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Abstract

In hedonic diversity games (HDGs), recently introduced by
Bredereck, Elkind, and Igarashi (2019), each agent belongs
to one of two classes (men and women, vegetarians and meat-
eaters, junior and senior researchers), and agents’ preferences
over coalitions are determined by the fraction of agents from
their class in each coalition. Bredereck et al. show that while
an HDG may fail to have a Nash stable (NS) or a core stable
(CS) outcome, every HDG in which all agents have single-
peaked preferences admits an individually stable (IS) out-
come, which can be computed in polynomial time. In this
work, we extend and strengthen these results in several ways.
First, we establish that the problem of deciding if an HDG
has an NS outcome is NP-complete, but admits an XP algo-
rithm with respect to the size of the smaller class. Second, we
show that, in fact, all HDGs admit IS outcomes that can be
computed in polynomial time; our algorithm for finding such
outcomes is considerably simpler than that of Bredereck et
al. We also consider two ways of generalizing the model of
Bredereck et al. to k ≥ 2 classes. We complement our the-
oretical results by empirical analysis, comparing the IS out-
comes found by our algorithm, the algorithm of Bredereck et
al. and a natural better-response dynamics.

1 Introduction

A number of French exchange students at a Spanish univer-
sity have signed up for a game theory class. All students tak-
ing the class are advised to form study groups to discuss the
material and to work on problem sheets. Now, some French
students see this as an excellent opportunity to improve their
Spanish and would like to join study groups where no one
else speaks French. Other students have less confidence in
their ability to communicate in Spanish and therefore want
to be in a group where at least a few other students speak
French; in fact, some of the students prefer to be in an exclu-
sively French-speaking group. Spanish students, too, have
different preferences over the fraction of French students in
their groups: some are eager to meet new friends, while oth-
ers are worried that language issues will affect their learning.

Many important aspects of the setting described in the
previous paragraph can be captured by the recently intro-
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duced framework of hedonic diversity games (HDG) (Bred-
ereck, Elkind, and Igarashi 2019). In these games, agents can
be split into two classes (say, red and blue), and each agent
has preferences over the fraction of red agents in her group.
The outcome of a game is a partition of agents into groups.
This model is relevant for analyzing a variety of application
scenarios, ranging from interdisciplinary collaborations to
racial segregation.

In their work, Bredereck et al. aim to understand whether
HDGs admit stable outcomes, for several common notions
of stability for hedonic games, such as Nash stability, in-
dividual stability and core stability; the first two concepts
are based on deviations by individual agents, while the third
concept captures resilience against group deviations. Bred-
ereck et al. show that an HDG may fail to have a Nash stable
outcome or a core stable outcome and that deciding if an
HDG has a core stable outcome is NP-complete. For indi-
vidual stability, they get a positive result under the additional
assumption that agents’ preferences are single-peaked, i.e.,
each agent i has a preferred ratio of red agents in her group
(say, ρi), and for any two ratios ρ, ρ′ such that ρ < ρ′ ≤ ρi
or ρi ≤ ρ′ < ρ she prefers a group with ratio ρ′ to a group
with ratio ρ. Specifically, Bredereck et al. show that every
HDG with single-peaked preferences admits an individually
stable outcome and describe a polynomial-time algorithm
for finding some such outcome. Their work leaves open the
question whether HDGs with non-single-peaked preferences
always have an individually stable outcome.

Our Contribution In this paper, we answer two open
questions from the paper of Bredereck et al., as well as ex-
tend their model to an arbitrary number of agent classes.

First (Section 3), we show that deciding if an HDG has
a Nash stable outcome is NP-complete. Our hardness result
holds even if agents have dichotomous preferences, i.e., ap-
prove some ratios and disapprove the remaining ratios; in
fact, it remains true if each agent approves at most 4 ratios.
On the other hand, we show that the existence of a Nash sta-
ble outcome can be decided in polynomial time if the size of
one of the classes can be bounded by a constant.

We then turn our attention to individual stability (Sec-
tion 4). We describe a polynomial-time algorithm that finds
an individually stable outcome of any HDG; our algorithm
is significantly simpler than that of Bredereck et al. How-
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ever, we show that neither algorithm Pareto-dominates the
other: there are settings where the algorithm of Bredereck et
al. produces a much better partition than our algorithm, and
there are settings where the converse is true.

In Section 5, we consider two different ways of extend-
ing HDGs to settings with k agent classes, k > 2. First,
we consider a very general model, where each agent may
have arbitrary preferences over the ratios of different classes
in her group. We show that our positive result for individ-
ual stability does not extend to this model: we describe a
game with k = 3 that has no individually stable outcomes
and prove that deciding the existence of such outcomes is
NP-complete if k ≥ 5. We then propose a more restric-
tive model, where an agent only cares about the fraction of
agents that belong to her class. We show that this model en-
compasses both HDGs and another well-known class of he-
donic games, namely, anonymous games, i.e., games where
agents have preferences over the size of their group.

In Section 6, we empirically compare the outcomes pro-
duced (1) by our algorithm for finding individually stable
outcomes, (2) by the algorithm of Bredereck et al. and (3)
by a natural better-response dynamics with respect to sev-
eral measures, such as the average social welfare and the
diversity of resulting groups. We summarize our findings in
Section 7.

Related Work Hedonic games were introduced by Drèze
and Greenberg (1980) and have received a lot of attention
in the computational social choice literature, as they of-
fer a simple, but powerful formalism to study group for-
mation in strategic settings; see, e.g., the survey by Aziz
and Savani (2016). Hedonic diversity games share com-
mon features with two other well-studied classes of hedonic
games, namely, anonymous games (Bogomolnaia and Jack-
son 2002) and fractional hedonic games (Aziz et al. 2019).

In anonymous games, agents cannot distinguish among
other agents, and therefore the only feature of a group that
matters to them is its size. HDGs may appear to be more
general than anonymous games, since in HDGs each agent
can distinguish between two classes of agents. Indeed, many
proof techniques developed for anonymous games turn out
to be relevant for HDGs. However, in a technical sense,
anonymous games are not a subclass of HDGs, and some
of the positive results for HDGs do not hold for anony-
mous games. In particular, while we prove that every HDG
has an individually stable outcome, Bogomolnaia and Jack-
son (2002) show that this is not the case for anonymous
games. Throughout the paper, we compare our results for
HDGs to relevant results for anonymous games, and in Sec-
tion 5 we propose a succinct representation formalism for
hedonic games that captures both HDGs and anonymous
games.

In fractional hedonic games, every agent assigns a numer-
ical value to every other agent, and an agent’s value for a
group of size s that includes her is equal to the sum of the
values she assigns to the group members, divided by s; each
agent prefers coalitions with a higher value. Now, if agents
are divided into two classes, so that each agent assigns the
same value to all agents in each class, the resulting game is

a hedonic diversity game. However, not all hedonic diversity
games can be obtained in this fashion; in particular, an HDG
where each agent prefers groups that have the same number
of agents from each class cannot be represented in this way.
Conversely, there are fractional hedonic games that cannot
be represented as HDGs.

Full version The full version of the paper is available on
arXiv (Boehmer and Elkind 2019). It contains the proofs of
Theorem 3.1, Theorem 3.3, Proposition 4.4 and Theorem
5.4.

2 Preliminaries

For every positive integer n, we write [n] to denote the set
{1, . . . , n}.

A hedonic game is a pair G = (N, (�i)i∈N ), where N =
[n] is the set of agents, and for each i ∈ N the relation �i

is a weak order over all subsets of N that contain i. The
subsets of N are called coalitions; the set of all coalitions
containing agent i is denoted by N (i). We refer to the set N
as the grand coalition.

Given two coalitions C,D ∈ N (i), we write C ∼i D if
C �i D and D �i C; we write C �i D if C �i D and
C �∼i D. We say that i weakly prefers C to D if C �i D;
if C �i D, we say that i strictly prefers C to D, and if
C ∼i D, we say that i is indifferent between C and D. For
succinctness, when describing agents’ preferences, we often
omit coalitions C with {i} �i C.

An outcome of a hedonic game with the set of agents N
is a partition π = {C1, . . . , Ck} of N ; we write πi to de-
note the coalition in π that contains agent i. An agent i has
an NS-deviation from an outcome π if there exists a coali-
tion C ∈ π ∪ {∅} such that C ∪ {i} �i πi; i has an
IS-deviation from an outcome π if there exists a coalition
C ∈ π ∪ {∅} such that C ∪ {i} �i πi and, additionally,
C ∪ {i} �j C for each j ∈ C. An outcome π is Nash sta-
ble (NS) (respectively, individually stable (IS)) if no agent
has an NS-deviation (respectively, an IS-deviation). An out-
come π′ Pareto dominates an outcome π if π′

i � πi for each
i ∈ N and π′

j �j πj for some j ∈ N ; an outcome is Pareto
optimal if it is not Pareto-dominated by another outcome.

Consider a hedonic game G = (N, (�i)i∈N ). We say that
G is dichotomous if for every agent i ∈ N there exist disjoint
sets N+(i) and N−(i) such that N (i) = N+(i) ∪ N−(i),
and for every pair of coalitions C,D ∈ N (i), we have C ∼i

D if C,D ∈ N+(i) or C,D ∈ N−(i) and C �i D if
C ∈ N+(i), D ∈ N−(i); we say that i approves coalitions
in N+(i) and disapproves coalitions in N−(i). We say that
G is anonymous if for every agent i ∈ N there exists a weak
order �∗

i on [|N |] such that for every pair of coalitions C,D
we have C �i D if and only if |C| �∗

i |D|.
In a hedonic diversity game (HDG), the set of agents N

is partitioned as N = R ∪B, and each agent i is indifferent
between any two coalitions C,D ∈ N (i) that have the same
fraction of agents in R; we refer to agents in R and B as red
and blue agents, respectively. For each coalition C ⊆ N , we
write θ(C) = |C∩R|

|C| ; we refer to the quantity θ(C) as the
red ratio of C. In hedonic diversity games, the preferences
of every agent i can be described by a weak order �′

i over
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the set Θ = { j
k | 0 ≤ j ≤ |R|, j ≤ k ≤ |N |}: for all C,D ∈

N (i) we have C �i D if and only if θ(C) �′
i θ(D). We say

that a coalition C is homogeneous if C ⊆ R or C ⊆ B, i.e.,
θ(C) ∈ {0, 1}.

An anonymous game (N, (�i)i∈N ) is said to be single-
peaked if for every agent i ∈ N there exists a preferred size
si ∈ [n] such that for every pair of coalitions C,D ∈ N (i)
with |C| < |D| ≤ si or si ≤ |D| < |C| it holds that D �i

C. Similarly, a hedonic diversity game (R∪B, (�′
i)i∈R∪B)

is said to be single-peaked if for every agent i ∈ R∪B there
exists a preferred value ρi ∈ Θ such that for every ρ, ρ′ ∈ Θ
such that ρi ≤ ρ < ρ′ or ρ′ < ρ ≤ ρi it holds that ρ �′

i ρ
′.

3 Nash Stability

Bredereck, Elkind, and Igarashi (2019) show that a hedo-
nic diversity game may fail to have a Nash stable outcome,
even if agents’ preferences are single-peaked: indeed, it is
easy to see that an HDG with |R| = |B| = 1 where the red
agent prefers to be alone and the blue agent prefers to be
with the red agent has no NS outcome. However, Bredereck
et al. do not consider the complexity of checking whether
a given HDG admits a Nash stable outcome. We will now
establish that this problem is NP-complete. We note that de-
ciding whether an anonymous game has a Nash stable out-
come is known to be NP-complete as well (Ballester 2004);
Peters (2016) shows that the hardness result holds even for
anonymous games with dichotomous preferences.

Theorem 3.1. Given an HDG G = (R ∪ B, (�′
i)i∈R∪B),

it is NP-complete to decide whether G has a Nash stable
outcome. The hardness result holds even if G is dichotomous
or if each relation �′

i is a strict order over Θ.

To complement the hardness result of Theorem 3.1, we
show that deciding the existence of a Nash stable outcome
is in P if min{|R|, |B|} is bounded by a constant.

Theorem 3.2. Given an HDG G = (R ∪ B, (�′
i)i∈R∪B)

with |R ∪ B| = n, min{|R|, |B|} = p, we can decide if G
has a Nash stable outcome in time (np)p · poly(n).

Proof. Assume without loss of generality that |B| ≤ |R|, so
p = |B|. Our algorithm proceeds in three stages.

In the first stage, we guess a partition {C1, . . . , Ck} of B,
together with k positive integers n1, . . . , nk such that ni ≥
|Ci| and n1 + · · · + nk ≤ n; let C0 = ∅ and n0 = n −
(n1 + · · · + nk). We will try to construct an NS partition
{A1, . . . , Ak, D1, . . . , D�} for some � ≥ 0 so that Ci ⊆ Ai,
|Ai| = ni for each i ∈ [k], and Di ⊆ R for i ∈ [�]. Note that
we can enumerate all possible guesses in time O(pp · np).

In the second stage, given a guess {C1, . . . , Ck},
(n1, . . . , nk), we construct an instance of the network flow
problem as follows. We create a source, a sink, a node xi

for each i ∈ R and a node yj for each j = 0, . . . , k. The
source is connected to all nodes xi, i ∈ R, by an edge of
capacity 1, and each node yj , j = 0, . . . , k, is connected to
the sink by an edge of capacity nj − |Cj |. Further, there is
an edge of capacity 1 from xi to yj , j ∈ [k], if and only if
nj−|Cj |

nj
�′

i
ns−|Cs|+1

ns+1 for each s ∈ [k] \ {j} and, moreover,

nj−|Cj |
nj

�′
i 1. Finally, there is an edge of capacity 1 from xi

to y0 if 1 �′
i

ns−|Cs|+1
ns+1 for all s ∈ [k].

Intuitively, an edge from xi to yj , j ∈ [k], indicates that
i weakly prefers being in a coalition of size nj with |Cj |
blue agents to deviating to a coalition of size ns with |Cs|
blue agents, for s �= j, or to a homogeneous red coalition;
an edge from xi to y0 indicates that i weakly prefers a ho-
mogeneous red coalition to other available options. By con-
struction, there is a flow of size |R| in this network if and
only if there is a partition {A1, . . . , Ak, D0} of R ∪ B such
that Ci ⊆ Ai, |Ai| = ni for i ∈ [k] and no red agent has
an NS-deviation from this partition. Thus, if this instance of
network flow does not admit a flow of size |R|, we reject the
current guess, and otherwise we proceed to the next stage.

In the third stage, we split D0 into D1, . . . , D� for some
� ≥ 0. Note that, no matter how we do this, if no red agent
had an NS-deviation in {A1, . . . , Ak, D0}, this will also be
the case for the new partition. Thus, we can focus on the
blue agents. Given a t ∈ [n0], we say that t is safe for an
agent j ∈ B if j weakly prefers her current coalition in
{A1, . . . , Ak, D0} to a coalition consisting of herself and t
red agents; we say that t is safe if it is safe for each j ∈ B.
Let T ⊆ [n0] be a collection of all safe integers. Then, we
can subdivide D0 so that in the resulting partition no blue
agent has an NS-deviation if and only if n0 can be repre-
sented as a sum of integers from T ; the latter problem is a
variant of KNAPSACK and can be solved by dynamic pro-
gramming in time O(n2).

Theorem 3.2 puts the problem of finding a Nash stable
outcome in the complexity class XP with respect to the pa-
rameter p; however, we do not know if this problem is fixed-
parameter tractable (FPT) with respect to this parameter.

For HDGs with dichotomous preferences, another natural
parameter is the number of ratios approved by each agent.
However, our problem turns out to be para-NP-hard with re-
spect to this parameter: the hardness proof in Theorem 3.1
goes through even if each agent only approves at most four
ratios in Θ. Similarly, Peters (2016) shows that finding a
Nash stable outcome in dichotomous anonymous games re-
mains NP-hard if each agent approves at most four coalition
sizes. Interestingly, we can prove that the latter problem be-
comes polynomial-time solvable if each agent approves at
most one coalition size, but it is not clear how to extend this
proof to dichotomous HDGs.

Theorem 3.3. Given a dichotomous anonymous game G =
(N, (�i)i∈N ) where for each agent i ∈ N the set N+(i) is
of the form {C ∈ N (i) : |C| = si} for some si ∈ N, we can
decide in polynomial time whether G admits a Nash stable
outcome.

4 Individual Stability

Bredereck, Elkind, and Igarashi (2019) describe an algo-
rithm that, given an HDG with single-peaked preferences,
outputs an individually stable outcome in polynomial time.
This algorithm is fairly complex: its description and anal-
ysis take up almost four pages of the AAMAS’19 paper.
It is similar in spirit to the algorithm of Bogomolnaia and
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Algorithm 1 Computing an individually stable outcome
Require: HDG G = (R ∪B, (�′

i)i∈R∪B)
Ensure: Individually stable outcome π of game G

1: Let B∗ = {b∗1, . . . , b∗k} = {b ∈ B : 1
2 �′

b 0};
2: Let R∗ = {r∗1 , . . . , r∗� } = {r ∈ R : 1

2 �′
r 1};

3: Let C0 = {r∗1 , . . . , r∗min{k,�}} ∪ {b∗1, . . . , b∗min{k,�}};
4: Let C = C0;
5: repeat
6: for i ∈ N \ C do
7: if i has an IS-deviation from {i} to C then
8: C = C ∪ {i};
9: until C has not changed in the previous iteration

10: Let C1 = C;
11: return π = {{i} | i ∈ N \ C1} ∪ {C1};

Jackson (2002) that finds an IS outcome of an anonymous
game with single-peaked preferences in polynomial time.
The main contribution of this section is a much simpler
polynomial-time algorithm that can find an individually sta-
ble outcome of any HDG; this result is particularly surpris-
ing, because it is known that not every anonymous game ad-
mits an IS outcome (Bogomolnaia and Jackson 2002).

Theorem 4.1. Given an HDG G = (R ∪ B, (�′
i)i∈R∪B),

we can compute an individually stable outcome of G in poly-
nomial time.

Proof. In what follows, we say that a coalition C ⊆ R ∪ B
is balanced if |C ∩R| = |C ∩B|.

We claim that Algorithm 1 outputs an IS outcome of G.
The first phase of this algorithm creates a maximum-size
balanced coalition C such that all agents in C prefer C to
being alone; all other agents are placed in singleton coali-
tions. In the second phase, the algorithm checks if any of the
remaining agents has an IS-deviation to C; if yes, some such
agent is invited to join C. This step is repeated until none of
the remaining agents has an IS-deviation to C. To avoid am-
biguity, we use C0 and C1 to denote the ‘large’ coalition
obtained at the end of the first phase and at the end of the
second phase, respectively.

Consider the sets B∗ and R∗ defined by our algorithm,
and assume without loss of generality that |B∗| ≥ |R∗|. By
construction, C0 contains all red agents who weakly pre-
fer being in a balanced coalition to being in a homogeneous
coalition. In particular, this means that no red agent in N\C1

would allow a blue agent to join her singleton coalition.
To prove that the partition computed by our algorithm is

individually stable, we consider three classes of agents:

Agents in C0: By deviating, these agents can form a homo-
geneous coalition or a balanced coalition. They weakly
prefer C0 to a homogeneous coalition, and, since they
approve all subsequent changes to C, they weakly pre-
fer C1 to C0 (which is balanced). Thus, they have no IS-
deviation.

Agents in N \ C1: By construction, these agents do not
have an IS-deviation to C1, and they are indifferent be-
tween being alone and joining another agent of the same

color. Further, a deviation that results in a two-agent bal-
anced coalition is not an IS-deviation: all red agents in
N \ C1 strictly prefer being alone to being in a balanced
coalition. Thus, agents in N \ C1 have no IS-deviation.

Agents in C1 \ C0: Joining C, these agents strictly pre-
ferred C to being in a homogeneous coalition, and they
have approved all changes to C since then. Thus, they
strictly prefer being in C1 to being in a homogeneous
coalition. Further, a blue agent in C1 \ C0 cannot join a
singleton red coalition, since the red agent strictly prefers
to be left alone. On the other hand, every red agent in
C1 \C0 strictly prefers being alone to being in a balanced
coalition, so by transitivity she strictly prefers staying in
C1 to joining a singleton blue coalition.

The following example illustrates the execution of our al-
gorithm.

Example 4.2. Consider an HDG with B = {1, 2, 3}, R =
{4, 5}. The agents’ preferences over Θ are given by

2

3
∼′

1

1

2
�′

1 0,
2

3
�′

2

1

2
�′

2 0,

1

4
�′

3 0,
2

3
�′

4

1

2
�′

4 1,
2

3
�′

5 1.

The algorithm sets B∗ = {1, 2}, R∗ = {4} and C0 =
{1, 4}. Then, in the second phase agent 5 has an IS-deviation
to C0: we have {1, 4, 5} �5 {5}, {1, 4, 5} �4 {1, 4} and
{1, 4, 5} ∼1 {1, 4}. Since agents 2 and 3 do not have an
IS-deviation to {1, 4, 5}, the algorithm stops and outputs
({1, 4, 5}, {2}, {3}).

In Example 4.2, our algorithm outputs a Pareto optimal
outcome; however, our next example shows that this is not
always the case.

Example 4.3. Consider an HDG with B = {1, 2, 3, 4},
R = {5}, where 1

5 �′
i 0 �′

i
1
2 for each i ∈ B, and the

red agent’s most preferred ratio is 1
5 . Then, for every agent

the formation of the grand coalition is the most preferred
outcome. However, as B∗ = ∅, the algorithm sets C0 = ∅

and hence outputs the partition consisting of five singletons.

Interestingly, the algorithm of Bredereck et al. would out-
put the grand coalition on the instance from Example 4.3.
However, it is not the case that on any single-peaked instance
the output of Bredereck et al.’s algorithm Pareto-dominates
the output of Algorithm 1; there exists an example where
the converse is true. This means, in particular, that neither
of these algorithms is guaranteed to output a Pareto-optimal
outcome on single-peaked instances; this is in contrast with
the algorithm of Bogomolnaia and Jackson (2002), which,
given a single-peaked anonymous game, always outputs an
IS outcome that is also Pareto optimal.

Better-Response Dynamics We note that one can also at-
tempt to reach an IS outcome by a sequence of IS deviations:
starting from an arbitrary partition, we check if the current
partition is individually stable, and if not, we pick an agent
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who has an IS-deviation and allow her to perform it. We will
refer to this procedure as the better-response dynamics (IS-
BRD). While IS-BRD is a very general algorithm that can
be used for arbitrary hedonic games, it may fail to converge
even if an IS outcome exists, and it may need a superpoly-
nomial number of iterations to converge (Gairing and Sa-
vani 2010); however, no results concerning its convergence
are known for hedonic diversity games or for anonymous
games.

The following proposition, which applies to arbitrary di-
chotomous hedonic games, makes partial progress towards
the understanding of the performance of IS-BRD: it shows
that for such games IS-BRD always converges as long as in
the initial partition all agents belong to the grand coalition.
We note that existence of IS outcomes in dichotomous hedo-
nic games has been established by Peters (2016); his proof
provides a polynomial-time algorithm for finding an IS out-
come, but this algorithm differs from IS-BRD.

Proposition 4.4. For every dichotomous hedonic game with
a set of agents N , any sequence of IS deviations starting
from the grand coalition converges to an IS outcome after at
most |N | iterations.

We will revisit IS-BRD in Section 6, where we compare
different approaches to finding IS outcomes in HDGs.

5 Diversity Games With k Classes

Bredereck, Elkind, and Igarashi (2019) define hedonic diver-
sity games for two agent classes. However, diversity-related
considerations remain relevant in the presence of three or
more classes: for instance, in the example discussed in the
beginning of the paper, the visiting students may come from
several different countries. To capture such settings, we need
to reason about games with k agent classes for k > 2: e.g.,
for k = 3 we may have red, blue and green agents. A direct
generalization of the model of Bredereck et al. is to allow a
red agent to base her preferences on the ratio of red, blue and
green agents; a more restrictive approach is to assume that a
red agent only cares about the fraction of red agents in her
coalition. We will now explore both of these approaches; as
we feel that the latter approach is closer in spirit to the orig-
inal HDG model, we reserve the term k-HDG to refer to the
more restrictive model and refer to games where agents can
have arbitrary preferences over ratios as k-tuple HDGs.

Definition 5.1. A k-tuple hedonic diversity game is a he-
donic game (N, (�i)i∈N ) where N can be partitioned into
k pairwise disjoint sets R1, . . . , Rk so that for each agent
i ∈ N and every pair of coalitions C,D ∈ N (i) with
|C∩Rs|

|C| = |D∩Rs|
|D| for each s ∈ [k] we have C ∼i D.

Given an n-agent k-tuple HDG and an agent i ∈ N , we
can map a coalition C ∈ N (i) to a k-tuple of fractions(

|C∩R�|
|C|

)
�∈[k]

: i is indifferent between two coalitions that

map to the same tuple. Hence, i’s preferences can be de-
scribed by a partial order over such tuples. As the number
of tuples of this form is bounded by n2k, if k is bounded
by a constant, the size of this representation is polynomial
in n. On the other hand, every hedonic game with n agents

is an n-tuple HDG, as we can simply place each agent in a
separate class.

Our XP result for Nash stability extends to this more gen-
eral setting: if the total size of the smallest k − 1 classes
can be bounded by a constant, a Nash stable outcome can
be found in time polynomial in the input representation size,
which, in turn, can be bounded as O(n3) in this case. The
proof (omitted) is a simple generalization of the proof of
Theorem 3.1.
Theorem 5.2. Given a k-tuple HDG G with set of agents N ,
|N | = n, and classes R1, . . . , Rk such that minj∈[k] |N \
Rj | = p, we can decide whether G has a Nash stable out-
come in time (np)p · poly(n).

In contrast, the following example shows that Theo-
rem 4.1 does not extend to k > 2, i.e., k-tuple HDGs may
fail to have an individually stable outcome if k > 2.
Example 5.3. Consider a 3-tuple HDG G with N = R1 ∪
R2∪R3, R1 = {r}, R2 = {b}, R3 = {g}, where the agents
have the following preferences over 3-tuples:(

1

2
,
1

2
, 0

)
�′

r

(
1

2
, 0,

1

2

)
�′

r (1, 0, 0) �′
r

(
1

3
,
1

3
,
1

3

)
;

(
0,

1

2
,
1

2

)
�′

b

(
1

2
,
1

2
, 0

)
�′

b (0, 1, 0) �′
b

(
1

3
,
1

3
,
1

3

)
;

(
1

2
, 0,

1

2

)
�′

g

(
0,

1

2
,
1

2

)
�′

g (0, 0, 1) �′
g

(
1

3
,
1

3
,
1

3

)
.

That is, the top choice of agent r is to be in coalition {r, b},
followed by {r, g}, followed by the singleton coalition, fol-
lowed by the grand coalition. It is immediate that this game
has no IS outcome. Indeed, every agent has an IS-deviation
from the grand coalition, and if each agent is in a singleton
coalition, r has an IS-deviation to {b}. Further, if an outcome
consists of a coalition of size 2 and a singleton coalition, for
one of the agents in the coalition of size 2 joining the sin-
gleton agent is an IS-deviation. To extend this example to
k > 3 classes, we can simply add agents who prefer to be in
homogeneous coalitions.

Moreover, for every fixed k ≥ 5, deciding the existence
of an IS outcome in a k-tuple HDG is NP-complete.
Theorem 5.4. Given a k-tuple HDG G with k ≥ 5, it is
NP-complete to decide whether G has an individually stable
outcome.

In k-tuple HDGs, an agent may have very complex pref-
erences over ratios of agents from different classes. In our
second model, an agent does not distinguish among classes
other than her own and hence only cares about the fraction
of members of her class in her coalition; we will refer to
these games as k-HDGs. We note that a similar approach
has been used recently to provide a game-theoretic model of
Schelling segregation with k > 2 agent classes (Elkind et al.
2019; Echzell et al. 2019); this line of work, while similar in
spirit to hedonic diversity games, is, however, very different
from a technical perspective.
Definition 5.5. A hedonic diversity game with k-classes (k-
HDG) is a hedonic game (N, (�i)i∈N ) where N can be par-
titioned into k pairwise disjoint sets R1, . . . , Rk so that for
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each j ∈ [k], each agent i ∈ Rj , and every pair of coalitions
C,D ∈ N (i) we have C ∼i D as long as |C∩Rj |

|C| =
|D∩Rj |

|D| .

By definition, every k-HDG is a k-tuple HDG, but the
converse is not true, e.g., the game in Example 5.3 is not
a k-HDG for any value of k. Further, a 2-HDG is sim-
ply an HDG as defined by Bredereck et al. Unlike k-tuple
HDGs, k-HDGs admit a succinct representation even if k
is not bounded by a constant: for each agent i ∈ Rj , her
preferences over coalitions in N (i) can be described by her
preferences over fractions of the form �

m , where m ∈ [n],
� ∈ [min{|Rj |,m}].

Remarkably, this formalism captures anonymous games.

Proposition 5.6. Every anonymous game can be repre-
sented as a k-HDG.

Proof. Recall that an anonymous game G = (N, (�i)i∈N )
with |N | = n can be equivalently represented by a collection
(�∗

i )i∈N of weak orders over [n]: C �i D if and only if
|C| �∗

i |D|. It follows that G can be viewed as an n-HDG
with partition N = R1∪ . . .∪Rn, so that Ri = {i} for each
i ∈ N . Indeed, for each i ∈ N and each coalition C ∈ N (i),
the fraction of agents from class Ri in C is exactly 1

|C| , so
two coalitions C,D ∈ N (i) have the same fraction of agents
from Ri if and only if they have the same size.

It follows that k-HDGs inherit negative results for anony-
mous games, such as non-existence of IS outcomes (Bo-
gomolnaia and Jackson 2002) and hardness of deciding
whether a given game has an IS outcome (Ballester 2004).

Corollary 5.7. There exists a k-HDG that has no individ-
ually stable outcome. Moreover, deciding if a given k-HDG
has an individually stable outcome is NP-complete.

Now, Bogomolnaia and Jackson (2002) show that every
single-peaked anonymous game has an IS outcome. The def-
inition of single-peaked preferences extends naturally to k-
HDGs, i.e., we can use essentially the same definition as for
HDGs. However, it is not clear if the algorithm of Bogo-
molnaia and Jackson (2002) for finding an IS outcome in
single-peaked anonymous games can be extended to single-
peaked k-HDGs; this is an interesting question for future
work. Note also that the hardness result of Corollary 5.7 only
holds for k = n; it is not clear if the problem of finding an
IS outcome in k-HDGs remains hard for small values of k
(e.g., k = 3). Further, the anonymous game with no IS out-
comes constructed by Bogomolnaia and Jackson (2002) has
63 agents and therefore translates into a 63-HDG; it remains
an open problem whether k-HDGs with k < 63 are guaran-
teed to have an IS outcome.

6 Empirical Analysis

The algorithm for computing individually stable outcomes
described in Section 4 has two substantial advantages over
the algorithm of Bredereck et al.: first, it works for general
preferences, and second, it is much simpler. However, as il-
lustrated by Example 4.3, Bredereck et al.’s algorithm may
result in higher agents’ satisfaction. The IS-BRD algorithm
is even simpler, but we do not know if it always converges

to an IS outcome. To better understand the performance of
these three algorithms, in this section, we empirically com-
pare them with respect to three measures: the average social
welfare, the average coalition size and the average diversity.

Preference Models As Bredereck et al.’s algorithm is only
defined for single-peaked HDGs, we only use single-peaked
instances in our analysis. We consider three intuitively ap-
pealing ways of sampling strict preferences over ratios that
are single-peaked on Θ.
Uniform single-peaked preferences (uSP). For each

agent i, we sample �′
i uniformly at random among all

single-peaked strict orders on Θ, using the algorithm of
Walsh (2015) (see also Lackner and Lackner (2017)).

Uniform-peak single-peaked preferences (upSP). To
generate �′

i, we first select i’s most preferred ratio by
choosing a point in Θ uniformly at random. We then
continue to place elements of Θ in positions 2, . . . , |Θ|
of �′

i one by one; when k < |Θ| elements have been
ranked, there are at most two elements of Θ that can
be placed in position k + 1 so that the resulting rank-
ing is single-peaked on Θ, and we choose between them
with equal probability. This approach to sampling single-
peaked preferences was popularized by Conitzer (2009).

Symmetric single-peaked preferences (symSP). For each
agent i, we choose her preferred point θi from the uni-
form distribution on [0, 1] and define the relation �′

i so
that θ �′

i θ′ if and only if |θ − θi| ≤ |θ′ − θi|. While
theoretically the resulting relation may have ties, in our
experiments this approach always generated strict orders.

The first two distributions are quite different from each
other, e.g., in the uSP model a ranking where 0 appears first
is exponentially less likely than a ranking where 1

2 appears
first, while in the upSP model we are equally likely to see 0
and 1

2 ranked first. On the other hand, upSP and symSP ap-
pear to be fairly similar, but our experiments show that the
three algorithms behave differently on them.

Performance measures The primary measure we are in-
terested in is social welfare, i.e., the sum of agents’ utili-
ties. However, in general, this measure is difficult to define,
since in HDGs agents’ preferences over coalitions are given
by weak orders rather than numerical values. For symmetric
single-peaked preferences, we can circumvent this difficulty
by defining an agent’s disutility as the difference between
the fraction of red agents in her coalition and her ideal ratio,
so, given a partition π, for each i ∈ N we set

ω(i) = 1−
∣∣∣∣ |πi ∩R|

|πi| − θi

∣∣∣∣ .
For uniform and uniform-peak single-peaked preferences,
we identify the utility of agent i in partition π with the Borda
score of θ(πi) =

|πi∩R|
|πi| in �′

i: for each θ ∈ Θ, we set

β(i, θ) = |{θ′ ∈ Θ : θ �′
i θ

′}| and ω(i) =
β(i, θ(πi))

|Θ| − 1
.

In both cases, we define the average welfare as

ω(π) =
1

n

∑
i∈N

ω(i).
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Figure 1: Average social welfare
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To gain additional insight into the behavior of our algo-
rithms, we also consider two other measures, namely, the
average coalition size and the average diversity. We measure
the diversity of a coalition C as δ(C) = 1− 2

∣∣∣ 12 − |C∩R|
|C|

∣∣∣;
note that δ(C) = 0 if C is homogeneous and δ(C) = 1 if C
is balanced. Both for the average size and for the average di-
versity, we average over all agents in the partition rather than
all coalitions, as we focus on the experience of an individ-
ual agent. That is, the average coalition size and the average
diversity are defined, respectively, as

μ(π) =
1

n

∑
i∈N

|πi| and δ(π) =
1

n

∑
i∈N

δ(πi).

Results The results of our experiments are shown in Fig-
ures 1–4. In all graphs, BEI19 refers to the algorithm of
Bredereck et al., Alg1 refers to our Algorithm 1 and IS-BRD
refers to the IS-BRD algorithm that starts with a uniformly
random partition of agents and at each iteration chooses the
deviation uniformly at random from among all available de-
viations. Remarkably, on every instance we have generated,
IS-BRD converges in O(n2) iterations.

In Figures 1–3, we first consider HDGs with the same
number of red and blue agents. For each s = 2, . . . , 50,
we generate 1000 HDGs with s red and s blue agents; thus,
n = 2s takes even values from 4 to 100.
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Figure 3: Average diversity

Our results for social welfare are shown in Figure 1. For
uSP, all algorithms perform similarly and provide fairly high
social welfare. Intuitively, this is because under this prefer-
ence model the agents are likely to rank the ratio 1

2 highly,
and therefore they are quite happy to be in a coalition with
an approximately equal number of red and blue agents. For-
tunately, all of our algorithms are good at partitioning the
agents into such coalitions. In particular, under this distri-
bution it is likely that each agent weakly prefers a balanced
coalition to a homogeneous coalition, so Algorithm 1 will
be able to stop after setting C0 = N , and the grand coalition
will be well-liked by most agents. However, the other two
distributions tell a different story: under these distributions,
the algorithm of Bredereck et al. substantially outperforms
the other two algorithms, with IS-BRD being consistently
better than Algorithm 1. Thus, if the distribution of agents’
top choices is close to uniform and the numbers of red and
blue agents are equal, the more complex algorithm of Bred-
ereck et al. has an advantage over our approach.

Figure 2 shows that the three algorithms are very different
in terms of the sizes of coalitions they produce: Algorithm 1
tends to produce the largest coalitions, and the algorithm of
Bredereck et al. tends to produce the smallest coalitions; this
holds irrespective of how we sample the agents’ preferences.

Figure 3 shows that all three algorithms achieve almost
perfect diversity under the uSP distribution; we have sug-
gested possible reasons for this when discussing the social
welfare. For the other two distributions, Algorithm 1 and the
algorithm of Bredereck et al. perform similarly, while IS-
BRD results in somewhat less diverse partitions.

We also investigate what happens if the two agent classes
have different sizes. In Figure 4, we graph the average so-
cial welfare of individually stable outcomes obtained by
the three algorithms as the number of agents is fixed to
n = 50 and the fraction of red agents in the game (denoted
by θ(N)) changes from 0 to 0.5. In this setting, too, the al-
gorithm of Bredereck et al. outperforms the other two algo-
rithms with respect to social welfare, for almost all values
of θ(N) = |R|

|R|+|B| ; the difference is the most pronounced
for the upSP distribution. However, for the uSP distribution,
there is a range of values of θ(N) where Algorithm 1 has
better performance than the algorithm of Bredereck et al.;
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this can be attributed to the fact that the latter algorithm only
produces coalitions that are very unbalanced or perfectly
balanced, while Algorithm 1 can output coalitions with more
complex ratios.

Finally, we note that all of our algorithms are very fast; we
have not explicitly measured their performance, but on ev-
ery input size we have considered, each of them converges
in a few milliseconds. Comparing the three algorithms, Al-
gorithm 1 converges approximately three times faster than
the algorithm of Bredereck et al. and 50 times faster than
IS-BRD.

7 Conclusions

Our work contributes to the study of hedonic diversity
games—an interesting class of coalition formation games
introduced by Bredereck et al. We have focused on stabil-
ity concepts that deal with deviations by individual agents,
namely, Nash stability and individual stability. Remarkably,
while our algorithm for finding IS outcomes is theoretically
more appealing than the algorithm of Bredereck et al., in
that it is simpler and more general, empirically the latter al-
gorithm has better performance for the domain on which it is
defined. Perhaps the most interesting open question concern-
ing individual stability is whether IS-BRD is guaranteed to
converge to an IS outcome, and if yes, whether convergence
always happens after polynomially many iterations; we note
that, in our experiments, this is always the case. The same
question can be asked in the context of anonymous games.
We also feel that the k-HDG model deserves further atten-
tion: in particular, we would like to understand the complex-
ity of finding IS outcomes for small values of k and/or for
single-peaked preferences.
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