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Abstract

Text effect transfer aims at learning the mapping between
text visual effects while maintaining the text content. While
remarkably successful, existing methods have limited robust-
ness in font transfer and weak generalization ability to unseen
effects. To address these problems, we propose FET-GAN, a
novel end-to-end framework to implement visual effects trans-
fer with font variation among multiple text effects domains.
Our model achieves remarkable results both on arbitrary ef-
fect transfer between texts and effect translation from text to
graphic objects. By a few-shot fine-tuning strategy, FET-GAN
can generalize the transfer of the pre-trained model to the new
effect. Through extensive experimental validation and compar-
ison, our model advances the state-of-the-art in the text effect
transfer task. Besides, we have collected a font dataset includ-
ing 100 fonts of more than 800 Chinese and English characters.
Based on this dataset, we demonstrated the generalization abil-
ity of our model by the application that complements the font
library automatically by few-shot samples. This application is
significant in reducing the labor cost for the font designer.

1 Introduction

When designing a poster or web page, graphic designers ad-
just the visual effects of text or icons according to different
themes. Such visual effects include colors, outlines, shadows,
glows and textures. The consistent stylized effects of visual
components allow the posters or web pages to be visually
attractive. However, it is a tedious and repetitive work to
apply stylized effects to all components manually. Similarly,
when constructing a new font, the font designer also needs
to style the glyph according to the specified theme. These
style variations include factors like the stroke width, the ap-
pearance of serif, aspect ratio of the whole glyphs, and the
curvature of lines. Different characters in one font library
should have the same style, but it is tedious to manually ap-
ply these stylized effects to different characters. This problem
is especially serious when the character set is very large, such
as the Chinese or Japanese character set. In this work, we
propose a general framework for synthesizing arbitrary styl-
ized effects into target text with font variation with the help
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Figure 1: FET-GAN implements two functions. 1) It can
transfer effects among texts in a few-shot manner. Particu-
larly, the effects cover not only visual effects but also font
variations. 2) It can translate the effects of text onto non-text
graphic object. The font transfer demos in the last row are
the foot stone of our font library complements application.

of deep neural networks. Furthermore, our model can extend
the transfer from the text onto other graphic objects to keep
the consistency of the style among different components.

From the perspective of design aesthetics, the choice of
fonts is highly correlated with visual expression. For example,
the Times font is an appropriate choice for a formal academic
poster, while the Comic Sans MS font can be used on the
kindergarten website. If the two are exchanged, even if the
other visual effects are unchanged, the overall style will be
uncoordinated. Therefore, the typeface should be considered
with the visual effect as a whole. However, in the existing
research of text effect transfer, typeface and visual effect are
treated as two isolated attributes (Yang et al. 2019; Yang
et al. 2017). Among them, (Yang et al. 2019) requires to
train multiple subnetworks to avoid interference from font
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changes. Some networks are used to fetch the font image
from image A, and the others transfer the effect from image
B to the fetched font image. The output has to share the
same typeface with A which is different from B. Besides, for
different visual objects on the same page, such as text and
icon, consistent stylization can make them harmonious and
balanced. Unfortunately, there is no universal framework to
transfer visual effects between text and graphic objects.

For humans, after changing the stylized effect of a text
or graphic, we can still identify the original structure. For
example, a triangle, whether changing color or adding texture,
people can recognize that it is a triangle. Similarly, a letter W ,
with a different color, texture or typeface, one can still read it
as W . From such observations, we assume that a visual object
can be decomposed into global structural features and local
effect features. The global structural features are stable and
invariant to the change of effect features, and it always can be
recognized correctly. Conversely, the local effect includes all
other factors. Based on these assumptions, both typeface and
visual effects can be classified as the local effect features.

As an attempt to separate the structure feature and the
effect feature of an arbitrarily visual object, we propose the
Font and Effect Transfer (FET-GAN) framework. It aims at
learning a translation model. Given K samples in the same
style for reference, the model can translate the original effects
of an object to the referenced effect while maintaining the
global structure features unchanged. Specifically, we use an
encoder E to extract the implicit representation of the stylized
effect as an effect code. As the K referenced samples have
the same effect, the effect codes of them are encouraged to be
the same. At the same time, we train a generator G with the
adversarial training strategy (Goodfellow et al. 2014). Given
the effect code, G translates the original effect of a visual
object to the target effect indicated by the effect code. As a
general framework, a trained model allows the stylized effect
transfer between texts, as well as the translation of the effects
from text onto the graphic objects as shown in Figure 1.

In summary, our contributions are fourfold:
• We propose a new perspective which treats typeface as

a part of the visual effect. Compared with the existing
methods, the proposed approach can achieve effect transfer
including typeface variation with a unified model.

• The proposed method learns the representation of effect in
a few-shot learning manner and does not require a paired
typeface-effect dataset. This representation approach can
be generalized to non-text objects of any shape while re-
ducing the difficulty of data collection.

• We come up with a few-shot finetune strategy to generalize
our model to a new unseen effect.

• A new font dataset was collected on which we demonstrate
the ability of our model to assist the font designer in com-
plementing a font library. Given a few reference characters
by font designers, the model can automatically complete
other characters in the font library. This can significantly
reduce the cost in a real-world application.
Our dataset, pre-trained models and codes in PyTorch

(Paszke et al. 2017) are available at https://liweileev.github.
io/FET-GAN/.

2 Related Work

Text effect transferring is related to the style transfer task.
Style Transfer methods extract the style information from a
reference image to synthesize an output based on the overall
structure of a content image. In the seminal work of Gatys,
Ecker, and Bethge (2016), the authors put forward that the
style of an image is the information irrelevant to the position.
They formulate the style representation by the second-order
statistic of features in the form of the Gram matrix. And
they refer to the high-level features as the content represen-
tation. All features are computed by the pre-trained VGG
Network (Simonyan and Zisserman 2015). In the design of
the objective function, the transferred image should match
the style representation with the style image while matching
the content representation with the content image. However,
it relies on an optimization process, which is prohibitively
slow. To speed up the stylization, (Li and Wand 2016;
Johnson, Alahi, and Li 2016) attempt to train feed-forward
networks that perform stylization with a single forward pass.
But these methods suffer from a limitation that each net-
work is only applicable to one or several specified styles.
Significant efforts have been devoted to resolving this
flexibility-speed dilemma such as (Huang and Belongie 2017;
Li et al. 2017). To apply style transfer given an arbitrary style,
they try to find a more general style representation as an
alternative to the Gram Matrix. Among them, Huang and
Belongie (2017) introduce an adaptive instance normaliza-
tion layer to align the channel-wise mean and variance of the
content features with those of the style features. This idea has
been adopted to other tasks such as unsupervised translation
(Liu et al. 2019) and high-quality generation (Karras, Laine,
and Aila 2019). Inspired by this, we use a similar normal-
ization method to introduce the target text effect as affine
parameters in our effect transfer task.

Image-to-image Translation aims at learning an im-
age generation function that maps an input image of the
source domain to the target domain. Isola et al. (2017)
propose the first unified translation framework in a su-
pervised manner based on conditional GAN (Mirza and
Osindero 2014). It combines an �1 loss and an adversar-
ial loss with the paired data samples from two domains.
To alleviate the problem of obtaining data pairs, unpaired
image-to-image translation frameworks (Zhu et al. 2017;
Liu, Breuel, and Kautz 2017) have been proposed. Among
them, Zhu et al. (2017) introduce a cycle consistency loss
to enforce the translated image could be translated back to
the input one. This cycle consistency preserves key attributes
between the input and the translated image. Liu, Breuel, and
Kautz (2017) make a shared-latent space assumption that a
pair of corresponding images in different domains can be
mapped to the same latent representation in a shared-latent
space. Our work is based on the shared latent space assump-
tion but is designed for the few-shot arbitrary stylized effects
transfer task. However, all these frameworks are only capable
of learning the relations between two domains. To extend the
translation ability in handling multiple domains, Choi et al.
(2018) utilize a one-hot vector to specify the target domain.
Nevertheless, the extension to a new domain is still expensive.
To handle this, Liu et al. (2019) present a few-shot, unsuper-
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Figure 2: (a) The architecture of the encoder E and the generator G. E learns the effect code to express the stylized effect of
reference images y1, . . . , yK or source image x. Then it feeds the effect code into G via adaptive instance normalization (Huang
and Belongie 2017) after several fully-connected layers. G inputs an image x and outputs an image according to the effect
code given by E. The output shares the same global structure with the input while keeping the effect from references. (b) The
framework of FET-GAN with three subnetworks. The pictures are best viewed magnified on screen.

vised image-to-image translation algorithm that works on
previously unseen target domain. Based on the above image-
to-image translation methods, our work focuses on the text
effects translation problem that maps an image of a source
text effect domain to an arbitrary target text effect domain by
a few-shot learning method.

Text Effects Transfer is first raised by Yang et al. in 2017.
They match the stylized patches based on the normalized
position between the strokes of glyphs. The method has ap-
pealing results but bears a heavy computational burden due
to the optimal patch scale detection and distance estimation.
Also, the structural differences of glyphs impact the trans-
fer results a lot. TET-GAN (Yang et al. 2019) is the first to
carry out text effects transfer via deep neural networks. With
the help of conditional adversarial training, the authors try
to disentangle glyph features from effect features by com-
bining three encoders and two generators into three pairs of
auto-encoder architectures. Except for the optimization bur-
den of vast parameters in seven subnetworks (three encoders,
two generators, and two discriminators), the model is also
not robust to different glyph structure. Empirically, we find
the generator interweaves the foreground and background
in some cases. Additionally, all these frameworks only con-
sider transferring visual effects without font variation. The

transferred text still share the same font with the source one.
In the work from Azadi et al. (2018), the authors try to han-
dle this problem by combining font transfer and text effect
transfer with two successive subnetworks. However, it can
only handle 26 English capital letters with 64×64 resolution.
In contrast, our approach uses an end-to-end framework to
implement the text effects transfer with fonts variation. Apart
from this, our model can be generalized to unseen text effects
with a finetuning strategy. Further, our approach is stable
enough to transfer effects to other non-text objects.

3 Method

In this part, we first describe FET-GAN, a framework to
implement visual effects transfer with font variation among
multiple text effects domains. Then, we will introduce how
to use the few-shot finetune strategy to generalize the pre-
trained effect transfer model to the unseen effect.

3.1 Framework

Our goal, as illustrated in Figure 2(a), is to train an encoder
E and a generator G to learn mappings among multiple text
effect domains. The encoder learns a latent representation
from K reference samples in a few-shot manner. These K
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reference samples belong to the same text effect domain Y .
We refer to the learned latent representation as the effect
code z. The generator is a network with a bottleneck similar
to the auto-encoder architecture. G inputs a source image
xs from domain X and outputs an image ỹs conditioned
on the effect code z. The output image ỹs shares the same
structure with input image xs. It also has the effect and type-
face the same as the reference images. The effect code feeds
into G via adaptive instance normalization after a few full
connection operations. In order to make outputs diverse, we
introduce the adversarial training (Goodfellow et al. 2014).
To achieve our multi-domain transfer task, we generalize the
patch-based discriminator proposed in (Isola et al. 2017) to
multi-class version. The output of the original patch-based
discriminator is a patch tensor whose channel number is 1.
We change the number of channels in output to the number
of classes of the training set as shown in Figure 3. Such a
multi-class discriminator can be regarded as C discrimina-
tors that share parameters except for the last layer. C is the
number of classes in the training set. Each class is a different
stylized effect domain. For backpropagation, we only update
the parameters in the channel whose class is corresponding
to the reference images.

Figure 2(b) illustrates the whole training process of our
proposed approach. Now, let’s take a closer look at the design
of the objective function.
Effect Code Consistency Loss. Here, we make an assump-
tion that the effect codes for different samples in the same
domain should be consistent. According to this assumption,
we design the following constraint to the encoder:

Lcode = Ey∼Y

K∑

i=1

K∑

j=i

‖E(yi)− E(yj)‖1 (1)

This is inspired by (Kulkarni et al. 2015), which disentan-
gles generative factors by pushing the latent codes of similar
samples to be the same.
Transfer Loss. Unlike many other image-to-image transla-
tion tasks, there are corresponding samples among different
domains for text effect transfer task. Since the total number
of characters in one language is finite, it is achievable to
obtain the same character in different text effects. For the
paired samples of the same character in different domains,
we propose the following transfer loss:

Ltransfer = Ex∼X,y∼Y

∥∥∥∥∥yx −G(x,

∑K
i=1 E(yi)

K
)

∥∥∥∥∥
1

(2)

where yx is the target sample of x in domain Y . According
to the assumption in loss (1), we take the mean of the effect
codes of the K reference samples as the final effect code of
domain Y .

This loss requires yx, the target sample which gives a
supervised signal. Without yx, the training of this effect class
is unsupervised. In the real-world situation, yx may not be
provided in every effect class, and the whole training is semi-
supervised. In Section 4.4, we will compare the results of our
model under supervised, unsupervised, and semi-supervised
conditions by random eliminating the target samples.

Figure 3: The architecture of discriminator D. The number
of channels in output is the number of classes in the training
set denoted as C. We calculate the loss by taking the channel
corresponding to the class of the input.

Reconstruction Loss. This is inspired by the cycle consis-
tency idea from (Zhu et al. 2017). If we feed the effect code
of the source image xs into G, the output image x̃s should
be exactly the same as the input source:

Lrec = Ex∼X ‖x−G(x,E(x))‖1 (3)

This loss is helpful to guarantee the effect code extracted
by the encoder is effective. With the aid of transfer loss
and reconstruction loss, the outputs of G vary by references
although the inputs are the same.
Adversarial Loss. To make the generated images indistin-
guishable from the real ones, we adopt an adversarial loss
of the hinge version (Miyato et al. 2018). On top of that,
we introduce the gradient penalty regularization proposed
in (Mescheder, Geiger, and Nowozin 2018) to the real sam-
ples to ensure the convergence and stability of training. For
source inputs x and the reconstructed outputs G(x,E(x)),
the adversarial loss is computed only using the correspond-
ing prediction score of discriminator D in the channel Cx

(denoted as DCx ) as follows:

LX
adv = Ex∼X [min(0,−1 +DCx(x)]

+ Ex∼X [min(0,−1−DCx(G(x,E(x))))]

+ λGPEx∼X ‖∇D(x)‖2
(4)

where λGP is the weight of the gradient penalty regulariza-
tion term. We use λGP = 10 indicated by the original paper.

Similarly, for reference images y and the transferred out-
puts G(x,E(y)), the loss is computed with the prediction
score of DCy :

LY
adv = Ey∼Y [min(0,−1 +DCy (y)]

+ E
x∼X,

y1,...,yK∼Y

[min(0,−1−DCy (G(x,

∑K
i=1 E(yi)

K
)))]

+ λGPEy∼Y ‖∇D(y)‖2

(5)

Full Objective. Finally, the objective function is as follow:

L = λcodeLcode + λtransferLtransfer + λrecLrec

+ λGAN (LX
adv + LY

adv)

where λcode, λtransfer, λrec and λGAN are hyper-
parameters that control the relative importance of the losses.
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The components of our proposed model G, E and D are
optimized via the following optimization problem:

min
G,E

max
D

L

3.2 Finetune Strategy for Generalization

Models trained by deep networks rely heavily on the distri-
bution of training sets. For new samples that do not obey the
training set distribution, the performance of the model will
plummet. To extend our method to support the arbitrary effect
transfer task, we come up with a finetune strategy based on
the pre-trained model. This finetuning strategy only requires
one or several samples from a new effect.

Given samples from the new effect, we randomly flip and
crop them to make a temporary dataset. All images in the
temporary dataset have the same effect but differ in structure
or position. After building the dataset, we initialize a model
based on the well-trained one and then finetune it. Because
the samples in the current dataset do not belong to any class
of the original datasets, in order to add new effect class, we
append a new channel to the output of the discriminator. We
take a random batch of real samples in the temporary dataset
and send them to the pre-trained discriminator to obtain the
predictions of all C channels. The maximum one from these
predictions is taken and the parameters of this channel is used
as the initialization of the C+1 channel. As explained before,
the outputs of the discriminator in different channels indicate
whether the sample comes from the domain corresponding
to this channel. Such an initialization method can select the
existing effect which is most similar to the new effect. Then,
we finetune a new model to support the new effect.

Notice that the source image and the reference images
come from the same effect domain in the finetuning process.
This means the transferred image in loss (2) and the recon-
structed image in loss (3) look the same. The two losses
encourage the encoder to extract the effect feature form the
temporary dataset. In Section 4.5, we will compare the trans-
fer results before and after the finetuning on an unseen effect.

4 Experiments

4.1 Datasets

TextEffects Dataset: We use the text effects dataset proposed
in (Yang et al. 2019). This dataset is paired that each text
effect image is provided with its font image. Based on our
assumption that font is a part of the visual effect, we separate
6 fonts and combine them with the original 64 effects. Finally,
there are a total of 70 classes of text effects.
Fonts-100: We collect a new dataset including 100 fonts
each with 775 Chinese characters, 52 English letters, and 10
Arabic numerals. There are a total of 83,700 images, each
of which is 320 × 320 in size. Figure 4 shows an overview
of these fonts for the same Chinese character. This Fonts-
100 dataset is used to demonstrate the ability of our model
to assist the font designer in complementing characters in
font library. We take the first 80 fonts for training, and the
remaining 20 as unseen for finetuning. Specific experimental
configuration and results are in Section 4.6.

Figure 4: A demonstration of the Fonts-100 dataset. We
choose this Chinese character (read as yong) because it is
known for containing all the stroke types.

4.2 Comparison

We conduct five comparison experiments of our model with
approaches for the font and effect transfer task as shown
in Figure 5, each row being a group. These approaches are
TET-GAN (Yang et al. 2019), T-Effect (Yang et al. 2017),
CycleGAN (Zhu et al. 2017), StarGAN (Choi et al. 2018)
and AdaIN (Huang and Belongie 2017).

For FET-GAN, we set λcode = 1, λtransfer = 10, λrec =
10 and λGAN = 1. We optimize the objective using Adam
solver (Kingma and Ba 2014) with a batch size of 4. All
networks are trained from scratch with a learning rate of
0.0002. Based on the TextEffects dataset with 70 effects, we
train the FET-GAN model using K = 4 for 30 epochs and
test it with K = 1.

In the first row, we compare the results of text effect trans-
fer with font variation. For this task, we expect models should
output the image which has the structure of the source and the
visual effects and fonts of the reference. Specially, the glyph
image of the reference is essential to construct the analogy
pairs for T-Effect. We put them in the lower-left corner of the
result. We can find that CycleGAN and AdaIN only capture
partial color feature of the strokes and background. But the
transfer of outline effect and typeface are failed. TET-GAN,
T-Effect perform the visual effect transfer well, but can not
transfer the typeface. Besides, the result of T-Effect is less
natural and smooth than another three methods. StarGAN
tries to capture the change of typeface, but not work well. The
result is between the two typefaces of source and reference.
In contrast, the transfer result of FET-GAN is closest to that
of human.

The second row demonstrates the robustness comparison
for source input. We believe that all text effects contain the
same global structural information about the text. In this ex-
periment, we change the source to a different style which does
not exist in the training dataset to test the robustness of mod-
els for source input. We can find that TET-GAN, CycleGAN
and AdaIN interwove the foreground and the background.
The results of StarGAN and FET-GAN are similar to that of
human while the output of FET-GAN is much clearer.

The third row shows the comparison of the effect transfer
between complicated effects. The source and the reference
are different in color, texture, outline, background, and type-
face. T-Effect and AdaIN are unable to transfer effects, and
even fail to obtain a complete structure. TET-GAN need to
de-stylize the source to the font image, then stylize the output
font image to the reference effect. CycleGAN, StarGAN, and
FET-GAN can get appealing results. Among them, Cycle-
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Figure 5: Comparisons with state-of-the-art methods on font and effect transfer task. Manual results by human are shown as
ground truth. Five rows correspond to (1) text effect transfer with font variation, (2) robustness comparison for source, (3)
complicated effect transfer, (4) effect translation from text to graphic, (5) generalization comparison of unseen effect, respectively.

GAN has the highest training cost and StarGAN is the least
clear. In contrast, our model is both robust and effective.

The stylized effects translation from the text onto a non-
text graphic object are shown in the fourth row. Since the
source image is completely different from the domains in the
training dataset, CycleGAN does not support such a transfer.
For the remaining five models, only FET-GAN can get an
appealing result. There are structural errors or texture disorder
in all other results.

The last row is the generalization results of new effect not
included in the dataset. As domain adaption models based on
the training dataset, CycleGAN and StarGAN do not support
this kind of transfer. Since this is an ill-posed problem, there
is no ground-truth as a standard. Through observation, we
find that the results of TET-GAN and FET-GAN are similar,
the result of T-Effect is relatively blurry, and the results of
AdaIN differ most from the reference.

4.3 The Influence of K

The influence of K needs to be discussed in three cases:
training, testing and finetuning. We conduct the experiments
under these three situation with different K as shown in
Figure 6. All other hyper-parameter settings are the same
with the Section 4.2.

In the training stage, we train four models with K=1,2,4,8,
respectively. After training for 30 epochs, we test these mod-
els with the same source and reference input. And the number
of reference input for test is 1. The result is in the first row of
Figure 6. We can find that when K = 1 the transfer result is
not satisfactory. As K increases, the effects of the transferred
get closer to the reference.

For the test stage, we use the model trained with K =

Figure 6: Comparisons under different K. Three rows corre-
spond to training, test and finetuning, respectively.

4. With the same source, we input the different number of
reference images from the same effect domain to compare
the results. As illustrated in the second row, the number
of reference images do not influence the result. This is in
line with expectations. Equation (1) ensures effect codes of
samples in the same domain to be identical, so the model is
less sensitive to variations.

The influence of K on the finetuning stage is similar to
that of the training stage. After finetuning with different K,
we test the models with the same source and reference input.
We find that the larger the K is, the better the effect is.

4.4 Ablation Study

In Figure 7, we study the effect of the losses. We train all
models with K = 4 for 30 epochs and compare the results
with the same inputs. Without Lcode, the transferred result
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Figure 7: Effect of Lcode, gradient penalty regularization and
Ltransfer. By eliminating some or all of the target samples,
the task becomes semi-supervised or unsupervised.

looks unrealistic with uneven color and unclear outline. Gra-
dient penalty regularization is removed by setting λGP = 0.
We find that white or black spots appear due to the training
instability of GAN. Without Ltransfer, the training becomes
unsupervised. After training for 30 epochs, the transferred
image is still blurry. We also perform semi-supervised experi-
ments by randomly removing 50% target samples. Compared
with the supervised result, after 30 epochs training, the result
of semi-supervised is similar, but the convergence is slower.
From the perspective of data collection, semi-supervised is
more in line with the real-world requirement.

4.5 Generalization

Figure 8: The generalization to a new effect.

In this experiment, we verify the effectiveness of the fine-
tuning strategy, which is used to extend the trained model
to the new effect. We download a new text effect from the
Internet as shown in Figure 8(a). As described in Section
3.2, a temporary dataset is built by random flip and crop
the samples. Then, we finetune the model with 40 iterations
and the intermediate results are shown in Figure 8(b). Since
source and reference images belong to the same domain,
reconstructed and transferred results are always the same.
Unfortunately, we find that when the number of iterations
is too large, the over-fitting phenomenon arises and the re-
sults are poor due to the simplicity of the dataset. Therefore,
how to choose a reasonable number of iterations remains
unsolved.

4.6 Application: Complement Font Library
Automatically

We design an experiment of complementing characters in the
font library automatically. In Figure 9, we show the results
based on the 100-Fonts datasets. For training, we randomly

Figure 9: Using FET-GAN to complement characters in the
font library. The first two rows are font transfer examples
of characters in the dataset. The third row demonstrates the
results of characters not in the dataset. The last row shows
generalization result to a new font after 4-shot finetuning.

select 80 fonts as the training set and let K = 4 to train 30
epochs. In the first two rows, there are four transfered exam-
ples of characters in the dataset. The transferred images all
retain the structure feature of the source and the typeface fea-
ture of the reference. In the third row, we pick two characters
not included in the 837 characters. The results are also sat-
isfactory. In the last row, we randomly choose a new font in
the remaining 20 fonts of Fonts-100 and finetune the trained
model by four samples for 40 iterations. After finetuning, our
model can also perform font transfer task for the new font.

In summary, our model can implement the font transfer
task. In particular, the latter two experiments exemplify that
our proposed method is helpful in the automatic construction
and completion of a font library. This application is signifi-
cant in reducing labor cost for font designers.

5 Conclusion

In this paper, we propose FET-GAN, which implements text
effect transfer with font variation among multiple text ef-
fects domains. This model can also achieve a stable result on
effect translation from text to graphic objects. Besides, we
come up with a new few-shot finetuning strategy to make the
model generalizable to the new effect. Extensive experiments
show that our approach outperforms dedicated approaches
in the text effect transfer task. Furthermore, we collect a
new dataset with 100 fonts and develop a character comple-
ment application in font libraries. Honestly speaking, both
the network architectures and loss designs in our method are
not new topics in the image-to-image translation community,
but the character disintegration perspective in our model can
significantly reduce the labor cost for text effect and font
designers in practice. We hope our work would open the
path for automatic font library completion, and the proposed
few-shot finetuning strategy can be adapted to other training
techniques.
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