq. (1),
SW(T ) = f

(
1− f

n

)
. Thus, rM3 ≤ 2

1− f
2n

≤ 2
1−n

2
1
n

= 4.

Case 2: n
2 ≤ f ≤ n − 1. Here, the worst case out-

come I occurs when n
2 − 1 of the f positive relations form

a tree T1 connecting all the n
2 nodes on one side of the

partition and on the other side the remaining f − n
2 + 1

positive relations form a tree T2 of f − n
2 + 2 nodes.

Thus, applying Eq. (1), the social welfare of the outcome is
n
4− 1

n+
(
f − n

2 + 1
) (

1− f−n
2 +1

n

)
≥ 2f

(
1 + 1

n

)−n
2− f

2

n .

Then, rM3 ≤ f

f(1+ 1
n )−n

2 − f2

4n

. This ratio is a convex func-

tion for n ≤ f ≤ 2n− 2 and takes values 4 n
n+4 and 4(n−1)

n+4− 6
n

for f = n and f = 2n− 2, respectively. Thus, rM3 ≤ 4.
Case 3: f ≥ n. The worst case outcome I occurs when
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both P1 and P2 are weakly connected by the f retained pos-
itive relations. In that case, SW(I) ≥ f

(
1 + 1

n

)− n
2 + 1 ≥

1
2 (f − n) thus, rM3 ≤ 2f

f−n ≤ 4n−1
n−2 ≤ 4.

The 4(1 + ε) approximation bound with high probabil-
ity holds by applying tail distribution bounds to the random
variables representing the sizes of P1 and P2 and the number
of positive relations in P1 and P2.

Before concluding the section, let us remark that, even if
we did not state it explicitly, all of our mechanisms for FA
profiles are efficient, that is, they compute their outcomes in
polynomial time.

Enemies Aversion

In this section we consider EA preference profiles. Unlike in
the FA case, here we will mostly use the undirected graph
representation G∗

d. Again, we will often identify a coalition
C with the subgraph it induces in G∗

d.
Different from the FA case, we show that for EA profiles

good approximation mechanisms cannot be found not due
to strategyproofness, but because of the inherent hardness
of polynomial time approximation of the optimal solution
below a ratio linear in n.

To this aim we provide an approximation preserving re-
duction from the MAXCLIQUE problem, in order to trans-
fer the well known O(n1−ε) inapproximability result to our
problem. To this aim, the following definitions and facts will
show to be useful.
Definition 8. Given an undirected graph G = (V,E), a
(disjoint) clique partition of G is a collection of cliques K =
{K1, . . . ,Km} such that for each i, j ∈ {1, . . . ,m} where

i �= j, Ki ∩Kj = ∅ and
m⋃
i=1

Ki = V .

We are interested in clique partitions that induce good out-
comes for EA profiles.
Definition 9. A best clique partition for an EA profile d
is any clique partition K∗ of G∗

d = (N,F+
d ) such that K∗

achieves the highest possible social welfare in the instance
induced by d.

The following two lemmas concern the structure of opti-
mal outcomes.
Lemma 10. Given an EA preference profile d, no agent in
an optimal outcome C∗(d) can be the endpoint of more than
one negative relation in her coalition.
Lemma 11. Given an EA preference profile d, there exists
at most one coalition in C∗(d) that is not a clique in G∗

d.

Proof. Let us assume that C∗ ∈ C∗(d) is not a clique
in G∗

d, and let k = |C∗| and k1 be the number of neg-
ative relations in C∗. Since by Lemma 10 such relations
do not share any endpoint, picking one endpoint per rela-
tion and putting it in a new coalition K1, we can split C∗
into two cliques K1 and K2 of sizes k1 and k2 = k − k1,
respectively, so that all the negative relations now lie in
the cut between K1 and K2. Thus, since this deletes k1
negative relations and 2k1(k − k1) − k1 positive relations
from C∗, SW(C∗) is equal to SW(K1) + SW(K2) +

1
n ·

(2k1(k − k1)− k1)− k1. Furthermore, since C∗ belongs to
C∗(d), 1

n (2k1(k − k1)− k1) − k1 ≥ 0 must hold, which
implies k ≥ n+1

2 + k1. Therefore, because a coalition in
C∗(d) that is not a clique must contain more than half of the
agents from N , it must also be unique.

By Lemma 11, even if in general the optimal solution for
an EA preference profile d is not a partition into cliques of
G∗

d, it is “almost a clique partition”. So, a natural next step is
trying to quantify how far opt(d) is from the social welfare
of a best clique partition for an EA profile d.

Lemma 12. Given an EA preference profile d and a best
clique partition K∗ of G∗

d, opt(d) ≤
(

1+
√
2

2

)
· SW(K∗).

Proof. Let us assume that C∗(d) = {C∗
1 , . . . , C

∗
m}. By

Lemma 11, there exists at most one coalition in C∗(d) that
is not a clique. W.l.o.g. let us assume that C∗

1 is such a coali-
tion, and let k = |C∗

1 |. Recalling the proof of Lemma 11,
it is possible to split C∗

1 into two cliques K1 and K2 of re-
spective sizes k1 and k2, where k1 is the number of nega-
tive relations in C∗

1 , and SW(C∗
1 ) = SW(K1) + SW(K2) +

1
n (2k1k2 − k1) − k1. Therefore, taking into account that
{K1,K2, C

∗
2 , . . . , C

∗
m} is a clique partition of G∗

d, we know
that SW(K∗) ≥ SW(K1) + SW(K2) +

∑m
�=2 SW(C∗

� ).

Thus, opt(d)

SW(K∗)
≤ SW(C∗

1 )+
∑m

�=2 SW(C∗
� )

SW(K1)+SW(K2)+
∑m

�=2 SW(C∗
� )

, so

opt(d)

SW(K∗)
≤ SW(C∗

1 )

SW(K1)+SW(K2)
= 1 + s, where s =

1
n ·k1(2k2−1−n)

1
n ·(k1(k1−1)+k2(k2−1))

. Let α < 1 be the positive num-
ber such that k1 = αk and k2 = (1 − α)k. Then, s ≤
2α(1−α)n−α−αn
(α2+(1−α)2)n−1 ≤ α(1−2α)

2α(α−1)+1 ≤ 1√
2
− 1

2 .

It is possible to show that the above bound is tight. How-
ever, even if the best clique partition gives a 1√

2
+ 1

2 ap-
proximation of the optimum, no polynomial time algorithm
can compute it. In fact, we now prove that the social wel-
fare maximization problem is as hard to approximate as the
MAXCLIQUE problem.

Theorem 13. No polynomial time algorithm can approxi-
mate the optimal social welfare for EA preference profiles
with an approximation ratio O(n1−ε) for any fixed ε > 0,
unless P = NP.

Proof. For a fixed ε > 0, let us assume that there ex-
ists a polynomial time algorithm A that, given as input an
EA preference profile d, always returns a partition CA(d)
such that SW(CA(d)) approximates the optimal social wel-
fare opt(d) within an approximation ratio o(n1−ε). We now
show how algorithm A can be exploited to find a good ap-
proximation for MAXCLIQUE.

By assumption, for each c > 0, there exists n0 ∈ N s.t.
opt(d)

SW(CA(d))
< cn1−ε, ∀ n > n0, where d = (d1, . . . , dn).

Consider then an instance G of MAXCLIQUE and any
EA profile d such that G∗

d � G. Let k∗ be the size of a
maximum clique in G∗

d. Since a maximum clique of G∗
d

completed with singleton coalitions containing all the other
agents is a possible outcome, k∗(k∗ − 1)/n ≤ opt(d).
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Consider now the outcome CA(d) = {CA
1 , . . . , CA

m} re-
turned by A. W.l.o.g. assume that no agent in CA(d) partici-
pates in more than one negative relation in her coalition, oth-
erwise we can put such an agent alone in a singleton coali-
tion, increasing the overall social welfare (as in Lemma 10).
Then, similarly as in Lemma 11, we can split every coali-
tion CA

i ∈ CA(d) that contains negative relations into two
cliques K1

i and K2
i . If CA

i is already a clique, we define
K1

i = CA
i and K2

i = ∅. Let K be the coalition structure
consisting of all the cliques K1

i and K2
i �= ∅. By exploiting

the same arguments as in the proof of Lemma 11, it is pos-
sible to show that SW(CA(d)) ≤

(
1+

√
2

2

)
SW(K). Then,

if kmax = maxi,j
{
|Kj

i |
}

and q = |{Kj
i | Kj

i �= ∅}|,
where i ∈ {1, . . . ,m} and j ∈ {1, 2}, as SW(K) ≤ q ·
kmax(kmax−1)/n, and k∗(k∗−1)/n ≤ opt(d), we obtain

k∗(k∗−1)/n
q·kmax(kmax−1)/n ≤ opt(d)

SW(K)
≤

(
1√
2
+ 1

2

)
opt(d)

SW(CA(d))
<(

1√
2
+ 1

2

)
cn1−ε .

By using q ≤ n and that for kmax ≤ k∗ it
holds that k∗2

k2
max

≤ k∗(k∗−1)
kmax(kmax−1) , we finally get k∗ <

kmax

√
c · 1+

√
2

2 n1− ε
2 .

In other words, using algorithm A, we can extract in poly-
nomial time from CA(d) a clique of size kmax in G that
approximates the optimal solution of MAXCLIQUE with an
approximation ratio o(n1− ε

2 ), which is not possible unless
P = NP.

Strategyproof Mechanisms

We start this subsection by first focusing on efficient mech-
anisms, that is, mechanism running in polynomial time.

MechanismM4. Given an EA preference profile d,M4

1. enumerates the agents in N from 1 up to n;
2. sets C = ∅;
3. for i = 1 up to n

- if there exists j > i in the neighborhood of i in G∗
d not

matched yet, then C = C ← {i, j},
- otherwise, C = C ← {i};

4. returns C.

According to Theorem 13, the approximation factor of
M4 that we prove next is asymptotically optimal.

Theorem 14. M4 is strategyproof and rM4 ≤ (1+
√
2)·n.

Proof. For what concerns the strategyproofness, we observe
that only unassigned agents are interested in manipulating
the mechanism. Let i be an unassigned agent. By the defi-
nition of M4, this means that all her neighbors in G∗

d have
been assigned in the previous rounds. Agent i can manipu-
late in the following ways: 1) declare an enemy j as a friend,
or, 2) declare a friend j as an enemy. In case 1), either i will
still not be assigned by the mechanism or, even worse, she
will be assigned to her enemy j. In case 2), the outcome does
not change. Thus, M4 is strategyproof.

In order to establish the approximation ratio of M4, we
first observe that, given any EA profile d, the returned coali-
tion structure C = {C1, . . . , Cm} forms a maximal match-
ing in G∗

d, and that, as it is well-known, such a match-
ing consists of at least half of the edges of a maximum
matching of G∗

d. Moreover, given a best clique partition
K∗ = {K∗

1 , . . . ,K
∗
m} for G∗

d, in a maximum matching there
are at least

∑m
�=1�k

∗
�

2 � edges, where k∗� = |K∗
� |. Therefore,

since each coalition C� ∈ C contains a pair of opposite pos-
itive relations and thus contributes 2/n to the overall social
welfare, SW(C) ≥ 2

n
1
2

∑m
�=1�k

∗
�

2 �, so that
SW(K∗)
SW(C) ≤

1
n

∑m
�=1 k∗

� (k
∗
�−1)

1
n

∑m
�=1�

k∗
�
2 �

≤ 1
nk∗

max(k
∗
max−1)

1
n � k∗

max
2 �

≤ 2n,

where k∗max is the size of the biggest clique in K∗.
By Lemma 12, opt(d) ≤

(
1+

√
2

2

)
· SW(K∗) and the

approximation ratio follows.

As already observed, the approximation ratio of mecha-
nism M4 is high due to the inherent difficulty of computing
a sublinear approximation in polynomial time. However, if
efficiency is not a concern, a constant non-polynomial ap-
proximation mechanism exists.

It is easy to check that the mechanism that always returns
an optimal outcome is not strategyproof. In (Dimitrov and
Sung 2004), the authors consider a strategyproof mechanism
that iteratively extracts from G∗

d the clique of maximum size
which comes first in the lexicographic order with respect to
the enumeration of the agents. This mechanism has approx-
imation ratio of at least 2, as it can be easily checked by
considering the example in Figure 3. However, it can also
be shown that the approximation ratio of the just described
mechanism is constant.

3 1 2 4

(a) Outcome of the mechanism

3 1 2 4

(b) Social optimum

Figure 3: Lower bound instance for the greedy mechanism
that iteratively extract a maximum clique provided in previ-
ous work (Dimitrov and Sung 2004).

Conclusions and Future Work

A natural extension of our work is considering the possibil-
ity of neutrals, that is, allowing agents to also be indifferent
to others. First, we observe that for FA profiles with neutrals,
all of our mechanisms maintain the same approximation ra-
tio. In fact, it is easy to see that, once the positive relations
are fixed, the worst cases occur when the remaining relations
are negative. For EA with neutrals, our mechanisms have an
unbounded ratio, but an O(n2) approximation can be de-
termined mimicking the mechanism of (Flammini, Monaco,
and Zhang 2017) for duplex valuations −1, 0 or 1. In fact,
such a mechanism matches just one pair of agents i and j
such that i considers j to be a friend and j consider i either
to be a friend or a neutral. Providing a mechanism with a
better approximation ratio would also yield a better result
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for their setting. A further extension in this direction might
be neutrals having a negligible yet non-null positive or neg-
ative effect on the utilities.

Anonymity is another interesting feature of strategyproof
mechanisms. Roughly speaking, a mechanism is anonymous
if it does not rely on the agents’ identities. While for FA our
mechanisms are anonymous, for EA they are not. In fact,
for EA it is not possible to have an anonymous determinis-
tic mechanism, as it can be checked considering an instance
with 3 agents where (1, 3), (3, 1) are the negative relations,
and all others are positive. In this example, only the out-
comes {{1, 2}, {3}} and {{1}, {2, 3}} achieve a positive
social welfare. However, both of these outcomes cannot be
consistently reached by an anonymous mechanism. Thus,
under EA a deterministic anonymous mechanism cannot be
admissible. Anonymity for randomized mechanism remains
as an interesting open question.

A natural open problem is reducing our approximation
gaps, especially in the FA deterministic case. This appears
to be a challenging task, and bears similarities with analo-
gous gaps in (Flammini, Monaco, and Zhang 2017).
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