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Abstract

We study single-candidate voting embedded in a metric
space, where both voters and candidates are points in the
space, and the distances between voters and candidates spec-
ify the voters’ preferences over candidates. In the voting, each
voter is asked to submit her favorite candidate. Given the col-
lection of favorite candidates, a mechanism for eliminating
the least popular candidate finds a committee containing all
candidates but the one to be eliminated.

Each committee is associated with a social value that is the
sum of the costs (utilities) it imposes (provides) to the voters.
We design mechanisms for finding a committee to optimize
the social value. We measure the quality of a mechanism by
its distortion, defined as the worst-case ratio between the so-
cial value of the committee found by the mechanism and the
optimal one. We establish new upper and lower bounds on the
distortion of mechanisms in this single-candidate voting, for
both general metrics and well-motivated special cases.
Keywords: Voting; Social Choice; Distortion

1 Introduction
In social choice theory, a mechanism (also referred to as a
voting rule) aggregates the preferences of multiple voters
over a set of candidates, and returns a k-element subset of
candidates as a winning committee. An appealing approach
to dealing with social choice problems is embedding the in-
put “election” into a metric space, i.e., each participant is
represented by a point in a metric space, and voters pre-
fer candidates that are closer to them to the ones that are
further away. This spatial model has very natural interpre-
tations. For example, in a 2-dimensional Euclidean space,
each dimension specifies a political issue (such as military
or education), and the position of a voter or candidate iden-
tifies the extent to which the individual supports the issues.
Recently, this model has attracted attentions from AI re-
searchers, see, e.g., (Anshelevich, Bhardwaj, and Postl 2015;
Elkind et al. 2017; Abramowitz, Anshelevich, and Zhu
2019).

The mechanisms in many of the works aforementioned
ask each voter for a linear order over candidates. On the

∗Corresponding author
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

other hand, one may note that eliciting so much informa-
tion on the preferences casts a high burden on the selection
rules, and often impairs the privacy of voters. The simplic-
ity, which means that each voter is only required to provide a
small amount of information, is often a desideratum for good
mechanisms. In this paper, we study the single-candidate
vote mechanisms (named by (Feldman, Fiat, and Golomb
2016)), scv mechanisms for short, that ask each voter to cast
a vote of a single candidate.

In addition to the top choices of voters, we further as-
sume that the locations of candidates in the metric space are
known to the mechanism, while the voters’ private locations
and numerical preferences are inaccessible, since every po-
litical candidate in a typical election should fully announce
her opinions on all issues, and thus her location in the space
is public information. For example, in the facility location
scenario, the city authority, who plans to locate some facil-
ities on a street or a plane, predetermines the potential lo-
cations of facilities, based on the landscape, resources and
distributions of social communities.

As voters’ preferences are specified by their distances to
candidates, it is natural to quantify the quality of a commit-
tee by the associated distances. We evaluate the performance
of a mechanism in the standard worst-case analysis bench-
mark (introduced by Procaccia and Rosenschein (2006)),
which defines the distortion of a mechanism to be the worst-
case ratio between the quality of a committee selected by
this mechanism and that of the optimal committee selected
by an omniscient mechanism.

Previous work was mainly concerned about the single-
winner elections. In this paper, we focus on the antithesis,
the multi-winner elections that eliminate the least popular
candidate, that is, select a committee containing all candi-
dates but one. These can be regarded as single-loser elec-
tions, which are well motivated. For example, some enter-
prises adopt a last-out mechanism in the personnel perfor-
mance appraisal system, which dismisses the employee with
the lowest performance in a department each year. Some vot-
ing rules in TV talent shows iteratively eliminate one candi-
date at each time to obtain the final winners.
Our Contributions.

Let m be the number of candidates in the election, and
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W be the winning committee of size m − 1 selected by a
mechanism. We discuss the distortion of mechanisms under
two objectives: minimizing the social cost and maximizing
the social utility. In the former case, each voter takes the
distance to W (i.e., the smallest distance between her and
a candidate in W ) as her cost, and the social cost of W is
the sum of its distances to all voters. In the latter case, each
voter takes her distance to the eliminated candidate (i.e., the
one not in W ) as her utility, and the social utility of W is the
total utility of voters.

In Section 3, we study the distortion of scv mechanisms
under the social cost objective. We prove that if the exact
locations of the candidates are known, then a simple deter-
ministic mechanism which minimizes the so-called projec-
tion distance achieves a distortion of 3, and no determin-
istic one can do better. In other words, we can compute a
3-approximate solution as long as the input votes are consis-
tent with the true distances, i.e., each vote is indeed a candi-
date closest to the voter. The most interesting contribution is
a randomized scv mechanism with distortion 3 − 2

m , which
selects each eligible committee with a carefully designed
probability. We prove that no randomized mechanism has
a distortion better than 3 − 2

m , matching the upper bound.
The deterministic and randomized mechanisms also satisfy
strategy-proofness, guaranteeing that each selfish voter al-
ways acts truthfully. Moreover, the lower bounds 3 and 3− 2

m
hold even if the voters submit a full preference ranking over
all the candidates.

Section 4 focuses on the social utility objective. We show
the lower bounds 3 and 1.5 for deterministic and randomized
mechanisms, respectively. While the deterministic mecha-
nism that maximizes the projection distance gives a distor-
tion 3 for general metrics, we investigate randomized scv
mechanisms for elections in several widely-studied special
spaces, e.g., the simplex (where the distance between any
two candidates is the same) and the real line (1-Euclidean
space). The simplex setting corresponds to the case when
candidates share no similarities, i.e., when all candidates are
equally different from each other, and the real line is also a
well-studied and well-motivated special case.

These results are summarized in Table 1, where LB and
UB are shorthands for lower bound and upper bound on the
distortion of scv mechanisms.

Table 1: A summary of our results
Objective Deterministic Randomized

Social cost
LB: 3 (Prop.3.1) LB: 3− 2

m (Prop.3.2)
UB: 3 (Thm.3.3) UB: 3− 2

m (Thm.3.5)

Social utility
LB: 3 (Prop.4.1)

LB: 1.5 (Prop.4.1)

UB: 3 (Thm.4.2)
UB: 3- 4

m+2 (Simplex, Thm.4.5)
13/7 (Line, Thm.4.6)

In Section 5, we extend our results to a more general set-
ting, where the scv mechanism is required to select a com-
mittee of size k, for a predetermined integer k ≤ m − 1.
We prove that the simple idea that optimizes the projection
distance can achieve a distortion 3 for both the social cost
objective and the social utility objective, and no determinis-

tic mechanism can do better. Then we conclude this paper
with future research directions.
Related Work.

In social choice theory, Procaccia and Rosenschein (2006)
propose a utilitarian approach – the implicit utilitarian
voting– by assuming that voters have latent cardinal utilities
and report ordinal preferences induced by them. They mea-
sure the performance of popular voting rules by the notion of
distortion. Subsequently, Caragiannis and Procaccia (2011),
Oren and Lucier (2014), Boutilier et al. (2015), Bhaskar and
Ghosh (2018) employ this notion and design selection rules
with low distortions.

Anshelevich et al. (2015) first embed the election into a
metric space, in which the participants are points, and the
costs are driven by the distances. They study mechanisms
that know only the voters’ preference rankings over candi-
dates, but not the underlying metric, and output a single win-
ner. Regarding the objective of minimizing the social cost of
the winner, they show the Copeland rule has distortion 5,
and prove a lower bound 3 for the distortion of determin-
istic mechanisms. Later, Skowron and Elkind (2017) show
that the class of scoring rules and STV have super-constant
distortion. The work of (Goel, Krishnaswamy, and Muna-
gala 2017) proves that the ranking pairs rule has distortion
at least 5. Recently, Munagala and Wang (2019) improve the
distortion to 4.236, using a weighted tournament rule.

In addition to deterministic rules, randomized rules have
also been considered. Random dictatorship that randomly
selects the top choice of one of the n voters gets distortion
3−2/n (Feldman, Fiat, and Golomb 2016; Anshelevich and
Postl 2017). Feldman et al. (2016) consider scv mechanisms
and strategy-proofness in the metric setting, and propose a
2-distortion mechanism on the real line. The work of (Gross,
Anshelevich, and Xia 2017) proposes a very simple mecha-
nism that randomly asks voters for their favorite candidates
until two voters agree, achieving low distortion and satisfy-
ing some normative properties.

The most related setting to ours appears in (Anshelevich
and Zhu 2018), where the candidates’ locations are addi-
tionally assumed to be known. With this extra location in-
formation, they break the best-known upper bound 4.236
mentioned above and present a deterministic 3-distortion scv
mechanism for single-winner election.

2 Model

Let Ω = (S, d) be a metric space, where S is the space and
d : S×S → R+ is the metric. The distance between w ∈ S
and V ⊆ S is defined as d(w, V ) := minv∈V d(w, v). Let
N = {1, . . . , n} be the set of voters (agents), each of whom
is located at a private point in S. The location xi of voter
i ∈ N is her type, and the location profile of all voters is
x = (x1, . . . , xn). Let M = {y1, . . . , ym} be the set of
candidates (alternatives), each of whom is located at a public
point in S. We refer to yj as the j-th candidate and as her
location interchangeably.

The voter prefers the closer candidate, and the nearest
candidate is the favorite. Each voter i ∈ N is asked to sub-
mit a single nearest candidate, called her action and denoted
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by ai ∈ M . The collection of voters’ actions is the action
profile a = (a1, . . . , an). An election in the social choice
problem under consideration is a triple Γ = (Ω,M,a).
We call a location profile x consistent with election Γ,
if each voter’s action reveals her real preference, that is,
ai ∈ argminy∈M d(xi, y), for every i ∈ N . Denote by χ(Γ)
the set of location profiles consistent with Γ.

We are concerned with mechanisms that, given an election
Γ = (Ω,M,a), select a committee (subset of M ) of cardi-
nality m − 1 as winners. It is assumed that the mechanisms
have full information on the metric space Ω and candidate
locations M , but they do not know the location profile of
voters. Associate each y ∈ M with the potential committee
My := M \ {y}. Let K = {My : y ∈ M} denote the set of
potential committees. A randomized mechanism is a func-
tion f that maps every action profile a ∈ Mn to a random
committee f(a) that follows some probability distribution
over the potential committees in K. A deterministic mecha-
nism f simply selects a specific committee f(a) ∈ K with
probability 1.

We investigate the performance of mechanisms from the
utilitarian perspective, which involves the objectives of min-
imizing the social cost and maximizing the social utility, re-
spectively.

The social cost objective. Given location profile x =
(xi)i∈N and committee Y ∈ K, the cost of voter i ∈ N
is the distance to the nearest winner, i.e., d(xi, Y ). The so-
cial cost of Y , denoted as SC(Y,x) or SC(Y ) for short,
equals

∑
i∈N d(xi, Y ). We use OPTc(x) to denote the so-

cial cost of an optimal committee selected by an omni-
scient mechanism, i.e., OPTc(x) = minY ∈K SC(Y,x).
The distortion of a (randomized) mechanism f on an elec-
tion Γ = (Ω,M,a) is

dist(f,Γ) = sup
x∈χ(Γ)

E[SC(f(a),x)]

OPTc(x)
.

In other words, it is the worst-case — over the location pro-
files consistent with Γ — ratio between the expected social
cost of the committee selected by the mechanism and the
optimal social cost.

The social utility objective. Given location profile x and
committee My , the utility of voter i equals the d(xi, y) to
the loser y. The social utility of My , denoted as SU(My,x)
or SU(My) for short, equals

∑
i∈N d(xi, y). The optimal

social utility is OPTu(x) = maxY ∈K SU(Y,x), and the
distortion of a (randomized) mechanism f on election Γ is

dist(f,Γ) = sup
x∈χ(Γ)

OPTu(x)

E[SU(f(a),x)]
.

For either of the objectives, we define the distortion of a
mechanism f as Dist(f) = supΓ dist(f,Γ) by taking the
worst case over elections. We call f an r-distortion mecha-
nism if Dist(f) ≤ r.

Strategy-proofness. As in many previous works on so-
cial choice, we evaluate the quality of a mechanism under
the assumption that the underlying location profile is always
consistent with the elections, i.e., the voters act truthfully
and submit their nearest candidates. Nevertheless, possibly

some voter may use a strategy (that leads to an action and
consequently an election with which the location profile may
not be consistent) to be better off. A mechanism is strategy-
proof, if the truth-telling strategy is always optimal for each
voter, that is, voting for any one of the nearest candidates can
always optimize her (expected) cost or utility, regardless of
the actions of others.

3 Mechanisms for Minimum Social Cost

This section focuses on the objective of minimizing the so-
cial cost. We first show the lower bounds on distortion, and
propose both deterministic and randomized mechanisms that
match the lower bounds.

3.1 Lower Bounds

We prove lower bounds on the distortion of both determinis-
tic and randomized mechanisms by constructing election in-
stances. Our construction is based on the well-known worst
case of single-winner election (Anshelevich, Bhardwaj, and
Postl 2015; Feldman, Fiat, and Golomb 2016), in which two
candidates locate at 0 and 2 on the real line respectively, and
each receive a vote. We extend it to our setting by adding
m − 2 very far candidates, each of whom also receives
a vote. Then any mechanism with guaranteed performance
must weed out either the candidate locating at 0 or the one
at 2; while either option results in a distortion 3.
Proposition 3.1. For any m ≥ 2 and the social cost ob-
jective, the distortion of any deterministic scv mechanism
cannot be smaller than 3.

Proof. Consider an election Γ in R, where m candidates are
located at y1 = 0, y2 = 2, y3 = L, y4 = 2L, . . . , ym =
(m − 2)L for a large number L, and the action profile of
n = m voters is a = (0, 2, L, 2L, . . . , (m− 2)L).

It is easy to see that any mechanism f with bounded dis-
tortion must eliminate either y1 or y2. If y1 ∈ f(a), then for
the location profile x = (1, 2, L, 2L, . . . , (m−2)L) ∈ χ(Γ),
we have SC(f(a),x) = 3, and OPTc(x) = 1 (realized
by the optimal committee My1 ), indicating the distortion at
least 3. If y2 ∈ f(a), the same bound holds for location pro-
file (0, 1, L, 2L, . . . , (m− 2)L).

Although the example constructed above can provide a
lower bound 2 for the distortion of randomized scv mecha-
nism, we prove a better lower bound in the following.
Proposition 3.2. For the social cost objective, the distortion
of any randomized scv mechanism cannot be smaller than
3− 2

m .

Proof. Consider an election Γ = (Ω,M,a) with d(yi, yj) =
2 for any pair of distinct candidates yi, yj ∈ M . There are
n = m voters, and the action profile is a = (y1, y2, . . . , ym),
that is, each candidate receives a vote from one voter. Since
there are in total m potential committees, any randomized
mechanism f must select some committee My with a proba-
bility no more than 1

m . By symmetry, we can assume w.l.o.g.
that Pr[f(a) = Mym

] ≤ 1
m .

Now consider the location profile x =
(y1, y2, . . . , ym−1, xm), where the point xm is at the
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same distance d(xm, yi) = 1 from every candidate
yi ∈ M . Obviously, suitable choice of Ω,M and xm

can fulfill all the conditions (i.e., the distances speci-
fied satisfy the metric condition), and guarantees that x
is consistent with Γ. (Figure 1 depicts an example for
m = 3.) The optimal committee is Mym

with optimal
social cost OPTc(x) = d(xm,Mym

) = 1, while any
other committee Myi

with i ≤ m − 1 has a social cost
at least d(xm,Myi

) + d(yi,Myi
) = 1 + 2 = 3. Thus,

the expected social cost of the random committee f(a) is
E[SC(f(a),x)] ≥ 1

mOPTc(x) + (1 − 1
m )3 = 3 − 2

m ,
showing that the distortion of f is at least 3− 2

m .

y1

y2y3

x3

2 2

2

1

1 1

Figure 1: Three candidates are indicated by hollow circles,
three voters are indicated by solid disks. Each candidate re-
ceives a vote. The numbers near edges indicate the distances,
which are not Euclidean. The point x3 is at distance 1 from
every candidate, and the optimal solution eliminates y3.

It is worth pointing out that the two election examples
constructed in the proofs of Propositions 3.1 and 3.2 can
be applied to the election that asks each voter to submit a
preference ranking. Thus the lower bounds in these two pro-
portions also hold for the mechanisms that aggregate voters’
rankings over candidates.

3.2 Projection Mechanism

Given an action profile a = (ai)i∈N , it can be viewed as a
projection of the location profile of voters to the location
set of candidates. For any subset W ⊆ M , we define its
projection distance w.r.t. a as pda(W ) :=

∑
i∈N d(ai,W ).

In the remainder of this paper, we use d(i, V ) instead of
d(xi, V ) for i ∈ N and V ⊆ S, when the context is clear.
Now we are ready to present a deterministic mechanism
which ensures distortion 3 matching the lower bound in
Proposition 3.1, by selecting a committee that minimizes
the projection distance.

Mechanism 1 (MIN-PROJECTION-DISTANCE). Given
an election Γ = (Ω,M,a), mechanism f deterministically
outputs a committee f(a) with the smallest projection
distance, that is, f(a) ∈ argminMy :y∈Mpda(My); ties are
broken arbitrarily.

The spirit of this mechanism is treating the action of each
voter as her location.
Theorem 3.3. MIN-PROJECTION-DISTANCE is a deter-
ministic, strategy-proof, polynomial-time and 3-distortion
scv mechanism for the social cost objective.

Proof. The polynomial-time computability is straightfor-
ward since the number of possible committees is |K| = m.

For the strategy-proofness, we show that the truth-telling
strategy always gives each voter a minimum cost. Sup-
pose action ai is a nearest candidate of voter i, and a′i ∈
M \ {ai} is another arbitrary action. Given the actions a−i

of other voters, consider the action profiles a = (ai,a−i)
and a′ = (a′i,a−i). The output of the mechanism is
f(a) = Y ∈ argminMy

pda(My) and f(a′) = Y ′ ∈
argminMy

pda′(My). We only need to consider the case
where Y �= Y ′. If ai ∈ Y , the cost of voter i is minimized
when she tells the truth. So we assume ai /∈ Y , which along
with k = m − 1 implies ai ∈ Y ′. If a′i ∈ Y ′, the projec-
tion distance of Y on a′ is pda′(Y ) = pda(Y )−d(ai, Y ) <
pda(Y ) ≤ pda(Y

′), and the projection distance of Y ′ on
a′ is pda′(Y ′) = pda(Y

′) since both ai and a′i are in Y ′.
So we have pda′(Y ) < pda′(Y ′), which contradicts the se-
lection rule of the mechanism, and reduces to the case of
ai ∈ Y ′ \ Y and a′i ∈ Y \ Y ′. Now we have pda′(Y ′) >
pda(Y

′) ≥ pda(Y ) > pda′(Y ), which also contradicts the
selection rule. Therefore, voter i’s cost when reporting ai is
always no more than her cost when reporting any a′i, which
proves the strategy-proofness.

Given election Γ and any consistent location profile x =
(xi)i∈N ∈ χ(Γ), let Y ∗ be the optimal committee, and Y be
the output by the mechanism. Then

SC(Y )

SC(Y ∗)
=

∑
i∈N d(xi, Y )∑
i∈N d(xi, Y ∗)

≤
∑

i∈N d(xi, ai)∑
i∈N d(xi, Y ∗)

+

∑
i∈N d(ai, Y )∑
i∈N d(xi, Y ∗)

≤ 1 +

∑
i∈N d(ai, Y )∑
i∈N d(xi, Y ∗)

.

For every i ∈ N , recalling from the consistency that
d(xi, ai) = miny∈M d(xi, y) ≤ d(xi, Y

∗), we have
2d(xi, Y

∗) ≥ d(xi, Y
∗) + d(xi, ai) ≥ d(ai, Y

∗). Therefore

SC(Y )

SC(Y ∗)
≤ 1 +

∑
i∈N d(ai, Y )

1
2

∑
i∈N d(ai, Y ∗)

= 1 +
2pda(Y )

pda(Y ∗)
≤ 3,

where the last inequality is guaranteed by the selection rule
of the mechanism.

3.3 Power-Proportionality Mechanism

Inspired by (Anshelevich and Postl 2017), we establish in
the following, for any given randomized scv mechanism and
location profile, an upper bound on the ratio between the ex-
pected social cost of the committee selected by the mech-
anism, and the optimal social cost. With the help of this
upper bound, we design a randomized scv mechanism, and
prove its strategy-proofness and distortion (which matches
the lower bound in Proposition 3.2).

Before presenting the formal description of the upper
bound, we make a partition of the voter set according to vot-
ers’ actions. Given an action profile a = (ai)i∈N , for each
candidate y ∈ M , let Na,y = {i ∈ N |ai = y} denote the
subset of voters whose actions are y. Then (Na,y)y∈M forms
a partition of N .
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Lemma 3.4. Given a randomized scv mechanism and an
election Γ = (Ω,M,a), suppose the probability that the
mechanism selects each My ∈ K as winners is P (My).
Then, for any location profile x ∈ χ(Γ) and any optimal
committee My∗ with y∗ ∈ M , the following holds:∑

y∈M P (My)SC(My)

SC(My∗)
(1)

≤1 +
2
∑

y �=y∗ P (My)|Na,y|d(y,My)

|Na,y∗ |d(y∗,My∗)
.

Proof. For each voter i ∈ N , note that i ∈ Na,ai
and (from

the consistency of x) that ai is a nearest candidate for i. If
y ∈ M \ {ai}, i.e., i ∈ N \Na,y , then ai ∈ My . For every
committee My �= My∗ , notice that the candidate y belongs
to My∗ , giving d(y,My∗) = 0. So, the social cost of My

with y �= y∗ is upper bounded by

SC(My,x)

=
∑

i∈N\Na,y

d(xi,My) +
∑

i∈Na,y

d(xi,My)

≤
∑

i∈N\Na,y

d(xi,My∗) +
∑

i∈Na,y

(d(xi, y) + d(y,My))

= SC(My∗ ,x) + |Na,y|d(y,My).

Since 2d(xi,My∗) ≥ d(xi, ai) + d(xi,My∗) ≥ d(ai,My∗)
for every i ∈ N , the optimal social cost is lower bounded by

SC(My∗ ,x) =
∑
i∈N

d(xi,My∗)

≥
∑
i∈N

d(ai,My∗)

2

=
1

2

∑
y∈M

|Na,y|d(y,My∗)

=
1

2
|Na,y∗ |d(y∗,My∗).

The above two bounds give the following estimate on the
ratio of the expected social cost of the committee output by
the mechanism to the optimum:

∑
y∈M P (My)SC(My,x)

SC(My∗ ,x)

= P (My∗ ) +
∑

y∈M\{y∗} P (My)SC(My,x)

SC(My∗ ,x)

≤ P (My∗ ) +
∑

y∈M\{y∗} P (My)(SC(My∗ ,x)+|Na,y |d(y,My))

SC(My∗ ,x)

≤ 1 +
2
∑

y∈M\{y∗} P (My)|Na,y |d(y,My)

|Na,y∗ |d(y∗,My∗ )
,

which proves the lemma.

A natural idea to design a mechanism is making the right
hand side of inequality (1) as small as possible. Next, we
seek a suitable mechanism whose probabilities of winning
set selections achieve this goal.

Mechanism 2 (POWER-PROPORTIONALITY). Given an
election Γ = (Ω,M,a), for every committee My ∈ K, the
winning probability is

P (My) =
|Na,y|−md(y,My)

−m∑
z∈M |Na,z|−md(z,Mz)−m

. (2)

Theorem 3.5. POWER-PROPORTIONALITY is a random-
ized scv mechanism that is strategy-proof and has distortion
at most 3− 2

m for social cost objective.

Proof. As
∑

y∈M P (My) = 1, the probability distribution
is well-defined. To see the strategy-proofness, consider any
location profile x and an arbitrary voter i, one of whose near-
est candidates being y. It is easy to see that, i voting for
y (in comparison with not doing so) increases the size of
Na,y , and decreases the probability P (My). The expected
cost of voter i is P (My)d(xi,My) + (1− P (My))d(xi, y).
Since d(xi, y) ≤ d(xi,My), the truth-telling strategy always
minimizes her expected cost, which indicates the strategy-
proofness.

Next, we investigate the distortion w.r.t. x ∈ χ(Γ). By
Lemma 3.4, substituting the probability (2) into inequality
(1), we have∑

y∈M P (My)SC(My,x)

SC(My∗ ,x)
(3)

≤1 +
2
∑

y∈M\{y∗} |Na,y|1−md(y,My)
1−m

|Na,y∗ |d(y∗,My∗)
∑

y∈M |Na,y|−md(y,My)−m
.

Now we compute the maximum value of the right hand side
in (3) by the function g : Rm

+ → R,

g(α1, . . . , αm) = 1 +
2α1

∑m
i=2 α

m−1
i∑m

i=1 α
m
i

.

By the derivative of this function, we know that the max-
imum value is attained when α1 = · · · = αm, that is,
max g(α1, . . . , αm) = g(α1, . . . , α1) = 3 − 2

m . The right
hand side of (3) has the same form as g, and it is also at most
3− 2

m , which gives the upper bound of the distortion.

4 Mechanisms for Maximum Social Utility

In this section, we focus on the social utility objective. Each
voter targets a favorite candidate, and takes the distance to
the eliminated candidate as her utility, as she wants to stay
as far away from the nuisance as possible.

By a simple adaptation to the proof of Proposition 3.1,
one can easily obtain the following lower bounds for both
deterministic and randomized mechanisms.

Proposition 4.1. For the social utility objective, no deter-
ministic (resp. randomized) scv mechanism can have a dis-
tortion smaller than 3 (resp. 1.5).

We present in Section 4.1 a deterministic svc mechanism
with distortion 3, using a dual idea of Mechanism 1. Then,
we provide in Sections 4.2 and 4.3 randomized mechanisms
for some important special metric spaces.

4.1 Projection Mechanism

Recall that the projection distance of candidate y ∈ M on an
action profile a = (ai)i∈N is pda(y) =

∑
i∈N d(ai, y). We

follow the dual spirit of Mechanism 1 to select a commit-
tee with the eliminated candidate maximizing the projection
distance.
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Mechanism 3 (MAX-PROJECTION-DISTANCE). Given
an election Γ = (Ω,M,a), the deterministic mechanism
f outputs committee My where y has the largest projec-
tion distance on a, that is, y ∈ argmaxw∈M pda(w) and
f(a) = My , breaking ties arbitrarily.

The following 3-distortion performance guarantee can be
proved by an argument that is completely symmetrical with
the proof of Theorem 3.3.

Theorem 4.2. MAX-PROJECTION-DISTANCE is a deter-
ministic polynomial-time 3-distortion scv mechanism for the
social utility objective.

This 3-distortion scv mechanism is the best that one can
expect for deterministic mechanisms, in view of Proposi-
tion 4.1. In contrast to Mechanism 1, it is not strategy-proof:
When a voter has two favorite candidates and votes for them
respectively, resulting in different action profiles, the cor-
responding outputs of MAX-PROJECTION-DISTANCE may
be two candidates that have different distances to her. There-
fore, to maximize her utility, she has to vote for the specific
candidate who leads to a better outcome.

4.2 Proportionality Mechanism

A natural idea for randomization is selecting a committee in
K with a probability proportional to the number of voters
who vote for it. We show the strategy-proofness, and evalu-
ate the distortion in the two-candidate case and simplex case.

Recall that Na,y = {i ∈ N |ai = y} is the set of voters
who vote for the candidate y ∈ M .

Mechanism 4 (PROPORTIONALITY). Given an election
Γ = (Ω,M,a), for each committee My , y ∈ M , the win-
ning probability is

P (My) =
n− |Na,y|
(m− 1)n

.

Note that the probability distribution is well-defined, as
the sum of n− |Na,y| over y ∈ M is (m− 1)n.

Lemma 4.3. PROPORTIONALITY is strategy-proof.

Proof. Consider an arbitrary voter i ∈ N , and suppose
y ∈ M is her favorite candidate. If voter i switches her
action from y to any other y′ ∈ My , then the probability
P (My) increases, P (My′) decreases, and all other proba-
bilities remain the same. The expected utility of voter i is
P (My)d(xi, y) + P (My′)d(xi, y

′) + U with a fixed value
U . Since d(xi, y) ≤ d(xi, y

′), this implies that the expected
utility is non-increasing by switching from y to y′. There-
fore, being truthful is the optimal strategy, regardless of the
actions of other voters.

By an analysis similar to the proof of Lemma 3.4, we ob-
tain a lower bound on the ratio between the expected social
utility of the selection and the optimal utility.

Lemma 4.4. Given a single-winner election Γ = (Ω,M,a)
and location profile x ∈ χ(Γ), suppose My∗ is an optimal
committee. For any randomized mechanism that selects My

(y ∈ M ) as winning committee with probability P (My), the
expected social utility satisfies∑

y∈M P (My)SU(My)

SU(My∗ )

≥ 1−
∑

y∈My∗
P (My)

(
1 +

∑
z∈M |Na,z |d(z, y)

2(n− |Na,y∗ |)d(y, y∗)

)−1

.

With the help of Lemma 4.4, we can upper bound the dis-
tortion of PROPORTIONALITY in the 2-candidate case (i.e.,
m = 2) and simplex case. We say the candidates form a sim-
plex, if the distance between any two candidates is the same,
say 2, i.e., d(y, z) = 2 for all distinct y, z ∈ M .1

Theorem 4.5. For the social utility objective, PROPOR-
TIONALITY has distortion
(i) at most 1.523 when m = 2;
(ii) at most 3− 4

m+2 when candidates form a simplex.

Proof. (i) For any election Γ and consistent location profile
x ∈ χ(Γ), suppose y is the optimal candidate (singleton
committee), and y∗ is the other one. By Lemma 4.4, we have

P (y)SU(y) + P (y∗)SU(y∗)
SU(y)

≥ 1− P (y∗)
(
1 +

|Na,y∗ |
2(n− |Na,y∗ |)

)−1

= 1− |Na,y∗ |
n

(
1 +

|Na,y∗ |
2(n− |Na,y∗ |)

)−1

= 1−
(

n

|Na,y∗ | +
n

2(n− |Na,y∗ |)
)−1

≥ 1−
(
1.5 +

√
2
)−1

Therefore, the distortion is at most (1− (1.5+
√
2)−1)−1 =

(5 + 4
√
2)/7 = 1.5224...

(ii) can be proved in a similar but more involved analysis,
which is relegated to Supplementary Material.

4.3 Mechanisms on the Real Line

We now consider the case where all voters and candidates
are located on the real line, and the metric is defined as the
Euclidean distance. This setting simulates the scenario in
which an authority wants to build a facility on a street, and
has been extensively studied for obnoxious facility games.
The results of (Cheng, Yu, and Zhang 2011) implies that an
optimal committee must eliminate one of the two endpoints
of the line segment spanned by y1, . . . , ym. This nice fact
directly provides a randomized strategy-proof 2-distortion
mechanism that eliminates the leftmost candidate and the
rightmost candidate with probability 1

2 , respectively. Next,
we improve the distortion by a more involved probability
distribution of selection, at a cost of losing the strategy-
proofness.

1The simplex is studied in (Anshelevich and Postl 2017) for
single-winner election, under some additional assumption on dis-
tances.
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Mechanism 5 (LEFT-OR-RIGHT). Given an election
Γ = (R,M,a), where the leftmost and rightmost candi-
date are located at y1 = 0 and ym = L, respectively.
Denote by n1, n2 the number of voters whose actions are
on [0, L

2 ], (
L
2 , L] , respectively. Select Myi

with probability
P (Myi

), i = 1,m, as specified below:

• If n1 > n2, then P (My1) =
6
13 and P (Mym) = 7

13 .

• If n1 < n2, then P (My1
) = 7

13 and P (Mym
) = 6

13 .

• If n1 = n2, then P (My1) = P (Mym) = 1
2 .

Theorem 4.6. LEFT-OR-RIGHT is a randomized 13
7 -

distortion scv mechanism for the social utility objective.

Proof. For any election Γ = (R,M,a) and consistent lo-
cation profile x ∈ χ(Γ), we show that the performance ra-
tio OPTu(x)

E[SU(f(a),x)] is upper bounded by 13
7 , where f denotes

mechanism LEFT-OR-RIGHT. It is easy to see that the worst
case w.r.t. the performance ratio must occur when all vot-
ers are also located on interval [0, L]. (If some xi is smaller
than 0 or larger than L, then changing it to 0 or L would
not decrease the ratio.) So we assume that xi ∈ [0, L] for all
i ∈ N , and only consider the line segment [0, L].

If n1 = n2, then the expected social utility of the outcome
is

E[SU(f(a))] = 1
2
SU(My1 ) +

1
2
SU(Mym )

= 1
2

∑n
i=1 xi +

1
2

∑n
i=1(L− xi) =

Ln
2
,

and the optimal social utility is OPTu(x) =
max{SU(My1), SU(Mym)}. Since n1 = n2, we have

SU(My1
) =

∑n
i=1 xi ≤ 3

4Ln1 + Ln2 = 7Ln
8 ,

where SU(My1) reaches the upper bound when n1 voters
who vote for the midpoint candidate L

2 are located at 3L
4 , and

n2 voters who vote for ym = L are located at L. Similarly,
we have

SU(Mym
) ≤ 7Ln

8 .

Therefore, we have OPTu(x) ≤ 7
4E[SU(f(a))] <

13
7 E[SU(f(a))] as desired.

When n1 �= n2, by symmetry, we only discuss the case
n1 > n2. Recall that an optimal solution eliminates either
y1 or ym. First, if the optimal committee is My1 , we also
have OPTu(x) =

∑n
i=1 xi ≤ 3

4Ln1 + Ln2 by the same
reasoning as above. In turn, 3

4n1+n2 = n− n1

4 < 7
8n gives

OPTu(x) <
7Ln
8 . It follows that

E[SU(f(a))] = 6
13

∑n
i=1 xi +

7
13

∑n
i=1(L− xi)

= 7
13Ln− 1

13

∑n
i=1 xi

> 8
13OPTu(x)− 1

13OPTu(x)
= 7

13OPTu(x).

Next, if the optimal committee is Mym
, with ε > 0 being

infinitesimal, we have

OPTu(x) =
∑n

i=1(L− xi) ≤ Ln1 +
3
4Ln2 − ε < Ln,

where the first inequality holds with equality when n2 voters
who vote for L

2 + ε′ are located at L
4 + ε′ (ε′ > 0 being

infinitesimal), and n1 voters who vote for y1 = 0 are located
at 0. Therefore,

E[SU(f(a))] = 6
13

∑n
i=1 xi +

7
13

∑n
i=1(L− xi)

= 6
13Ln+ 1

13

∑n
i=1(L− xi)

> 6
13OPTu(x) +

1
13OPTu(x)

= 7
13OPTu(x).

The proof is complete.

5 Concluding Remarks

In this paper we are concerned with the scv mechanisms
for single-loser election, instead of ranking mechanisms that
ask the ordinal preferences of voters. We study how well,
in terms of minimizing (maximizing) social cost (utility),
the mechanisms that only receive the information on top-
ranked candidates can compete with omniscient selection
rules. From the worst-case perspective, our results show that
accessing the very limited information is often enough, in
view that the performance guarantees of the mechanisms
we propose match the lower bounds which hold even when
ranking preferences are known.

Extension. The good performances of scv mechanisms
can be extended to a more general task: selecting a size-
k committee W as winners for a predetermined integer
k ≤ m − 1. The voters may take the distance to the win-
ners’ set W as their costs, or take the distance to the losers’
set M\W as their utilities. For the social cost (utility) objec-
tive, a couple of ideas and results presented in Sections 3 and
4 can be generalized. Specifically, we obtain the following
lower bounds (LB) and upper bounds (UB) on the distortions
of scv mechanisms for selecting a size-k committee:

Objective Deterministic Randomized
Social cost LB = UB = 3 LB: 2

Social utility LB = UB = 3 LB: 1.5

The upper bound 3 for the social cost (utility) objective is
guaranteed by outputting a size-k committee that minimizes
the projection distance (whose complement set maximizes
the projection distance). More details could be found in Sup-
plementary Material.

Future direction. Although strategy-proof mechanisms
for the single-winner and single-loser voting have been ex-
plored more or less, for the general problem of selecting
a size-k committee by scv rules, so far, to the best of our
knowledge, there is no performance-guaranteed mechanism
that is strategy-proof, even for k = 2. This suggests an inter-
esting research direction for scv mechanism design. Except
for the proportional idea employed by Mechanism 2 and 4,
the quadratic proportionality (Meir, Procaccia, and Rosen-
schein 2012; Anshelevich and Postl 2017) or other propor-
tional probabilities relying on k may be useful.
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