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Abstract

Liquid democracy is a collective decision making paradigm
which lies between direct and representative democracy. One
main feature of liquid democracy is that voters can delegate
their votes in a transitive manner so that: A delegates to B and
B delegates to C leads to A delegates to C. Unfortunately, be-
cause voters’ preferences over delegates may be conflicting,
this process may not converge. There may not even exist a
stable state (also called equilibrium). In this paper, we inves-
tigate the stability of the delegation process in liquid democ-
racy when voters have restricted types of preference on the
agent representing them (e.g., single-peaked preferences). We
show that various natural structures of preference guarantee
the existence of an equilibrium and we obtain both tractabil-
ity and hardness results for the problem of computing several
equilibria with some desirable properties.

1 Introduction

Interactive democracy aims at using modern information
technology, as Social Networks (SN), in order to make
democracy more flexible, interactive and accurate (Brill
2018). One of its most well-known implementation is Liq-
uid Democracy (LD) (Green-Armytage 2015). In a nutshell,
LD allows voters to delegate transitively along an SN. More
precisely, each voter may decide to vote directly or to del-
egate her vote to one of her neighbors, i.e., to use a rep-
resentative. In LD this representative can in turn delegate
her vote and the votes that have been delegated to her to
someone else. As a result, the delegations of the voters will
flow along the SN until they reach a voter who decides to
vote. This voter is called the guru of the people she repre-
sents and has a voting weight equal to the number of people
who directly or indirectly delegated to her. This approach
is implemented in several online tools (Behrens et al. 2014;
Hardt and Lopes 2015) and has been used by several politi-
cal parties (e.g., the German Pirate party). One main advan-
tage of this framework is its flexibility, as it enables voters
to vote directly for issues on which they feel both concerned
and expert and to delegate for others.
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On the other hand, a concern about LD is the stability of
the induced delegation process (Bloembergen, Grossi, and
Lackner 2019; Escoffier, Gilbert, and Pass-Lanneau 2019a).
Indeed, as the preferences of voters over their possible gu-
rus can be conflicting, this process may end up in an un-
stable situation, i.e., a situation in which some voters would
change their delegations. Unfortunately, it was shown in (Es-
coffier, Gilbert, and Pass-Lanneau 2019a) that an equilib-
rium of LD’s delegation process may not exist, and that the
existence of such an equilibrium is even NP-hard to decide.
In the present work, we obtain more positive results by con-
sidering structures of preference. We show that various nat-
ural structures of preference guarantee the existence of an
equilibrium and we obtain both tractability and hardness re-
sults for the problem of computing several equilibria with
some desirable properties.

2 Related Work

We review here several algorithmic issues of liquid democ-
racy recently studied in the AI literature.

One promise of LD is that its flexibility should make the
resulting collective decision more accurate. Indeed, it should
be possible for each voter to make an informed vote either
by voting or through delegation. This claim has been in-
vestigated by several works. On the positive side, Green-
Armytage (2015) showed that, in a specific spatial vot-
ing setting, transitive delegations decrease an expected loss
measuring how well the votes represent the voters. On the
other hand, Kahng, Mackenzie, and Procaccia (2018), stud-
ied a binary election with a ground truth. In their model, no
“local” procedure (i.e., a procedure working locally on the
SN to organize delegations) can guarantee that LD is, at the
same time, never less accurate and sometimes strictly more
accurate than direct voting. Caragiannis and Micha (2019)
further discussed the possible flaws of local delegation rules
and showed that organizing the delegations to maximize the
probability of electing the ground truth is NP-hard.

Other issues on LD are related to the number of delega-
tions a guru should get. On the one hand, gurus should have
incentives to obtain delegations. In the work of Kotsialou
and Riley (2018), voters have both preferences over candi-
dates and over possible gurus. Given the preferences over
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gurus, a delegation rule function decides who should get the
delegations, and then, a voting rule function decides who
wins the election given the preferences and the voting power
of each guru. Focusing on two delegation rules named depth
first delegation rule and breadth first delegation rule, the au-
thors showed that the latter one guarantees that a guru is al-
ways better of w.r.t. the outcome of the election when receiv-
ing a delegation whereas it is not the case for the former one.
This shows that incentivising participation can be a concern
in LD. On the other hand, another possible pitfall of LD is
that some agents may amass an enormous voting power. This
issue was addressed by Gölz et al. (2018) who considered
the problem of minimizing the maximal weight of a guru
given some delegation constraints. The authors designed a
(1+log(n))-approximation algorithm (where n denotes the
number of voters) and proved that approximating this prob-
lem within a factor 1

2 log2(n) is NP-hard. Lastly, the authors
gave empirical evidence that allowing each voter to specify
multiple possible delegation options instead of one induces
a large decrease of the maximum voting power of a guru.

Another possible pitfall of LD is the loss of rationality
arising if voters should vote on different but connected is-
sues. In this case, if a voter has different gurus for these
different issues, the resulting vote might violate some ratio-
nality constraint (Christoff and Grossi 2017). For instance,
in the work of Brill and Talmon (2018) each voter should
provide a complete ranking over candidates. To do so, each
voter may delegate different binary preference queries to dif-
ferent proxies. The delegation process may then yield in-
complete or intransitive preference orders. Notably, the au-
thors proved that deciding if such a ballot can be completed
to obtain complete and transitive preferences while respect-
ing the constraints induced by the delegations is NP-hard.

Lastly, several authors have investigated the stability of
LD’s delegation process. In the LD setting studied by
Bloembergen, Grossi, and Lackner (2019), voters are con-
nected in an SN and can only delegate to their neighbors in
the network. The election is on a binary issue for which some
voters should vote for the 0 answer and the others should
vote for the 1 answer. Each voter only knows in a proba-
bilistic way what is the correct choice for her, as well as for
the others. This modeling leads to a class of games, called
delegation games in which each voter aims at maximizing
the accuracy of her vote/delegation. The authors proved the
existence of pure Nash equilibria in several types of delega-
tion games and gave upper and lower bounds on the price of
anarchy, and the gain (i.e., the difference between the accu-
racy of the group after the delegation process and the one in-
duced by direct voting) of such games. Following this line of
research, Escoffier, Gilbert, and Pass-Lanneau (2019a) con-
sidered a more general type of delegation games in which
voters have a complete preference order over who could be
their guru, and each voter aims at being represented by the
best possible one. The authors showed that an equilibrium
may not exist in this type of delegation games. In fact, the
existence of such an equilibrium is NP-hard to decide even
if the SN is complete or is of bounded degree, and it is W[1]-
hard when parameterized by the treewidth of the SN. Then,
the authors showed that such an equilibrium is guaranteed to

exist, whatever the preferences of the voters, if and only if
the SN is a tree, and provided dynamic programming proce-
dures to compute some equilibria with desirable properties.

Aim of our work. The previous work of Escoffier, Gilbert,
and Pass-Lanneau (2019a) considered unrestricted prefer-
ence profiles and studied how the structure of the SN im-
pacts the equilibria of the delegation game. As noted above,
the authors showed that deciding the existence of an equi-
librium is NP-hard, even when the SN is a complete graph.
Moreover, they proved that in any SN which is not a tree,
there exists a preference profile with no equilibrium. Thus,
the guarantee of the existence of an equilibrium relies on the
strong and unrealistic assumption that the SN is a tree.

This work looks in the other direction: we study how the
structure of the preference profile impacts the equilibria of
the delegation game. Investigating structured preference do-
mains is a well established line of research which makes it
possible to better understand the algorithmic complexity of a
computational social choice problem (Elkind, Lackner, and
Peters 2016). As a first step in this direction, we further in-
vestigate the case where the SN is complete. In this case, any
voter can delegate to any other voter without requiring the
transitive nature of delegations; however, the transitivity of
delegations is an essential feature for the study of dynamics
and convergence to a stable state. The study of LD’s delega-
tion process in a complete SN is motivated by the fact that
communities where LD is likely to be implemented (e.g., for
inner decision-making in political parties) are often highly
connected. More importantly, results obtained for complete
graphs, such as hardness results or non-convergence of dy-
namics, can also apply for SNs that are not complete but may
contain a clique as a subgraph. While SNs are not cliques,
they are typically composed of small cliques (e.g., commu-
nities) that are connected in a sparse way.

In contrast to the hardness results obtained in (Escoffier,
Gilbert, and Pass-Lanneau 2019a), we show that several
classical structures of preference (e.g., single-peaked pref-
erences) make it possible to guarantee the existence of an
equilibrium. This provides much more positive results than
in the unrestricted preference case. We then focus on con-
vergence issues towards equilibria, as well as computational
issues for computing equilibria with special properties.

3 Notations, Settings and Results Overview

Notations and Nash-Stable Delegation Functions

Following the notations of Escoffier, Gilbert, and Pass-
Lanneau (2019a), we denote by N = {1, . . . , n} a set of
voters. In this former work, the voters were connected in an
SN such that each voter could only delegate directly to their
neighbors in the network. In this work, we assume that any
voter can delegate directly to any other voter. This is equiv-
alent to considering a complete SN. Hence, each voter i can
either vote herself, delegate to another voter j, or abstain.
We denote by d : N → N ∪ {0} a delegation function such
that d(i) = i if voter i declares intention to vote, d(i) = j
with j ∈ N \ {i} if i delegates to j, and d(i) = 0 if i de-
clares intention to abstain. The set of gurus Gu(d) is defined
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as the set of voters that vote themselves given the delega-
tion function d, i.e., Gu(d) = {i ∈ N | d(i) = i}. Delega-
tions are transitive which means that if d(i) = j, d(j) = k,
and d(k) = k, then i is represented by k. In the end, the
voter who votes for i, called the guru of i and denoted by
gu(i, d), is the voter in Gu(d) ∪ {0} attained by following
the chain of delegations starting from i. In the former ex-
ample gu(i, d) = gu(j, d) = gu(k, d) = k. Note that these
successive delegations may also end up in a circuit. In this
case, we consider that all voters in the chain of delegations
abstain, as none of them take the responsibility to vote.

Each voter i has a preference order �i over who could be
their guru in N ∪{0}, which is a linear order over N ∪{0}.
For every voter i ∈ N , and for every j, k ∈ N ∪ {0} we
have that j �i k if i prefers to delegate to j (or to vote if
j = i, or to abstain if j = 0) rather than to delegate to k (or
to vote if k = i, or to abstain if k = 0). We say that voter
i is an abstainer in P if she prefers to abstain rather than to
vote, i.e., if 0 �i i; she is a non-abstainer otherwise. The
set of abstainers is denoted by A. The collection of these
preference orders defines a preference profile (or profile for
short) P = {�i | i ∈ N}.

Example 1 ((Escoffier, Gilbert, and Pass-Lanneau 2019a)).
Consider the following profile with 3 voters:

1 : 2 �1 1 �1 3 �1 0

2 : 3 �2 2 �2 1 �2 0

3 : 1 �3 3 �3 2 �3 0

In this example, each voter i prefers to delegate to (i
mod 3) + 1 rather than to vote directly and each voter
prefers to vote rather than to abstain.

A delegation function d is Nash-stable for voter i if

gu(i, d) �i g ∀g ∈ (Gu(d) ∪ {0, i}) \ {gu(i, d)}.
A delegation function d is Nash-stable if it is Nash-stable
for every voter in N . Hence, in a Nash-stable delegation
function, no voter has an incentive to change unilaterally her
delegation. A Nash-stable delegation function is also called
an equilibrium in the sequel. Unfortunately, as noted by Es-
coffier, Gilbert, and Pass-Lanneau (2019a) such an equilib-
rium may not exist as Example 1 admits no equilibrium. In
fact, sets of gurus of equilibria correspond to the kernels of a
particular digraph as proven by Escoffier, Gilbert, and Pass-
Lanneau (2019a) and as explained in the next subsection.

Delegation-Acceptability Digraph and Existence of
Equilibria

Let Acc(i) = {j ∈ N | j �i i and j �i 0} be the set of
voters to which voter i would rather delegate to than to ab-
stain or vote directly. A necessary condition for a delegation
function to be Nash-stable is that gu(i, d) ∈ Acc(i) for ev-
ery voter i who delegates to another voter. Otherwise, voter
i would change her delegation to abstain or vote directly. We
refer to Acc(i) as the set of acceptable gurus for i. Note that
in an equilibrium d, if gu(i, d) = 0 then i must be an ab-
stainer (otherwise i would rather vote herself); similarly if
gu(i, d) = i then i must be a non-abstainer.

Definition 1 ((Escoffier, Gilbert, and Pass-Lanneau 2019a)).
The delegation-acceptability digraph is the digraph G∗

P =
(N \ A, AP ) where AP = {(i, j) | j ∈ Acc(i)}.

Stated differently, there exists an arc from non-abstainer i
to non-abstainer j if and only if i accepts j as a guru.

Example 2. Consider the following profile P on 4 voters
{1, 2, 3, 4}. Its delegation-acceptability digraph G∗

P is rep-
resented in Figure 1. This example also appears in (Escoffier,
Gilbert, and Pass-Lanneau 2019b) (see proof of Theorem 8).

1 : 2 �1 1 �1 3 �1 4 �1 0

2 : 3 �2 4 �2 2 �2 1 �2 0

3 : 2 �3 1 �3 3 �3 4 �3 0

4 : 3 �4 4 �4 2 �4 1 �4 0

1 2 3 4

Figure 1: Delegation-acceptability digraph in Example 2.

Given a digraph G = (V,A), a subset of vertices K ⊆ V
is independent if there is no arc between two vertices of K.
It is absorbing if for every vertex u /∈ K, there exists k ∈ K
such that (u, k) ∈ A (then we say that k absorbs u). A kernel
of G is an independent and absorbing subset of vertices.

Theorem 1 ((Escoffier, Gilbert, and Pass-Lanneau 2019a)).
Given a profile P and a subset K ⊆ N \ A of voters, there
exists an equilibrium d such that Gu(d) = K if and only if
K is a kernel of G∗

P .

For instance, in Example 2 the only kernel of G∗
P is {1, 4}

which corresponds to the equilibrium where 1 and 4 vote, 2
delegates to 4 and 3 delegates to 1.

Note that given a set K which is a kernel of G∗
P , it

is straightforward to retrieve an equilibrium d such that
Gu(d) = K. Indeed, the delegation function where every
voter in K votes, and every voter not in K delegates to her
preferred voter in K, is Nash-stable. Hence, surprisingly,
given any equilibrium d, there exists an equilibrium d′ such
that gu(i, d) = gu(i, d′) for every voter i and where each
voter delegates directly to her guru in d′. However, the tran-
sitivity property of delegations is key to our setting because
it is at the root of the instability of the delegation process.

The problem of determining if an equilibrium exists is
equivalent to the problem of determining if a digraph admits
a kernel which is NP-complete (Chvátal 1973). Interestingly,
we show in the sequel that for several natural structured pro-
files (e.g., single-peaked profiles) an equilibrium always ex-
ists. For these structured profiles we will investigate if we
can compute equilibria verifying particular desirable prop-
erties, and tackle convergence issues.

Problems Investigated

Optimization and Decision Problems on Equilibria.
The first question is whether a given profile admits an equi-
librium. As stated before, we will show that an equilibrium
always exists for the considered structures of preference.
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Then, given a voter i ∈ N \ A, problem MEMB aims at
deciding if there exists an equilibrium for which i is a guru.

MEMB
INSTANCE: A profile P and a voter i ∈ N \ A.
QUESTION: Is there an equilibrium d s.t. i ∈ Gu(d)?

Moreover, we will try to find equilibria that minimize
some objective functions. First, problem MINDIS tries to
find an equilibrium that satisfies most the voters, where the
dissatisfaction of a voter i w.r.t. a delegation function d is
given by rk(i, d) − 1 where rk(i, d) is the rank of gu(i, d)
in the preference order of i. Second, problem MINMAXVP
tries to avoid that a guru would amass too much voting
power, where the voting power vp(i, d) of a guru i w.r.t.
a delegation function d is defined as vp(i, d) = |{j ∈
N|gu(j, d) = i}|. Last, problem MINABST tries to de-
termine an equilibrium d minimizing the number of people
who abstain, i.e., |{i ∈ N|gu(i, d) = 0}|.
Problems MINDIS, MINMAXVP and MINABST
INSTANCE: A profile P .
SOLUTION: A Nash-stable delegation function d.
MEASURE to minimize:
– MINDIS:

∑
i∈N (rk(i, d)− 1).

– MINMAXVP: maxi∈Gu(d) vp(i, d).
– MINABST: |{i ∈ N|gu(i, d) = 0}|.

Convergence of Iterative Delegations. As we focus on
instances where an equilibrium always exists, a natural ques-
tion is whether a dynamic delegation process necessarily
converges. As classically done in game theory (see (Nisan
et al. 2011)), we consider dynamics where iteratively one
voter has the possibility to change her delegation/vote.

In a dynamics, we are given a starting delegation function
d0 and a token function T : N∗ → N which specifies that
voter T (t) has the token at step t: she can change her delega-
tion. This gives a sequence of delegation functions (dt)t∈N

where for any t ∈ N
∗, if j �= T (t) then dt(j) = dt−1(j).

A dynamics is said to converge if there is a t∗ such that
dt = dt∗ for all t ≥ t∗. Given d0 and T , a dynamics is called
a better response dynamics or Improved Response Dynamics
(IRD) if for all t, T (t) chooses a move that strictly improves
her outcome if any, otherwise does not change her delega-
tion; it is called a Best Response Dynamics (BRD) if for all t,
T (t) chooses dt(i) so as to maximize her outcome. Note that
a BRD is also an IRD. We will assume, as usual, that each
voter has the token infinitely many times. A classical way
of choosing such a function T is to consider a permutation
σ over the voters in N , and to repeat this permutation over
time to give the token (if t = r mod n then T (t) = σ(r)).
These dynamics are called permutation dynamics.

The last problems that we investigate, denoted by IR-
CONV and BR-CONV, can be formalized as:

IR-CONV (resp. BR-CONV)
QUESTION: Does a dynamic delegation process under
IRD (resp. BRD) necessarily converges whatever the pro-
file P , initial delegations d0, and token function T ?

Table 1: Synthesis of Results.
Preference Structures

Problems Single-Peaked Symmetrical Distance-Based
IR-CONV Not Always Not Always Not Always
BR-CONV Not Always Always Always
MEMB O(n2) Always Exists NP-Complete
MINDIS O(n3) NP-Hard NP-Hard
MINMAXVP O(n3) NP-Hard NP-Hard
MINABST O(n3) NP-Hard NP-Hard

Summary of the Results

Our purpose is to investigate the aforementioned problems
under restricted preferences. In Section 4, we study single-
peaked profiles, where agents are ordered on a line and they
prefer gurus that are “close” to them on this axis. In Sec-
tion 5, we investigate symmetrical profiles, where all pairs
of voters always accept each other as guru, or reject each
other. Finally, as classically done in the framework of spatial
preferences (Bogomolnaia and Laslier 2007), we consider in
Section 6 that voters are embedded in a metric space. They
accept as possible gurus voters that are close to them in this
space. We denote these profiles as distance-based profiles.

For each of these preference structures, we first show that
an equilibrium always exists. Our results for problems IR-
CONV, BR-CONV, MEMB, MINDIS, MINMAXVP and
MINABST are presented in Table 1. Due to lack of space,
all missing proofs can be found in an extended version of
this paper (Escoffier, Gilbert, and Pass-Lanneau 2019c).

4 Single-Peaked Preferences

Definition

In this section, we consider that voters can be ordered on
a line; this ordering < may represent, e.g., the political po-
sitions of the voters on a left-right ladder. We assume that
voters are indexed w.r.t. this ordering and we identify them
with their index in {1, . . . , n}. A profile is single-peaked for
voter i ∈ N if for every j, k ∈ N ,

(i < j < k or k < j < i) =⇒ j �i k.

A profile is single-peaked if it is single-peaked for all voters.
For instance, the profile given in Example 2 is single-peaked
w.r.t. the axis 1 < 2 < 3 < 4.

In a single-peaked (SP) profile, if a voter delegates to a
guru on her left (and similarly on her right), she prefers to
delegate to the closest possible. Note that in i’s preference
list, we allow i (vote) and 0 (abstention) to be in any position
(differently from single-peakedness traditional definition). It
represents the fact that voter i prefers to delegate to close
gurus, but then, beyond a given threshold on her left (resp.
right), she prefers to abstain or vote herself rather than to
delegate to a guru that is too far from her opinions.

SP preferences are one of the most well-known restric-
tions of preferences in social choice theory. They where in-
troduced by Black (1948) who showed that they solve the
Condorcet paradox in the sense that a weak Condorcet win-
ner always exists with SP preferences. Furthermore, SP elec-
torates have many desirable properties: they induce a simple
characterization of strategy proof voting schemes (Moulin
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1980); they are easily recognizable (Bartholdi III and Trick
1986; Doignon and Falmagne 1994; Escoffier, Lang, and
Öztürk 2008); and they often lead to more desirable com-
plexity results (e.g., in multi-winner elections, where the
goal of the election is to elect a committee representing best
a set of voters (Betzler, Slinko, and Uhlmann 2013)).

Existence of Equilibrium

We now establish that the existence of an equilibrium is
guaranteed for an SP profile P . A digraph G is an in-
terval catch digraph (Prisner 1994) with vertex-set N =
{1, . . . , n} if for every i ∈ N , there exists li, ri ∈ N such
that li ≤ i ≤ ri and the out-neighborhood of i in G is the
subset {li, . . . , ri}\{i}. These digraphs are naturally related
to SP profiles by the following proposition.

Proposition 1. If P is an SP profile, then its delegation-
acceptability digraph G∗

P is an interval catch digraph.

Indeed, note first that if we remove abstainers from pro-
file P , the remaining profile is still single-peaked. Then by
defining li (resp. ri) the smallest (resp. largest) voter that i
accepts as guru, it is easy to check that G∗

P is an interval
catch digraph. For instance, the digraph G∗

P of Figure 1 is
clearly the interval catch digraph defined by l1 = 1, r1 = 2,
l2 = 2, r2 = 4, l3 = 1, r3 = 3, l4 = 3 and r4 = 4.

By Theorem 1, deciding the existence of an equilibrium
is equivalent to deciding the existence of a kernel in the
delegation-acceptability digraph. Prisner (1994) showed that
a kernel in an interval catch digraph always exists and is
computable in O(n2) time. This leads to a polynomial algo-
rithm for computing an equilibrium for an SP profile.

Theorem 2. An SP profile always admits an equilibrium.
Furthermore, an equilibrium can be computed in O(n2).

Equilibria and Optimization

Theorem 2 addresses the question of computing one equilib-
rium. We now provide an additional characterization of sets
of gurus of equilibria, that will be a convenient tool for solv-
ing other decision or optimization problems on equilibria.

Let us define an auxiliary digraph Gaux = (V aux, Aaux)
associated with G∗

P as follows. The vertex-set V aux contains
the set of voters {1, . . . , n}, plus a source s and a sink t. For
i < j, the arc-set Aaux contains the arc (i, j) if the pair {i, j}
is a kernel of the subgraph of G∗

P induced by {i, . . . , j}. It
contains the arc (s, j) (resp. the arc (i, t)) if the singleton
{j} (resp. {i}) is a kernel of the subgraph of G∗

P induced by
{1, . . . , j} (resp. {i, . . . , n}).

For illustration purposes, the auxiliary digraph of the pro-
file from Example 2 is given in Figure 2. The two successors
of source s are 1 and 2: indeed the singletons {1} and {2}
are kernels of the subgraph induced by {1} and {1, 2} re-
spectively. Vertices 3 or 4 do not absorb vertex 1, hence they
are not successors of s. Between two vertices of {1, . . . , 4}
the only arc in Gaux is (1, 4), because all other pairs of ver-
tices are neighbors, while {1, 4} is a kernel of G∗

P .
The importance of the auxiliary digraph is given by the

following proposition.

s 1 2 3 4 t

Figure 2: Auxiliary digraph Gaux of G∗
P for the profile P of

Example 2.

Proposition 2. There is a one-to-one correspondence be-
tween sets of gurus of equilibria for profile P , and s-t paths
in the auxiliary digraph of G∗

P .

The proof of Proposition 2 relies on a technical lemma on
kernels of interval catch digraphs. We obtain a one-to-one
correspondence between sets of gurus of equilibria, kernels
of G∗

P , and s-t paths of the auxiliary digraph. Using this
result, it is possible to solve problems MEMB, MINDIS,
MINMAXVP and MINABST by transforming them into
path problems in the auxiliary digraph. The results we obtain
are given in the following theorem.

Theorem 3. Given an SP profile P : the auxiliary digraph of
G∗

P is computable in O(n2) time; problem MEMB is solv-
able in O(n2) time; problems MINDIS, MINMAXVP and
MINABST are solvable in O(n3) time.

Proof. (sketch) For MINABST we sketch the proof of the
equivalence with a path problem in Gaux. Given d an equi-
librium, with Proposition 2 the set K = Gu(d) forms an s-t
path in Gaux. We claim that the number of voters who abstain
in d can be obtained by summing, on all pairs of successive
gurus k, k′, the number ak,k′ of voters between k and k′ who
prefer abstention over k and k′. Indeed because preferences
are SP, any non-guru delegates to the closest guru on her left,
or the closest guru on her right, or abstains. Thus Gaux can
be labeled on arcs with values ai,j , and MINABST can be
solved by finding a shortest s-t path in Gaux.

Convergence of Dynamics

As Theorem 2 asserts that an equilibrium always exists in the
SP case, it is worth considering convergence of dynamics in
this setting. Unfortunately, such a convergence is not guaran-
teed. Indeed, Escoffier, Gilbert, and Pass-Lanneau (2019b)
provide a best-response permutation dynamics that does not
converge for the profile of Example 2 (see proof of Theo-
rem 8). As this profile is SP, convergence of BRDs are not
guaranteed for SP preferences.

5 Symmetrical Preference Profiles

Definition, Existence of Equilibrium and
Membership Problem

In this section, we consider symmetrical preferences in the
sense that i ∈ Acc(j) iff j ∈ Acc(i). As we will see
in Section 6, this is a particular case of the more gen-
eral distance-based profiles. For symmetrical profiles, the
delegation-acceptability digraph has the arc (i, j) iff it has
the arc (j, i) (it is symmetrical). Then the existence of an
equilibrium is trivially guaranteed (take any maximal inde-
pendent set of G∗

P ), and for any i ∈ N \ A there exists an
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vx1t vx2t vx3t vx4t vx5t

vx1f vx2f vx3f vx4f vx5f

vc1 vc2 vc3

Figure 3: Gadget digraph GU,C

equilibrium in which i is a guru (take a maximal independent
set containing i).

Equilibria and Optimization

Though the existence of an equilibrium is trivial for sym-
metrical preference profiles, we now show that MINDIS,
MINMAXVP and MINABST are computationally hard, in
contrast with the results of the SP case. These results, as well
as another hardness result in Section 6, are all based on a re-
duction from the 3-Satisfiability (3-SAT) problem, known
to be NP-complete (Garey and Johnson 1990), and use the
same gadget digraph that we present now.

In the 3-SAT problem, we are given a set U of nu bi-
nary variables and a collection C of nc disjunctive clauses
of 3 literals, where a literal is a variable or a negated vari-
able in U . The objective is then to determine if there exists
a truth assignment for U that satisfies all clauses in C. To
an instance (U,C) of 3-SAT we associate the symmetrical
digraph GU,C defined as follows:
• For each variable xi ∈ U , we create two adjacent vertices
vxit and vxif , called variables vertices, representing respec-
tively the literals xi and ¬xi.

• For each clause cj ∈ C we create one vertex vcj , called
clause vertex; vcj is adjacent to the three vertices corre-
sponding to the three literals in cj .
The following instance illustrates this construction:

U = {x1, x2, x3, x4, x5},
C = {(x1∨x2∨¬x3), (x1∨¬x2∨¬x4), (¬x1∨x3∨x5)}.

Figure 3 gives the corresponding gadget digraph GU,C .
Observation 1. GU,C has a kernel containing no clause
vertex if and only if (U,C) is satisfiable.

From this construction we derive the following results.
Theorem 4. Given a symmetrical profile P :
– it is NP-hard to decide whether there exists an equilib-
rium where no voter abstains, or not. Thus, in particular,
MINABST is NP-hard.
– MINDIS is NP-hard even if there are no abstainers.
– MINMAXVP is NP-hard even if there are no abstainers.

Proof. We only prove the first item, which directly follows
from Observation 1. Let us consider a 3-SAT instance with a
set U of variables and a set C of clauses. We create a profile
with 2nu voters vxit and vxif , i = 1, . . . , nu, and nc voters
vcj , j = 1, . . . , nc. A voter vcj accepts to delegate to the 3

voters corresponding to the three literals in the clause (and
they accept her by symmetry), and then vcj prefers to abstain.
Moreover, vxit and vxif also accept to delegate to each other.
Then they prefer to vote. Then an equilibrium where nobody
(no voter vcj ) abstains corresponds to a kernel in GU,C with
no clause vertex. The result follows from Observation 1.

Convergence of Dynamics

We now focus on the question of convergence under BRD in
the case of symmetrical profiles. Interestingly, while there
might be cycles in the SP case, we show that under BRD the
convergence is guaranteed for symmetrical profiles, and that
this convergence occurs within a small number of steps.

Given a dynamics with token function T , let us define
rounds as follows. The first round is [1, t1] where t1 is the
smallest t such that each voter receives the token at least
once in [1, t]. The kst round is [tk−1 + 1, tk] where tk is the
smallest t such that each voter receives the token at least
once in [tk−1+1, t]. For instance, in the case of permutation
dynamics, we have tk = kn.
Theorem 5. Given a symmetrical profile P , a BRD always
converges in at most 3 rounds.

Intuitively, one can show that symmetry implies that when
a voter decides to vote she will not change her mind later.
Then after two rounds the set of gurus is fixed, and in the
third round each non-guru chooses her best guru, leading to
a Nash equilibrium.

We now show that convergence is not guaranteed under
IRD, thus providing a notable difference between the two
dynamics. This holds even if we start from the delegation
function d0 where all voters declare intention to vote, as
shown by the following example.
Example 3. Let us consider the case of 4 voters, where
Acc(1) = Acc(3) = {2, 4}, Acc(2) = Acc(4) = {1, 3}.
They all prefer to vote than to abstain.

We give the token to 1, 2, 1, 3, 2, 4, 3, 1, 4 . . . Then the
following is compatible with better response: d1(1) = 2,
d2(2) = 3, d3(1) = 1, d4(3) = 4, d5(2) = 2, d6(4) = 1,
d7(3) = 3, d8(1) = 2, d9(4) = 4. At this point d9 = d1, so
this is a cycle. Intuitively, each voter i delegates to its neigh-
bor i+1 (modulo 4); in the following step i+1 delegates to
i+2, then we give the token back to i who is no more happy
with her delegation and decides to vote herself.

6 Distance-Based Preference Profiles

Definition and Existence of Equilibrium

In this section, we assume that to each pair i, j of voters is
associated a distance dist(i, j) = dist(j, i) ∈ R+. Then,
each voter i has its own acceptability threshold ρi ∈ R+:
she accepts as gurus the other voters that are at distance at
most ρi from her:

∀j ∈ N\{i}, j ∈ Acc(i) ⇔ dist(i, j) ≤ ρi.

We say that such a profile is DB (Distance-Based). Note
that DB profiles may represent the case where voters are
embedded in a metric space, as in spatial models of pref-
erences (Bogomolnaia and Laslier 2007). They might be
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points in R
k; they may also represent vertices of a given

graph, the distance being the shortest path between vertices.
Any symmetrical profile is DB: indeed, consider the

distance defined by dist(i, j) = 1 iff j ∈ Acc(i) (or,
equivalently for a symmetrical profile, i ∈ Acc(j)), and
dist(i, j) = 2 otherwise, and set ρi = 1 for any voter i.
This observation implies that MINDIS, MINMAXVP and
MINABST are NP-hard in the case of DB profiles.

We now show that the existence of an equilibrium, which
was trivially guaranteed in the symmetrical case, is also
guaranteed in this more general case.
Theorem 6. Any DB profile admits an equilibrium. Further-
more, an equilibrium can be computed in O(n2).

Proof. We give an O(n2) procedure that builds an equilib-
rium for any DB profile. Build a set K of voters by using the
following procedure. Let S = N \A, and K = ∅. While S
is not empty, add to K the voter i of S with smallest ρi value
and remove i from S as well as all voters accepting i as guru.
At the end of this process, we claim that K = {i1, . . . , im}
is a kernel of G∗

P . It is absorbing: indeed each non-abstainer
in N \ K has at some point been removed from S because
it was absorbed by one element of K. It is also indepen-
dent. Indeed, let us assume by contradiction that ik accepts
to delegate to il with ik, il ∈ K. Then, necessarily ik has
been added to K before il. Otherwise, ik would have been
removed from S at the same time as il and would not have
been added to K. Hence, ρik ≤ ρil and il accepts to dele-
gate to ik which is not possible by the same argument. This
procedure builds K in O(n2) and the equilibrium induced
by K can easily be build in O(n2).

We note that the proof does not rely on dist being a dis-
tance: an equilibrium always exists as soon as dist(i, j) =
dist(j, i), even if the triangle inequality does not hold.

Membership Problem

Given that an equilibrium always exist, we now focus on the
problem MEMB. In the case of symmetrical preferences,
any voter could be a guru. We show here a drastic difference
in the case of DB preferences, as MEMB becomes NP-hard.
Theorem 7. MEMB is NP-hard in the case of DB profiles,
even if there are no abstainers.

Proof. (sketch) We only give the way the reduction is built.
Let us consider a 3-SAT instance with a set U of variables
and a set C of clauses. We consider a graph made of:

• The undirected version of the graph GU,C associated to
(U,C) (see Figure 3 in Section 5);

• Two adjacent vertices vt and vq; vt is also adjacent to all
clause vertices vcj .

Each vertex of this graph is a voter (we have 2nu + nc + 2
voters), and the distance between voters i and j is the short-
est path (number of edges, the graph is unweighted) between
the two vertices representing i and j in the graph. The ac-
ceptability threshold is 1 for all voters except vq which has a
threshold of 2; they all prefer to vote than to abstain. We can
show that the 3-SAT instance is satisfiable iff the DB profile

induced by the corresponding distance admits a Nash-stable
delegation function in which vq is a guru.

Convergence of Dynamics

Since an equilibrium always exists, we consider now the
convergence of dynamics. Example 3 shows that, under
IRD, the convergence is not guaranteed in the case of sym-
metrical profiles. Therefore, it is the same in the case of DB
profiles. We now extend Theorem 5 and show that under
BRD the convergence is guaranteed under DB profiles.
Theorem 8. Given a DB profile, a BRD always converges.

Proof. (sketch) Let us recall that each voter has the token
infinitely many times. Consider a DB profile P , and a BRD
with a starting delegation d0 and a token function T . We
assume that voters are numbered 1, 2 . . . , n in such a way
that ρi ≤ ρi+1, i = 1, . . . , n− 1.

Let us define G as the set of voters which are gurus (vote)
infinitely many times in the dynamics: G = {i1, . . . , is}
with i1 ≤ i2 ≤ · · · ≤ is. Note that, obviously, G contains
no abstainers. Since voters in N \G are gurus finitely many
times, let us consider a step t0 such that, for any t ≥ t0, no
voter in N \ G are gurus (they always delegate or abstain).
Let t1 be the first time t > t0 such that i1 has the token and
decides to vote. Since i1 decides to vote at t1, no voter in
Acc(i1) is a guru. Then, while i1 is a guru, no voter j > i1
in Acc(i1) ever becomes a guru: indeed, since ρi are in non-
decreasing order, if j ∈ Acc(i1) then i1 ∈ Acc(j). While i1
is a guru j does not decide to vote. Also, no voter j < i1 in
Acc(i1) ever becomes a guru: indeed, these are in N \G and
since t1 ≥ t0 we know that they always delegate or abstain.

Then no voter in Acc(i1) becomes a guru, so i1 will be a
guru forever. By recursively defining tk as the first time t >
tk−1 such that ik has the token and decides to vote, we can
show using similar arguments that ik remains a guru forever
after time tk. Thus, at time ts: voters in G are gurus forever,
and voters in N \ G never become gurus. From ts we only
have to wait for another round to reach an equilibrium.

We note again that no specific assumption on function
dist was made, except that dist(i, j) = dist(j, i).

7 Conclusion and Future Work

We have investigated the stability of the delegation pro-
cess in liquid democracy when voters have restricted types
of preference on the agent representing them. Interestingly,
while the existence of an equilibrium of this process is NP-
hard to decide when preferences are unrestricted (Escoffier,
Gilbert, and Pass-Lanneau 2019a), we have showed that var-
ious natural structures of preference, namely single-peaked,
symmetrical and distance-based preferences, guarantee the
existence of an equilibrium. For these structures of prefer-
ence, we have obtained positive and negative results which
surprisingly differ for the different structures of preference
studied. An interesting direction would be to determine to
what extent the positive results we got, such as existence
of equilibria, remain valid when the social network is no
more complete. As a first insight, the result for symmetri-
cal preferences does not hold for any social network, since
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there might be no equilibrium already if the social network
is a cycle. (Consider 6 voters and as social network a cycle
v1, a1, v2, a2, v3, a3. Voters a1, a2, a3 are abstainers. Voters
v1, v2 and v3 accept each other as possible gurus. For every
i = 1, 2, 3, ai only accepts vi, and vi accepts ai by symme-
try. One can check that there is no equilibrium.) A natural
question is then to find classes of social networks in which
an equilibrium is guaranteed to exist under some classical
preference restrictions.
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