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Abstract

Several relaxations of envy-freeness, tailored to fair division
in settings with indivisible goods, have been introduced within
the last decade. Due to the lack of general existence results for
most of these concepts, great attention has been paid to estab-
lishing approximation guarantees. In this work, we propose
a simple algorithm that is universally fair in the sense that it
returns allocations that have good approximation guarantees
with respect to four such fairness notions at once. In particular,
this is the first algorithm achieving a (φ−1)-approximation of
envy-freeness up to any good (EFX) and a 2

φ+2
-approximation

of groupwise maximin share fairness (GMMS), where φ is the
golden ratio. The best known approximation factor, in poly-
nomial time, for either one of these fairness notions prior to
this work was 1/2. Moreover, the returned allocation achieves
envy-freeness up to one good (EF1) and a 2/3-approximation
of pairwise maximin share fairness (PMMS). While EFX is our
primary focus, we also exhibit how to fine-tune our algorithm
and improve further the guarantees for GMMS or PMMS.
Finally, we show that GMMS—and thus PMMS and EFX—
allocations always exist when the number of goods does not
exceed the number of agents by more than two.

1 Introduction

The mathematical study of fair division has a long and intrigu-
ing history, starting with the formal introduction of the cake-
cutting problem by Banach, Knaster and Steinhaus (Steinhaus
1948). Ever since, we have seen the emergence of several
fairness criteria, such as the classic notion of envy-freeness,
that has a dominant role in the literature, see e.g., (Brandt et
al. 2016) and references therein. On the other hand, the com-
putational study of finding fair allocations when the resources
are indivisible items is more recent. It is motivated by the re-
alization that envy-freeness and other classic fairness notions
are too demanding for the discrete setting. In particular, even
with two agents and one item, it is impossible to produce
an allocation with any reasonable worst-case approximation
guarantee with respect to envy-freeness.

Within the last decade, these considerations have led to
natural relaxations of envy-freeness, which are more suitable
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for the context of indivisible goods. The most prominent
examples, that are also the focus of our work, include the
notions of envy-freeness up to one good (EF1) and up to
any good (EFX), maximin share fairness (MMS), as well as
pairwise and groupwise maximin share fairness (PMMS and
GMMS respectively). These relatively new concepts breathed
new life into the field of fair division, but they do not come
without their issues. Most importantly, although they are gen-
erally easier to satisfy than envy-freeness, proving existence
results has turned out to be a very challenging task (with
the exception of EF1). For instance, it is an open problem to
resolve whether EFX or PMMS allocations always exist, even
for three agents with additive valuation functions. Surpris-
ingly, existence remains unresolved even when the number
of items is just slightly larger than the number of agents.

A reasonable approach is to focus on approximate versions
of these relaxations. Indeed, this has led to a series of positive
results, obtaining constant factor approximation algorithms
for all the aforementioned relaxed criteria (see Related Work).
However, improving on the currently known factors seems to
be approaching a stagnation point. For example, soon after
the introduction of EFX, a 1/2-approximation was established
(Plaut and Roughgarden 2018), but there has been no progress
beyond 1/2, despite the active interest on this notion.

We should also stress that these notions capture quite dif-
ferent aspects of fairness. A good approximation of any one
of EF1, EFX, MMS and PMMS does not necessarily imply par-
ticularly strong guarantees for any of the others (Amanatidis,
Birmpas, and Markakis 2018). Hence, it becomes compelling
to ask for allocations that attain good guarantees with re-
spect to several fairness notions simultaneously. Such results
are rather scarce in the literature, e.g., (Barman et al. 2018;
Garg and McGlaughlin 2019) or are purely existential (Cara-
giannis et al. 2019).

Motivated by the lack of such universally fair algorithms,
we look at the problem of computing allocations that (ap-
proximately) satisfy several fairness notions at the same time.
Along the way, we aim to improve the state-of-the-art for two
of these notions, namely EFX and GMMS. Somewhat unex-
pectedly, to do so we rely on simple subroutines that have
been repeatedly used in fair division before.
Contribution. Our main contribution is an algorithm that is
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universally fair, in the sense that it achieves a better than 1/2-
approximation for all the notions under consideration. The
main results can be summarized in the following statement.

Main Theorem. We can efficiently compute an allocation
that is simultaneously

i) EFX up to a factor of 0.618,
ii) GMMS up to a factor of 0.553 (thus, ditto for MMS),

iii) EF1, and
iv) PMMS up to a factor of 0.667.

We view parts i) and ii) of breaking the 1/2-approximation
barrier for EFX and GMMS, as the highlights of this work.
These desirable properties are attained by Algorithm 3 (Sec-
tion 3). We also suggest variations with improved guaran-
tees for one notion at the expense of the others. The factors
achieved by Algorithm 3 and its variants, compared against
the state of the art for each notion, are shown in Table 1.

EFX EF1 GMMS PMMS

Best known (poly-time) 0.5 1 0.5 0.781
Algorithm 3 0.618 1 0.553 0.667
Variant in Thm. 15 0.6 1 0.571 0.667
Variant in Thm. 17 0.618 0.894 0.553 0.717

Table 1: Summary of our results and state of the art. Known
results in the first row are due to Plaut and Roughgarden
(2018), Lipton et al. (2004), Barman et al. (2018), and
Kurokawa (2017), respectively.

At a technical level, our results are making use of two
algorithms that are known to produce only EF1 allocations.
The first one is a simple draft algorithm and the second one is
the envy-cycle-elimination algorithm of (Lipton et al. 2004).
Although these algorithms on their own do not possess any
good approximations with respect to EFX or GMMS, our main
insight is that by carefully combining parametric versions of
these algorithms, we can obtain approximation guarantees
for all the fairness criteria of interest here.

In Section 5, we return to the intriguing issue of existence.
We show that GMMS—and thus PMMS and EFX—allocations
always exist, and can be found efficiently, when the number
of goods does not exceed the number of agents by more than
two. While this is a simple case, it is still non-trivial to tackle
and has remained unresolved. Quite surprisingly, the idea of
envy cycle elimination again comes to the rescue, after we
carefully alter a small part of the instance.
Related work. Envy-freeness was initially suggested by
Gamow and Stern (1958), and more formally by Foley
(1967) and Varian (1974). Regarding the relaxations of envy-
freeness, EF1 was defined by Budish (2011), but it was also
implicit in the work of Lipton et al. (2004). Budish also
defined the notion of maximin shares, based on concepts
by Moulin (1990). Later on, Caragiannis et al. (2019) intro-
duced the notions of EFX and PMMS, and even more recently,
Barman et al. (2018) proposed to study GMMS allocations.
Further variants and generalizations of the criteria we present
here have also been considered, see e.g., (Suksompong 2018).

EF1 allocations are known to be efficiently computable by
the envy-cycle-elimination algorithm of Lipton et al. (2004).
For all other notions, the focus has been on approximation
algorithms since existence is either not guaranteed or is still
an open problem. The most well studied notion is MMS with a
series of positive results (Amanatidis et al. 2017b; Kurokawa,
Procaccia, and Wang 2018; Barman and Murthy 2017; Garg,
McGlaughlin, and Taki 2019), and best known approximation
of 3/4 (Ghodsi et al. 2018; Garg and Taki 2019). Exact and
approximate EFX allocations with both additive and general
valuations were studied by Plaut and Roughgarden (2018),
achieving the currently best 1/2-approximation. Recently,
a polynomial time algorithm with the same guarantee has
been obtained by Chan et al. (2019). The same factor is also
the best known for GMMS allocations in polynomial time, by
Barman et al. (2018) via a variant of envy cycle elimination.
Finally, the currently best approximation of 0.781 for PMMS
is due to Kurokawa (2017), using an approach similar to
ours. Connections between the approximate versions of these
criteria have been investigated by Amanatidis et al. (2018),
and we also refer the reader to the full version of our work
(Amanatidis, Markakis, and Ntokos 2019) for a comparison
of these implications with our results.

Some of these fairness criteria have also been studied in
combination with other objectives, such as Pareto optimal-
ity (Barman, Krishnamurthy, and Vaish 2018), truthfulness
(Amanatidis, Birmpas, and Markakis 2016; Amanatidis et al.
2017a), or maximizing the Nash welfare (Caragiannis et al.
2019; Caragiannis, Gravin, and Huang 2019).

Finally, in parallel and independently of our work, Chaud-
hury et al. (2020) also improve the 1/2 factor for GMMS but
not in polynomial time. The focus of their work is different,
and involves algorithms for EFX allocations by discarding a
relatively small number of items. As an implication of their
main results, they follow closely the proof of Proposition 3.4
of Amanatidis, Birmpas, and Markakis (2018), albeit from a
different starting point, and obtain a pseudo-polynomial time
4/7-approximation algorithm. This matches the guarantee of
our Theorem 15 for GMMS but does not provide any good
approximation for EFX.

2 Preliminaries

Let N = {1, 2, . . . , n} be a set of n agents and M be a set
of m indivisible items. Unless otherwise stated, we assume
that each agent is associated with a monotone, additive val-
uation function, i.e., for S ⊆ M , vi(S) =

∑
g∈S vi({g}).

For simplicity, we write vi(g) instead of vi({g}), for g ∈ M .
Monotonicity in this setting is equivalent to all items being
goods, i.e., vi(g) ≥ 0 for every i ∈ N, g ∈ M . For the al-
gorithms presented in this work, we assume that their input
contains the valuation function of each involved agent, i.e.,
vi(g) is given to the algorithm for every agent i and good g.

We consider the most standard setting in fair division,
where we want to allocate all the goods to the agents (no free
disposal). An allocation of M to the n agents is therefore
a partition, A = (A1, . . . , An), where Ai ∩ Aj = ∅ and
∪iAi = M . By Πn(M) we denote the set of all partitions
of a set M into n bundles. Although we allow for multiple
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goods to have the exact same value for a specific agent, we
assume a deterministic tie-breaking rule for the goods (e.g.,
break ties lexicographically). This way we may abuse the
notation and write g = argmaxh∈M vi(h) instead of “let g
be the lexicographically first element of argmaxh∈M vi(h)”.

2.1 Fairness Concepts

All the fairness notions we work with are relaxations of the
classic notion of envy-freeness.
Definition 1. An allocation A = (A1, . . . , An) is envy-free
(EF), if for every i, j ∈ N , vi(Ai) ≥ vi(Aj).

As envy-freeness is too strong to ask for, when we deal
with indivisible goods, several relaxed fairness notions have
been introduced so as to obtain meaningful positive results.
We start with two additive relaxations, and their approximate
versions, where an agent may envy another agent, but only
by an amount dependent on the value of a single good in the
other agent’s bundle.
Definition 2. An allocation A = (A1, . . . , An) is an
a) α-EF1 allocation (α-envy-free up to one good), if for every

pair of agents i, j ∈ N , with Aj �= ∅, there exists a good
g ∈ Aj , such that vi(Ai) ≥ α · vi(Aj \ {g}).

b) α-EFX allocation (α-envy-free up to any good), if for every
pair i, j ∈ N , with Aj �= ∅ and every good g ∈ Aj , it
holds that vi(Ai) ≥ α · vi(Aj \ {g}).1
Of course, for α = 1 we obtain precisely the notions of

envy-freeness up to one good (EF1) (Budish 2011) and envy-
freeness up to any good (EFX) (Caragiannis et al. 2019). It is
easy to see that EF implies EFX, which in turn implies EF1.

On a different direction, an interesting family of fairness
criteria has been developed around the notion of maximin
shares, also proposed by Budish (2011). The idea behind
maximin shares is to capture the worst-case guarantees of
generalizing the famous cut-and-choose protocol to multiple
agents: Suppose agent i is asked to partition the goods into n
bundles, while knowing that the other agents will choose a
bundle before her. In the worst case, she will be left with her
least valuable bundle. Assuming that agents are risk-averse,
agent i would choose a partition that maximizes the minimum
value of a bundle. This gives rise to the following definition.
Definition 3. Given n agents, and a subset S ⊆ M of goods,
the n-maximin share of agent i with respect to S is:

μi(n, S) = max
A∈Πn(S)

min
Aj∈A

vi(Aj) .

From the definition, it directly follows that n · μi(n, S) ≤
vi(S). When S = M , this quantity is just called the maximin
share of agent i. We say that T ∈ Πn(M) is an n-maximin
share defining partition for agent i, if minTj∈T vi(Tj) =
μi(n,M). When it is clear from context what n and M are,
we simply write μi instead of μi(n,M).

The most popular fairness notion based on maximin shares,
referred to as maximin share fairness, asks for a partition that
gives each agent her (approximate) maximin share.

1 The original definition required the condition to hold for all g ∈
Aj with vi(g) > 0. This is often dropped, assuming that all values
are positive (Plaut and Roughgarden 2018; Caragiannis, Gravin, and
Huang 2019). For our work neither assumption is needed.

Definition 4. An allocation A = (A1, . . . , An) is called an
α-MMS (α-maximin share) allocation if vi(Ai) ≥ α ·μi , for
every i ∈ N .

Variations of maximin share fairness have also been pro-
posed. Here we focus on two notable examples. The first one,
pairwise maximin share fairness, is related but not directly
comparable to MMS and was introduced by Caragiannis et
al. (2019). The idea is to demand an MMS-type guarantee but
for any pair of agents. That is, we can think of an agent i
as considering the combined bundle of herself and another
agent and requesting to receive at least her maximin share of
this bundle if split into two subsets.
Definition 5. An allocation A = (A1, . . . , An) is called an
α-PMMS (α-pairwise maximin share) allocation if for every
pair of agents i, j ∈ N , vi(Ai) ≥ α · μi(2, Ai ∪Aj).

Taking this one step further, we can demand an allocation
to have an MMS-type guarantee for any subset of agents. This
is referred to as groupwise maximin share fairness, intro-
duced by Barman et al. (2018).
Definition 6. An allocation A = (A1, . . . , An) is called
an α-GMMS (α-groupwise maximin share) allocation if for
every subset of agents N ′ ⊆ N and any agent i ∈ N ′,
vi(Ai) ≥ α · μi(|N ′|,∪j∈N ′Aj).

In Definitions 4, 5, and 6, when α = 1, we refer to the
corresponding allocations as MMS, PMMS, and GMMS allo-
cations respectively. Clearly, the notion of GMMS is stronger
than both MMS and PMMS. Further, it has been observed that
EF is stronger than GMMS (Barman et al. 2018) and, when
all values are positive, PMMS is stronger than EFX (Cara-
giannis et al. 2019). It should be noted that the approximate
versions of these notions are related in non-straightforward
ways (Amanatidis, Birmpas, and Markakis 2018).

We note that in the remainder of the paper, all missing
proofs are deferred to the full version of our work (Amana-
tidis, Markakis, and Ntokos 2019).

2.2 Known EF1 Algorithms

Among the fairness notions defined above, EF1 is the only
one for which we know that it can always be achieved. Fur-
thermore, two simple algorithms are already known for com-
puting such allocations in polynomial time. We state below a
parametric version of these algorithms so that they can run
for a limited number of steps or on a strict subset of the goods,
as we are going to use them later as subroutines.

In order to define the envy-cycle-elimination algorithm (Al-
gorithm 1) of Lipton et al. (2004), we first need to introduce
the notion of an envy graph. Suppose we have a partial allo-
cation P = (P1, . . . , Pn), i.e., an allocation of a strict subset
of M . We define the directed envy graph GP = (N,EP),
where (i, j) ∈ EP if and only if agent i currently envies
agent j, i.e., vi(Pi) < vi(Pj). Algorithm 1 builds an allo-
cation one good at a time; in each step, an agent that no
one envies receives the next available good. To ensure that
such an agent always exists, the algorithm identifies cycles
that are created in the envy graph and eliminates them by
appropriately reallocating some of the current bundles.

Regarding tie-breaking in line 10 of the algorithm, we
assume that agent i is the lexicographically first node of
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Algorithm 1: Envy-Cycle-Elimination(N,P,M ′)
where N : set of agents, P: initial partial allocation, M ′:
set of unallocated goods

1 Construct the envy graph GP
2 for every g ∈ M ′ in lexicographic order do
3 while there is no node of in-degree 0 in GP do
4 Find a cycle j1 → j2 → . . . → jr → j1 in GP
5 B = Pj1

6 for k = 1 to r − 1 do
7 Pjk = Pjk+1 /* shift the bundles */

8 Pjr = B
9 Update GP

10 Let i ∈ N be a node of in-degree 0
11 Pi = Pi ∪ {g}
12 Update GP
13 return P

GP with in-degree 0. Below we summarize the main known
properties of Algorithm 1 that we will utilize in our analysis.

Theorem 7 (Follows by (Lipton et al. 2004)). Let P be any
EF1 partial allocation and M ′ = M ∪n

i=1Pi. Then,

a) at the end of each iteration of the for loop, the resulting
partial allocation is EF1. Hence, the algorithm terminates
with an EF1 allocation in polynomial time (actually, even
for agents with general monotone valuation functions).

b) Fix an agent i, and let Ai be the bundle assigned to i at
the end of some iteration of the for loop. If A′

i is assigned
to i at the end of a future iteration, then vi(A

′
i) ≥ vi(Ai).

The first property of Theorem 7 simply says that the EF1
property is maintained during the execution of the algorithm,
given an initial EF1 allocation. The second property states
that agents only get happier throughout the course of the
algorithm, since they keep getting better and better bundles.

For additive valuation functions there is, in fact, an even
simpler greedy algorithm, referred to in the literature as the
round-robin algorithm, or the draft algorithm (Algorithm 2)
that also outputs EF1 allocations, see e.g., (Markakis 2017).
Given a fixed ordering of the agents, they simply pick their
favorite unallocated good one by one, according to that or-
dering, until there are no goods left.

Algorithm 2: Round-Robin(N,P,M ′, �, τ)
where N : set of agents, P: partial allocation, M ′: set of
unallocated goods, �: an ordering of N , τ : number of
steps

1 k = 1
2 while M ′ �= ∅ and τ > 0 do
3 g = argmaxh∈M′ v�[k](h)
4 P�[k] = P�[k] ∪ {g}
5 M ′ = M ′ {g}
6 k = k + 1 mod n
7 τ = τ − 1

8 return (P,M ′)

Theorem 8. Let � be any ordering of N and P∅ = (∅, . . . , ∅).
Then Algorithm 2 with input (N,P∅,M, �, |M |) produces an
EF1 allocation in polynomial time.

3 A Simple Universally Fair Algorithm

As mentioned above, Algorithm 3 is built on Algorithms 1
and 2. In particular, it first runs a simple preprocessing step
(Algorithm 4) that determines an appropriate ordering � of the
set of agents N . Then, it suffices to run only two rounds of the
round-robin algorithm, once with respect to � and once with
respect to the reverse of � (the second run is also restricted
to a subset of the agents), and finally run the envy-cycle-
elimination algorithm on the remaining instance. It should be
noted here that the preprocessing step is mostly introduced to
facilitate the presentation and the analysis of the algorithm.
As it can be seen by its description, Algorithm 4 could be
combined with the first run of the round-robin algorithm.
Indeed, the final assignments for the his in Algorithm 4
are exactly the goods that the agents receive in line 3 of
Algorithm 3 (see also Lemma 9 in the next section).

We use φ to denote the golden ratio. Recall that φ =
1+

√
5

2 ≈ 1.618 and that φ− 1 = φ−1 ≈ 0.618.
Before we move to the analysis of our algorithm, it is use-

ful to build some more intuition on how things work. The

Algorithm 3: Draft-and-Eliminate(N,M)

1 (�, n′) = Preprocessing(N,M)
2 Let A = (A1, . . . , An) with Ai = ∅ for each i ∈ N
3 (A,M ′) = Round-Robin(N,A,M, �, n)

4 �R = (�[n], �[n− 1], . . . , �[1])

5 (A,M ′) = Round-Robin(N,A,M ′, �R, n− n′)
6 A = Envy-Cycle-Elimination(N,A,M ′)
7 return A

Algorithm 4: Preprocessing(N,M)

1 L = ∅; A = N ; k = 1
2 while A �= ∅ do
3 Let i be the lexicographically first agent of A
4 hi = argmaxg∈M vi(g)

5 ti = m− |M |+ 1 /* i’s timestamp */
6 Let R = (N (A ∪ L)) ∪ {i}
7 j = argmaxt∈R vi(ht)
8 if φ · vi(hi) < vi(hj) then
9 hi = hj

10 L = L ∪ {i}
11 �[k] = i
12 k = k + 1
13 A = (A {i}) ∪ {j}
14 else
15 A = A {i}
16 M = M {hi}
17 for every i ∈ N L in order of increasing timestamp ti do
18 �[k] = i
19 k = k + 1

20 return (�, |L|)
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preprocessing part essentially reorders N so that the first few
agents (namely, the first |L| agents) are quite happy with their
pick in the first round of the round-robin subroutine. For the
remaining agents, we make sure that they get a second good
before we move to the envy-cycle-elimination algorithm. To
do so in a “balanced” way, these agents pick goods in re-
verse order. The resulting partial allocation, where everyone
receives one or two goods, turns out to have all the fairness
properties we want to achieve at the end, e.g., it is (φ− 1)-
EFX with respect to the currently allocated goods. Crucially,
we show that starting from there and then applying the envy-
cycle-elimination algorithm maintains these properties.

Coming back to the preprocessing part, the intuition is
to simulate a first round of Algorithm 2 and correct any
occurrences of extreme envy. In particular, if an agent envies
someone that chose before her by a factor greater than φ, then
she is moved to a position of high priority in the ordering that
is created. The agents moved to the first positions during this
process (i.e., agents in L) are guaranteed a good of high value
in line 3 of Algorithm 3. To counterbalance their advantage,
they are not allowed to pick a second good later in line 5.

To see that Algorithm 3 runs in polynomial time, given the
properties we have seen for Algorithms 1 and 2, it suffices
to check that the preprocessing step can be efficiently imple-
mented. Indeed, the if branch of the while loop in Algorithm
4 may be executed at most n times, since agents are irrevoca-
bly added to L. Similarly, the else branch may be executed at
most n times, as each time the set A becomes smaller and its
size never increases in the other parts of the algorithm.

4 Fairness Guarantees of Algorithm 3
We begin our analysis with two useful lemmata about Al-
gorithm 4. We stress that within Algorithm 4, every agent
i is associated with a distinct good hi, although nothing is
allocated at this step. The first lemma establishes some com-
parisons regarding the goods associated with the agents. The
second lemma states that this association actually coincides
with the partial allocation produced in line 3 of Algorithm 3.

Recall that the set L, defined in Algorithm 4, contains the
agents that get to pick first in line 3 of Algorithm 3 at the
expense of not choosing a second good in line 5. In terms of
Algorithm 3, L = {�[1], �[2], . . . , �[n′]}). The partition of N
into L and N L is pivotal for distinguishing the different
cases that are relevant in the analysis.
Lemma 9. Algorithm 4, with input (N,M), associates each
agent i with a single good hi, so that
a) vi(hi) > φ · vi(g), for any i ∈ L and g ∈ M ∪n

k=1{hk},
b) φ · vi(hi) ≥ vi(hj), for any i, j ∈ N L.

In order for the above lemma to be of any use, we need a
connection between the his and the partial allocations that
are produced in the first part of Algorithm 3 (lines 3-5). At
a first glance, the issue is that the order in which the goods
are assigned in Preprocessing(N,M) is somewhat different
than the order in which the goods are allocated in Round-
Robin(N,A,M, �, n). Next we establish this connection.
Lemma 10. The partial allocation produced in line 3 of
Algorithm 3 is A = ({h1}, {h2}, . . . , {hn}), where the his
are as in Lemma 9.

Given the above, we are going to consistently use the hi

notation for the goods allocated in line 3 of Algorithm 3,
throughout the remaining of this section. Further, for the
agents who receive a second good in line 5 of Algorithm 3
we use h′

i to denote that second good of agent i.
As a warm-up we first obtain that Algorithm 3 maintains

the fairness guarantee of its components, i.e., EF1 fairness.

Proposition 11. Algorithm 3 returns an EF1 allocation.

4.1 Envy-Freeness up to Any Good

Proving whether EFX allocations always exist or not seems
very challenging (Plaut and Roughgarden 2018; Caragian-
nis, Gravin, and Huang 2019). Even improving on the 1/2
approximation factor of Plaut and Roughgarden (2018) has
been one of the most intriguing recent open problems in fair
division. In this sense, we view the following as one of the
highlights of this work.

Theorem 12. The allocation A = (A1, . . . , An) returned
by Algorithm 3 is a (φ− 1)-EFX allocation.

Proof. Consider the allocation A = (A1, . . . , An) returned
by the algorithm, and fix two distinct agents i, j ∈ N . If
|Aj | = 1, then clearly, vi(Ai) ≥ maxg∈Aj

vi(Aj {g}) = 0.
So, assume that |Aj | ≥ 2 and let h be the last good added
to Aj (either in line 5 by reverse round-robin or in line 6 by
envy-cycle-elimination). Of course, at the time this happened,
Aj may belonged to an agent j′ other than j. Finally, let Aold

i ,
Aold

j′ be the bundles of i and j′, respectively, right before h

was allocated (i.e., h was added to Aold
j′ ). Note that Aold

i may
not necessarily be a subset of Ai due to the possible swaps
imposed by Algorithm 1, but part b) of Theorem 7 implies
that vi(Ai) ≥ vi(A

old
i ). We consider four cases, depending

on whether i ∈ L and on the type of step during which h was
added to Aold

j′ .
Case 1 (i ∈ L and h added in line 5). We have Aold

i = {hi},
as well as j′ ∈ N L and Aj = {hj′ , h

′
j′}. This imme-

diately implies that vi(Aold
i ) ≥ max{vi(hj′), vi(h

′
j′)} and,

thus, vi(Ai) ≥ maxg∈Aj
vi(Aj {g}).2

Case 2 (i ∈ L and h added in line 6). By the way that envy-
cycle-elimination chooses who to give the next good to, (line
10 of Algorithm 1), we know that right before h was added,
no one envied j′. In particular, vi(Aold

i ) ≥ vi(A
old
j′ ). We

further have vi(A
old
i ) ≥ vi(hi) > φ · vi(h), where the last

inequality directly follows from part a) of Lemma 9. Putting
everything together,

vi(Aj) = vi(A
old
j′ )+vi(h) ≤ (1+φ−1)vi(A

old
i ) ≤ φ·vi(Ai),

or, equivalently, vi(Ai) ≥ φ−1 · vi(Aj) = (φ− 1)vi(Aj).
Case 3 (i /∈ L and h added in line 5). We have i, j′ ∈ N L
and Aj = {hj′ , h

′
j′}. If �[i] < �[j′], then we proceed in a

way similar to Case 1. Indeed,

vi(Ai) ≥ vi(A
old
i ) ≥ vi(hi) ≥ max{vi(hj′), vi(h

′
j′)}

2 Here we achieve the EFX objective exactly. Instead, in a similar
argument as in Case 2, we could have used that vi(hi) > vi(hj′)
and vi(hi) > φ · vi(h′

j′) to get vi(Ai) ≥ (φ− 1)vi(Aj).
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= max
g∈Aj

vi(Aj {g}).

So, assume that �[i] > �[j′]. This, in particular, means that
vi(h

′
i) ≥ vi(h

′
j′). We have

vi(Ai) ≥ vi(A
old
i ) ≥ vi(hi) + vi(h

′
i) ≥

1

φ
vi(hj′) + vi(h

′
j′)

≥ 1

φ
(vi(hj′) + vi(h

′
j′)) = (φ− 1)vi(Aj),

where the third inequality directly follows from part b) of
Lemma 9.
Case 4 (i /∈ L and h added in line 6). Arguing like in Case 2,
we have vi(A

old
i ) ≥ vi(A

old
j′ ). Moreover, by the way round-

robin works, we know that vi(hi) ≥ vi(h
′
i) ≥ vi(h). In par-

ticular, vi(h) ≤ 1
2vi({hi, h

′
i}) ≤ 1

2vi(A
old
i ). Putting things

together, we have

vi(Aj) = vi(A
old
j′ )+vi(h) ≤

(
1+

1

2

)
vi(A

old
i ) ≤ φ ·vi(Ai).

Equivalently, vi(Ai) ≥ (φ− 1)vi(Aj).

It is not hard to see that our analysis is tight, i.e., there
are instances (even with n = 2 and m = 4) for which the
resulting allocation is not (φ− 1 + ε)-EFX for any ε > 0.

4.2 Groupwise Maximin Share Fairness

A result of Amanatidis et al. (2018) (Proposition 3.4) implies
that every exact EFX allocation is also a 4/7-GMMS alloca-
tion. Of course, the allocation produced by Algorithm 3 is
not exact EFX and, in general, an arbitrary (φ− 1)-EFX allo-
cation need not even be a 0.404-GMMS allocation (see full
version). For the particular allocation returned by Algorithm
3, however, we can show that the GMMS guarantee is signifi-
cantly better. Parts of our proof closely follow the proof of
the aforementioned proposition of Amanatidis et al. (2018).

We are going to need the following simple lemma that al-
lows to remove appropriately chosen subsets of goods, while
reducing the number of agents, so that the maximin share of
a specific agent does not decrease. In particular, the lemma
implies that for any good g, μi(n−1,M {g}) ≥ μi(n,M).
Lemma 13 (Amanatidis et al (2018)). Suppose T ∈ Πn(M)
is an n-maximin share defining partition for agent i. Then,
for any set of goods S, such that there exists some j with
S ⊆ Tj , it holds that μi(n− 1,M S) ≥ μi(n,M).
Theorem 14. The allocation A = (A1, . . . , An) returned
by Algorithm 3 is a 2

φ+2 -GMMS allocation.

Proof. Suppose that A is not a 2
φ+2 -GMMS allocation, i.e.,

there exists a subset of agents Q ⊆ N with |Q| = q, and
some agent j ∈ Q, so that vj(Aj) < 2

φ+2μj(q,R), where
R = ∪k∈QAk. That is, with respect to Q and R, the restric-
tion of A to Q is not a 2

φ+2 -MMS allocation. To facilitate the
presentation, and without loss of generality, we may assume
that Q = [q] and that agent 1 is such a “dissatisfied” agent.
We write μ1 instead of μ1(q,R).

We may remove any agent in Q, other than agent 1, that
receives exactly one good, and still end up with a suballoca-
tion that is not a 2

φ+2 -GMMS allocation. Indeed, if |Ai| = 1

for some i ∈ Q {1}, then (A1, . . . , Ai−1, Ai+1, . . . , Aq) is
an allocation of R Ai to Q {i} and, by Lemma 13, μ′

1 =
μ1(q − 1, R Ai) ≥ μ1. Thus, v1(A1) < 2

φ+2μ
′
1. There-

fore, again without loss of generality, we may assume that
|Ai| ≥ 2 for all i ∈ Q {1} in the initial allocation A. At
this point, we make the distinction on whether 1 ∈ L or not.
Case 1 (1 ∈ L). As we see from (the footnote of) Case 1
and from Case 2 of the proof of Theorem 12, we always
have v1(A1) ≥ (φ − 1)v1(Ai) (or equivalently v1(Ai) ≤
φv1(A1)) for all i ∈ Q {1}. Recall that, by the definition of
maximin share, μ1 ≤ 1

q v1(R). Thus

qμ1 ≤ v1(R) =
∑
k∈Q

v1(Ak) ≤ qφv1(A1).

That is, we get v1(A1) ≥ (φ − 1)μ1 ≥ 2
φ+2μ1, which

contradicts the choices of A and A1.
Case 2 (1 /∈ L). Consider some i ∈ Q {1} and let h be
the last good added to Ai. Following the notation introduced
in the proof of Theorem 12, this bundle belonged to some
agent i′ and Aold

i′ denotes the bundle allocated to i′ right
before h was added. According to Cases 3 and 4 in the proof
of Theorem 12, if h was added in line 5 of Algorithm 3
and �[1] ≥ �[i′] or if it was added in line 6, then v1(Ai) ≤
φv1(A1). We still need to deal with the subcase where h
was added in line 5 but �[1] < �[i′]. We call such an Ai

dubious. For dubious bundles, by their definition, we directly
have |Ai| = 2 and v1(A1) ≥ v1(h1) ≥ maxg∈Ai

v1(g). If
a bundle Ai is not dubious, or if it is dubious but we have
v1(Ai) ≤ 3

2v1(A1) < φv1(A1), we say that Ai is convenient.
A (dubious) bundle is inconvenient if it is not convenient. A
good is inconvenient if it belongs to an inconvenient bundle.
Let B be the set of all inconvenient goods.

Now we are going to show that v1(A1) ≥ 2
φ+2μ1(q

′, R′)

for a reduced instance that we get by possibly removing
some inconvenient goods. We do so in a way that ensures
that μ1(q

′, R′) ≥ μ1, thus contradicting the choices of A
and A1. We consider a q-maximin share defining partition
T for agent 1 with respect to R, i.e., minTi∈T v1(Ti) = μ1
and ∪k∈QTk = R.3 If there is a bundle of T containing two
goods of B, g1, g2, then we remove those two goods and
reduce the number of agents by one. By Lemma 13, we have
that μ1(q − 1, R {g1, g2}) ≥ μ1. We repeat as many times
as necessary to get a reduced instance with q′ ≤ q agents
and a set of goods R′ ⊆ R for which there is a q′-maximin
share defining partition T ′ for agent 1, such that no bundle
contains more than one good from B. By repeatedly using
Lemma 13, we get μ1(q

′, R′) ≥ μ1.
Let x be the number of goods from B in the reduced

instance. Clearly, x cannot be greater than q′, or some bundle
of T ′ would contain at least 2 inconvenient goods. Further,
if |B| = y, i.e., the number of inconvenient goods in the
original instance, then we know that the number of convenient
bundles in the restriction of A on Q was q − y

2 , and that the
number of agents was reduced y−x

2 times, i.e., q′ = q− y−x
2 .

3 Note that while goods in B may have no apparent significance
for the reduced instances and the allocations we talk about from this
point on, we keep referring to them as inconvenient.
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That is, we can express the number of convenient bundles in
the original instance in terms of q′ and x only, as q′ − x

2 .
In order to upper bound v1(R

′), notice that R′ contains all
the goods of all the convenient bundles plus x inconvenient
goods. Recall that any good of a dubious bundle has value
at most v1(A1), and that if Ai is convenient then v1(Ai) ≤
φv1(A1). So, we have

v1(R
′) ≤ xv1(A1) +

(
q′ − x

2
− 1

)
φv1(A1) + v1(A1)

= (φq′ + (1− φ/2)x− (φ− 1)) v1(A1)

≤ (φ+ (1− φ/2)) q′v1(A1) =
φ+ 2

2
q′v1(A1).

Combining this inequality with μ1 ≤ μ1(q
′, R′) (by the con-

struction of the reduced instance) and μ1(q
′, R′) ≤ 1

q′ v1(R
′)

(by the definition of maximin share), we get v1(A1) ≥
2

φ+2μ1, which contradicts the choices of A and A1.

A natural question is why we do not achieve the factor of
4/7 of the original proposition of Amanatidis et al. (2018)
instead. A close inspection of the original proof reveals that
we need a slightly stronger upper bound for the value of the
convenient bundles, i.e., a factor of 3/2 rather than φ that we
have here. There is no easy way to fix this in general without
other things breaking down badly in the analysis of Algorithm
3. The crucial observation, however, is that we only need the
distinction of convenient and inconvenient bundles for agents
in N L. By fine-tuning line 8 of Algorithm 4, we are able
to improve the inequalities about the convenient bundles just
for agents in N L and obtain a 4/7-GMMS allocation, at the
expense of some loss with respect to EFX.

Theorem 15. Suppose we modified Algorithm 3 by changing
φ in line 8 of Algorithm 4 to 3/2. Then the resulting allocation
is a 4/7-GMMS allocation. It is also a 3/5-EFX, a 2/3-PMMS,
and an EF1 allocation.

4.3 Pairwise Maximin Share Fairness

Any result for GMMS directly translates to a result for PMMS
with the exact same guarantee. Note, however, that the proof
of Theorem 14 suggests that the bad event with respect to
GMMS is having many inconvenient bundles. When we only
deal with two agents at a time, it is not hard to see that incon-
venient bundles are not an issue. In fact, their existence would
not be able to force the approximation ratio for PMMS below
2/3. Indeed, following the cases in the proof of Theorem 12
it is easy to show that this is exactly the guarantee achieved.

Theorem 16. The allocation A = (A1, . . . , An) returned
by Algorithm 3 is a 2/3-PMMS allocation.

While the above factor is tight, it is possible to improve the
PMMS guarantee by modifying slightly the envy graph. The
high level idea—due to Kurokawa (2017)—is that an agent
from N L should only exchange her initial bundle of two
goods for something significantly better.

Let P = (P1, . . . , Pn) be the partial allocation produced in
line 5 of Algorithm 3. For α > 1, the α-modified envy graph
Gα

P is defined like the envy graph GP but we drop any edge
(i, j) where: i ∈ N L, and i still has her original bundle, and

α · vi(Pi) > vi(Pj). That is, agents in N L are represented
in the envy graph as having an artificially amplified value (by
a factor of α) specifically for their original bundles.

The following theorem indicates how far we can push the
factor for PMMS, at the expense of EF1, while preserving the
original guarantees with respect to EFX and GMMS.
Theorem 17. Suppose we modified Algorithm 3 by using the
(φ− 1

2 )-adjusted envy graph in Algorithm 1. Then the result-
ing allocation is a 4φ−2

2φ+3 -PMMS and a 2
2φ−1 -EF1 allocation.

The guarantees of Theorems 12 and 14 are not affected.

5 GMMS, PMMS, and EFX with a Few Goods

In this section we focus on the exact versions of the fair-
ness notions under consideration. In particular, we show that
GMMS allocations always exist when m ≤ n + 2. This im-
plies that PMMS and EFX allocations also exist for this case
by the discussion in Section 2.4

The interesting case is when m = n+ 2 and is tackled by
Algorithm 5. When m ≤ n the problem is trivial, and the
m = n+ 1 case is straightforward as well. Adding one extra
good, however, makes things significantly more complex. To
point out how challenging these simple restricted cases can
be, we note that for the much better studied notion of MMS
fairness it is still open whether exact MMS allocations exist
when m = n+ 5 (Kurokawa, Procaccia, and Wang 2018).

Quite surprisingly, the envy-cycle-elimination algorithm
again comes to the rescue. We first run the round-robin algo-
rithm to allocate n− 1 goods to the first n− 1 agents. After
this, we have 3 goods remaining. Allocating these goods to
the last agent may destroy the properties we are after, so
we need to be careful on how to handle these three goods.
Instead, we (pretend to) pack them into two boxes; the big
box (virtual good p) “contains” two goods and the small box
(virtual good q) “contains” one. We tell each agent separately
that the big box contains her favorite two out of the three
items and give the big box to the last agent. Then we proceed
using the envy-cycle-elimination algorithm. At the end, the
owner of the big box gets her two favorite goods, while the
owner of the small box gets the remaining good.
Theorem 18. For instances with m ≤ n+ 2, a GMMS allo-
cation always exists and can be efficiently computed.

Algorithm 5: Draft-Pack-and-Eliminate(N,M)

1 Let � = (1, 2, . . . , n) and A = (∅, . . . , ∅)
2 (A,M ′) = Round-Robin(N,A,M, �, n− 1)
3 Create two virtual goods p and q, such that for all i ∈ N :

vi(q) = ming∈M′ vi(g) and vi(p) = vi(M
′)− vi(q)

4 Allocate p to agent n
5 A = Envy-Cycle-Elimination(N,A, {q})
6 Give the owner of p her two favorite goods from M ′ and the

owner of q the remaining good
7 return A

4 Actually, the existence of EFX allocations is directly implied by
the existence of PMMS allocations only when all values are positive.
However, our result is more general.
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Corollary 19. When m ≤ n + 2, we can efficiently find
PMMS and EFX allocations.
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