
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Generating Interactive Worlds with Text

Angela Fan,∗1,2 Jack Urbanek,∗1 Pratik Ringshia,1 Emily Dinan,1

Emma Qian,1 Siddharth Karamcheti,1 Shrimai Prabhumoye,1 Douwe Kiela,1

Tim Rocktäschel,1,3 Arthur Szlam,1 Jason Weston1

1Facebook AI Research
2LORIA, Nancy

3University College London
light-dms@fb.com

Abstract

Procedurally generating cohesive and interesting game en-
vironments is challenging and time-consuming. In order for
the relationships between the game elements to be natural,
common-sense has to be encoded into arrangement of the
elements. In this work, we investigate a machine learning
approach for world creation using content from the multi-
player text adventure game environment LIGHT (Urbanek et
al. 2019). We introduce neural network based models to com-
positionally arrange locations, characters, and objects into a
coherent whole. In addition to creating worlds based on ex-
isting elements, our models can generate new game content.
Humans can also leverage our models to interactively aid in
worldbuilding. We show that the game environments created
with our approach are cohesive, diverse, and preferred by hu-
man evaluators compared to other machine learning based
world construction algorithms.

1 Introduction

A large component of fantasy and science fiction literature
is worldbuilding: putting together an elaborate context, with
interesting (but believable) details, that can serve as a back-
drop to a story (or for many stories). Successful worldbuild-
ing requires common-sense knowledge about the real world
and an understanding of the expectations of the audience.

In this work, we present a machine learning (ML) ap-
proach to creating a cohesive and interesting world built
from elements of the text-based fantasy game environment
LIGHT (Urbanek et al. 2019). These crowd-sourced ele-
ments, including descriptions of locations, characters, and
objects, provide a rich source of supervision for learning
common-sense relationships. Previous work in LIGHT fo-
cused on static, single-location settings using the crowd-
sourced data. Instead, we focus on creating full environ-
ments for players to explore. We show how ML algorithms
can learn to assemble these different elements, arranging lo-
cations and populating them with characters and objects. We
use models to learn how to answer questions such as: Where
is the ornate trunk likely to be? What is likely to be inside

∗ Joint first authors.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Sample Constructed Game World. Models arrange
locations, then populate them with characters and objects.
Top predictions are shown. Table 1 shows the descriptions
associated with the location Town of Anoria, placed in mid-
dle left of this generated world.

it? Where is the knight likely to be? These considerations
are necessary for building a cohesive game environment.

We demonstrate that our proposed models can construct
rich game environments that are diverse and preferred by
human evaluators. We also develop models to generate de-
scriptions of new locations, characters, and objects. Finally,
we demonstrate that these machine learning tools can aid
humans interactively in designing new game environments.

2 Constructing Game Environments

In this section, we detail methods for learning to build game
elements from compositions of sub-elements; and worlds
from these elements.

2.1 Background on LIGHT

LIGHT is a multi-player text-based fantasy-themed virtual
world. It consists of a set of crowd-sourced game locations,
characters, and objects, and a game engine that controls the

1693



Name: Town of Anoria

Description: Town of Anoria has lots of cobble stone
streets and wood houses of one story. [...]
The town of Anoria is inland and takes a
long time to reach the sea, [...]

Neighbors: Mountain’s Peak

Characters: townspeople, mysterious merchant

Objects: candle, backpack

(a) Example location: Our model placed the Town of Anoria with
an exit to the Mountain Peak, and placed characters and objects
inside this location.

Character: Mysterious Merchant

Persona: I am the mysterious merchant of the village.
I sell rarities from around the world
that can not be purchased anywhere else. [...]

Description: The merchant in town came and went
without a crack of the grass beneath his feet.
No one knew when he was gone, nor when
he returned home [...]

Carrying: pouch, cane

Wearing: hat, coat

Wielding: dagger

(b) Example character: Our model placed the Mysterious Merchant
in the Town of Anoria, along with other townspeople.

Object Description Affordances

pouch The pouch is made of fine silk container
cloth, colored bright red. It has a gettable
leather string keeping it sealed.

cane The cane is made of a very gettable
uncommon, ornate wood.

dagger The dagger is curved gettable
with a golden hilt. weapon

(c) Example objects: Pouch, Cane, and Dagger, all carried by the
Mysterious Merchant.

Object Inside the Object

pouch coins, eyeglasses
backpack wallet, bedroll, tools

(d) Example objects within container objects: Our model placed
additional objects inside the Pouch and the Backpack.

Table 1: Game Elements include locations, characters, ob-
jects, and objects within containers. Elements have descrip-
tions and annotations such as what a location contains.

interactions between these. Characters can speak to each
other via text, send emotes like grin or ponder, and take
actions to move to different locations and interact with ob-
jects. Some example actions include go north, get shovel,
or unlock door. The game engine represents the game state
as a graph, and the actions by characters amount to op-
erations on the graph. The locations, characters, and ob-
jects were crowd-sourced using Amazon Mechanical Turk.
Crowd-workers were asked to provide names and descrip-

tions for each of these aspects through natural language, for
a total of 663 locations, 1755 characters, and 3462 objects.
See Table 1 for examples and Figure 1 to see how our work
combines the elements into a playable game environment.

2.2 Building a Game World

Urbanek et al. focused on modeling character dialogue and
action in pre-built locations. ML models were trained to play
the game by mimicking the actions and dialogues of human
players in fixed settings built by crowd-workers. In contrast,
in this work, we study models for assembling the game itself
rather than agents that play it. Since these elements were
separately crowd-sourced, we can compose them to create a
large number of different game environments.

We describe our approach from the top down. First, in
Section 2.3 we discuss connecting pre-built locations to-
gether to form a world. In 2.4, we give our methods for
filling a location with characters and objects. We describe
the additional data collected to model objects contained
within other objects. Next, in 2.5, we discuss how to gen-
erate new game elements. In Section 2.6 we describe how
these methods can be modified and utilized for interactive
world-building. Finally, in Section 2.7, we describe how to
bring these models together to create a new game world.

2.3 Building Maps by Arranging Locations

We describe our method to train machine learning models to
arrange locations in LIGHT.

Locations in LIGHT Each location represents a place
with a name and description. The description provides back-
ground information about the location and what a player
might see as they enter it. Crowd-workers provided exam-
ples of neighboring locations, as well as what characters and
objects would be present within the location.

Using Machine Learning to Place Locations Game loca-
tions must be spatially arranged so as to create a logical and
cohesive environment for players to explore. For example,
the Wizard’s Reagent Room being located near the Wizard’s
Tower would make a more intuitive game experience com-
pared to locations being randomly placed.

To train models for this task, we use the example neigh-
bors for each location provided by crowd-workers, obtain-
ing triplets of (location name, location description, location
neighbors). We partitioned this into a training, validation,
and test set such that the locations are distinct in each set
(see Table 2). As each location can have multiple neighbors,
the individual datapoints available for the prediction task is
larger than the number of total locations collected.

We consider a variety of different ranking models for this
task, in two settings. In the first, models have access to the
location name only, and in the second, they additionally have
access to the location description information. These mod-
els compare the human annotation of neighboring locations
with a variety of negative candidates. These negative can-
didates can be thought of as distractor locations from the

1694



dataset that the model must distinguish from the human an-
notated location, similarly to how negative training data is
sampled in the knowledge base population literature (Bor-
des et al. 2013). Models are trained to maximize the score
of the human response and minimize the scores of the nega-
tive candidates. When constructing a new world at test time,
the placed location is the highest scoring candidate from the
model prediction. We use two machine learning approaches:

• Starspace: The Starspace (Wu et al. 2018) model learns
a bag-of-words embedding for the location information
(e.g. name and description). The model encodes the loca-
tion information as well as the negative candidates, and
trains to maximize the inner product of the true human
annotation. We initialized the Starspace model using fast-
text, a method for learning vector representations of indi-
vidual words. This initialization allows the model to begin
training with a better understanding of the text.

• BERT-based Models: Recent work (Devlin et al. 2019)
in natural language processing has shown strong perfor-
mance of the BERT model, which learns to encode text
in a left-to-right and right-to-left fashion by training on
large quantities of text data available online. We use the
BERT-based models proposed in (Urbanek et al. 2019;
Humeau et al. 2019) to encode the location information
and the negative candidates. We explore two variants:
(1) Bi-Encoder, which encodes the candidates and input
context separately. This model scores the candidates by
calculating the dot product between these embeddings.
(2) Cross-Encoder, which concatenates the context with
each candidate before encoding, allowing this model to
build a context-dependent representation of each candi-
date. This model scores candidates by projecting the vec-
tor representation of text to a scalar.

As we have a limited quantity of data for the task, we
found that using input dropout to prevent overfitting was cru-
cial for good performance for both of these models.

We compare these models that learn from the training data
with three baselines:

• Random: We report a random baseline that selects a ran-
dom candidate from the provided negative candidates.

• Data Proportional: Instead of selecting candidates fully
at random from the provided negative candidates, we se-
lect proportional to the number of times that candidate
appears in the training set. This leverages the data anno-
tation information and reflects that some candidates are
more likely to be used than others.

• Information Retrieval: This model selects the candidate
with the largest word overlap using TF-IDF weighting.

To create a map for a new game, models are used to pre-
dict the neighboring locations of each existing location. For
each new location added, the model will fill in the surround-
ings. A location can connect to up to four neighboring loca-
tions, though not all connections need to be filled. To make
the game environment more interesting and diverse, loca-
tions cannot appear multiple times in one map (e.g. Berka’s
Forest Inn is only located in one place).

Adding Filler Locations A challenge with using crowd-
sourced data for all of the locations is that crowd-workers
often write exciting and complex locations. However, when
players explore the game environment, this tendency leads
to each location being complex and overwhelming. To rem-
edy this, we create a set of 25 filler locations such as
abandoned shack, empty closet, and storage room that pro-
vide additional content between the exciting locations that
crowd-workers described. Filler locations can appear multi-
ple times (e.g. there can be multiple empty closets).

2.4 Adding Characters and Objects to Locations

We describe how to apply our methods to add characters and
objects to predicted locations.

Characters in LIGHT Each character is described by a
name, persona, and a description. The persona provides in-
formation about the character, such as their background and
motivation, while the description describes the character’s
appearance. LIGHT also has annotations of objects charac-
ters would carry, such as a Wizard holding a staff.

Objects in LIGHT Each object represents an item that
characters can interact with, such as get shovel. Objects have
a name, a description, and a set of affordances. The descrip-
tion lists what the object looks like and what it might be able
to do. The affordances represent object properties, such as
gettable and drinkable. These are used by the game engine
to determine the set of possible interactions of the object.
For example, objects with the drinkable affordance can be
interacted with using the action drink. Objects can be inside
other objects, to represent for example coins inside a wallet.
We crowd-sourced additional annotations of object size and
examples of other objects that could be inside.

Using Machine Learning to Place Characters and Ob-
jects Using the characters and objects associated to lo-
cations from LIGHT as ground-truth, we create training,
validation, and testing data (see Table 2) to fit models to
place characters and objects in locations, as well as object
within objects. To collect objects within objects data, crowd-
workers were given an object with the container affordance
and asked to name multiple objects that could be inside.

We place characters and objects using the models de-
scribed in Section 2.3. Here, instead of predicting neigh-
boring locations, models are given locations and trained to
predict characters and objects, or given objects and trained
to predict which objects could be inside. For example, the
character prediction task would receive as input the location
Wizard’s Reagent Room and predict Wizard. As the amount
of data for each task is low, we employ multi-task learning
and train all of the tasks (locations, characters, objects, and
containers) together to increase the quantity of training data.

2.5 Generating New Game Elements

Adding new elements to the existing LIGHT game is com-
plex: descriptions, object affordances, character personas,

1695



Split Train Valid Test

Locations 914 109 110
Characters 529 305 305
Objects 359 318 256
Object Containers 359 318 256

Table 2: Dataset Statistics for World Generation: arranging
locations next to each other, placing characters and objects
within locations, and placing objects within objects.

and other details would need to be written. Instead, we pro-
pose using generative machine learning models to create ad-
ditional content based on the name of the new item (either a
location, a character, or an object). We use the same training,
validation, and testing splits used in the world construction
task (see Table 2). These generated items can be added to the
game environment, so newly generated game worlds can in-
corporate them along with existing crowd-sourced elements.

We use the Transformer (Vaswani et al. 2017) neural net-
work architecture to create a Sequence-to-Sequence model
to make the following predictions:

• Given location name, predict background and description

• Given character name, predict persona and description

• Given object name, predict description and affordances

We compare the Transformer in two settings: with and
without pretraining. As the dataset for generating new game
elements is small, the generative model can be trained on
a larger corpus and finetuned on this task. We use a large
dataset of 2 billion Reddit comments for pretraining. Red-
dit comments are chosen because they are close to natural
human conversation and exhibit elements of creativity and
story-telling that may help generate interesting descriptions.

To be able to handle new vocabulary and ease learning,
we use byte-pair encoding (Sennrich, Haddow, and Birch
2016) to model subwords. Similar to Section 2.4, we multi-
task prediction location, character, and object description,
location background, and character persona with one model.
We use top-k sampling (Fan, Lewis, and Dauphin 2018) to
reduce repetition during generation. Object affordances are
predicted with a separate model, as multi-label classification
between seven possibilities is distinct from the other tasks.

2.6 Aiding Human Game Design

Machine learning models can be applied to automatically
generate game environments for players, but they can also be
used to aid humans in game design. Many existing game en-
gines assist in fast and intuitive creation of different worlds
already, for example providing level design tips or improv-
ing pathfinding (Graham, McCabe, and Sheridan 2003). Our
methods can be used to automatically suggest neighboring
locations or which characters and objects to place in the ex-
isting locations, speeding up world design.

2.7 Proposed Algorithm for World Generation

How do we use our proposed models collectively to make
a new game world? First, an empty map grid is initialized

Figure 2: Frequency of Location Placement in 5000 gener-
ated game environments using our models.

to represent the number of possible locations. A percent-
age of grid positions are marked inaccessible to make ex-
ploration more interesting. The central location is populated
randomly. We use the best performing model to iteratively
fill in neighboring locations until the entire grid is popu-
lated. Then, for each placed location, the model is used to
predict which characters and objects should populate that lo-
cation. Finally, the model is used to predict if objects should
be placed inside existing objects. Figure 1 displays an ex-
ample generated world, with model predictions shown for
missing elements. See Appendix for further details.

In an interactive setting where players are able to design
their own worlds, we use models to provide suggestions for
which elements to place. If players enter names of game el-
ements not present in the dataset, our generative models are
used to write descriptions, personas, and affordances.

3 Related Work

Procedural Content Generation in Games Using algo-
rithms to aid game generation is a growing field as the pop-
ularity of gaming rises. Recent work has made progress
on level design in various game settings (Guzdial and
Riedl 2018; Khalifa et al. 2016; Summerville et al. 2016;
Van der Linden, Lopes, and Bidarra 2013; Vara 2014), in-
cluding rhythm games (Lin, Riedl, and Xiao 2019), physics
games (Stephenson and Renz 2016), dungeon exploration
(Shaker et al. 2016), and social games (Risi et al. 2012).

Much prior work has focused on the task of level gener-
ation, but there are other facets of games that could be gen-
erated. For example, weapons, various items, and characters
are present in game levels (Liapis, Yannakakis, and Togelius
2014; Liapis et al. 2018). We focus on how the various facets
could fit together within a text-based game, and how we can
use them to generate an entire game environment.

Text-Based Games Many settings for content generation
in text-based games have been explored. For example, Bar-
ros, Liapis, and Togelius (2016) use text from Wikipedia
to link various entities for the generation of murder mys-
tery games. Ammanabrolu and Riedl (2019) represent a text-
based adventure game as a graph and learn how to adventure
within this world. Work has been done to generate Sporcle-

1696



Figure 3: Distribution of Locations, Characters, and Objects in 5,000 generated maps. Our method generates fairly large maps
(the maximum size is set to 50) and places 1-3 characters and objects in each location.

Figure 4: Number of Different Locations, Characters, and Objects as a Function of Generated Maps. As additional maps are
generated, a greater diversity of game elements appears. The orange line denotes the total number of elements in the dataset.

like textual quizzes.1 However, designing generative algo-
rithms to create a full environment for a multi-player text
game has not been deeply explored.

Generation using Machine Learning Generative mod-
eling is an important topic in machine learning, outside
of games or other creative endeavors. Recent works have
demonstrated impressive models of images (Karras et al.
2018) and text (Radford et al. 2019). Recently, statistical
ML has also been proposed for creative endeavors. For ex-
ample Gatys, Ecker, and Bethge show how users can ma-
nipulate the style of images using convolutional neural net-
works and (Zhu et al. 2017; Sbai et al. 2018) describe ML-
aided fashion design. There has been work in ML for music
generation, see e.g. Magenta2 or Briot, Hadjeres, and Pa-
chet (2017) for a survey. Most related to our world construc-
tion are methods for generating stories, poetry, and scripts
(Fan, Lewis, and Dauphin 2018; Ghazvininejad et al. 2016;
Janghorbani et al. 2019; Marti et al. 2018).

Work in content generation with machine learning has
incorporated human guidance. For example, several works
incorporate human control such as length and style to im-
prove summarization, dialogue, and text simplification (Fan,
Grangier, and Auli 2018; See et al. 2019; Martin et al. 2019).
Wang et al. (2018) generates portions of images after human
editing.

4 Evaluation and Results

We discuss several evaluations of both elements and worlds,
compare methods, and discuss their successes and failures.

1https://github.com/vjuylov/txt2lvl
2https://magenta.tensorflow.org/

4.1 Diversity of Generated Worlds

Our proposed method can be used to automatically create a
variety of diverse game worlds. We generate 5,000 worlds
with a maximum size of 50 arranged locations and ana-
lyze these generations to understand the properties of cre-
ated game environments.

Locations The generated maps are very diverse. Figure 4
shows the number of map generations required to generate
the full number of locations in the dataset. With 500 gen-
erations, a large majority of different locations have been
used. Over 95% of locations in the dataset are used after
5000 generations. The most commonly placed location is
the king’s quarters, in 34% of the generated worlds (see
Figure 2). Some locations are used very sparingly, such as
the brim canal (0.06% of the worlds). Allowing our model-
ing approach to decide the map size, 80% of the generated
worlds have more than 30 locations (see Figure 3) and about
40% of the worlds have the maximum number locations. Ex-
ample generated maps are shown in the Appendix.

Characters Around 65% of characters in the dataset are
generated after 5000 maps (Figure 4). The lower coverage
is most likely because there are very specific characters cre-
ated by crowd-workers that are not scored highly by models,
and thus not often placed. To provide a concrete example, a
specific qualified character might be in the dataset, such as
an old, wizened priestess, but if that character is only men-
tioned once in the training set, a model might score a more
generic character higher, such as priestess. The maximum
number of characters placed in one room is around 15, but

1697



most locations have 0-3 characters present (see Figure 3).3

Objects Similar to characters, around 60% of objects in
the dataset are generated after 5000 maps, shown in Figure 4.
Some locations contain a large number of objects, such as
the Treasure Chamber, but most locations contain about 1-3
objects that players can interact with (Figure 3).

4.2 Quality of Generated Worlds

Automatic Evaluation We first use automatic evaluation
to compare the quality of different machine learning ap-
proaches to the location, character, object, and container pre-
diction tasks. We measure Hits at 1, or the percentage of
time the correct candidate is ranked first amongst the neg-
ative candidates. If the model always predicted what the
crowd-workers annotated, then this metric would have the
value 100. Containers are evaluated in the Name only vari-
ant — as crowd-workers were able to write any object, not
all of their written choices have descriptions.

Results are shown in Table 3. Leveraging the data distri-
bution to weight random sampling provides a strong base-
line for characters and objects, as a few are quite common.
Providing the description text is helpful for improving pre-
diction quality compared to having access only to the name
feature. Amongst the various approaches, Starspace models
show strong performance, particularly on the location pre-
diction task. The Bi and Cross Encoder models are very
large neural networks and may be overfitting on the much
smaller LIGHT world creation training data. Further, they
are pretrained on non-domain specific data, which may neg-
atively impact performance.

Human Assessments We conduct human evaluation to
compare the various approaches to world generation. We
compare the performance of two models pairwise by start-
ing in the same location and using the models to itera-
tively predict subsequent locations. Locations are then pop-
ulated with characters and objects. After each location, hu-
man evaluators are asked which model was able to place
more logical and interesting characters and objects. After
five steps through predicted locations, human evaluators are
asked which model path they prefer as more natural, cohe-
sive, and interesting. We compare four different approaches:

• Random: Locations, characters, and objects were ran-
domly selected from the set of all possible datapoints.

• Starspace: The model described in Section 2 was used to
predict which locations should be linked in the path, and
the characters and objects present in each location.

• Data Created Paths: This method uses the existing dataset
of annotated locations and their neighbors to construct a
path. The characters and objects present in each location
are from the original crowd-sourcing tasks. In contrast to

3ML approaches are known to reflect data biases (Zhao et al.
2019; Brunet et al. 2019). We found that there are a greater number
of male characters in LIGHT, and this is reflected in the generated
environments. We plan to investigate this in a follow-up work.

Figure 5: Human Evaluation of World Construction. The
number indicates percentage preference, with the arrow
pointing to the winner. The first row in each box is location
preference, second character, and third object.

Starspace, the number of possible paths that could be cre-
ated with existing data is limited. For example, if a room
has only one annotated neighbor, it would always be ar-
ranged in the same manner.

• Human Annotated Paths: Human evaluators constructed
paths by manually linking locations. Here a single eval-
uator created an entire path — in contrast, in Data Cre-
ated Paths, annotators during initial data collection only
provided a one-step neighbor, rather than one person cre-
ating the entire path. The characters and objects are from
the original crowd-sourcing. While human-created paths
could be high quality, such a method does not scale to
large worlds as it is costly and time consuming.
As shown in Figure 5, human evaluators prefer Human

Annotated Paths the most, but Starspace prediction mod-
els perform strongly as well. Starspace is strongly preferred
over Random and the predicted location paths are preferred
over Data Created Paths over 60% of the time.

4.3 Generation of New Game Elements

To evaluate the quality of automatically generating new
game elements using our proposed models, we compare F1,
a metric of word overlap. For this metric, the text is low-
ercased and the overlap between tokens is computed. Pre-
training increases the performance on all generation tasks, as
shown in Table 4. For character descriptions and personas,
the effect of pretraining is minimal. We hypothesize this is
due to the slightly more templated nature of written per-
sonas, as many begin with I am a. Example generations are
shown in Table 5. Our generative models are able to write
interesting, new, and generally coherent descriptions for a
variety of different game elements (see Appendix for ad-
ditional examples). We analyze the n-gram overlap of our
generated game elements with the training set to understand
how much of the written text is novel. We find that 34%
of generated 3-grams are present in the training set (largely
common phrases), but only 2.5% of generated 5-grams are
present in the training set. As we are generating text with
top-k sampling, the models do not tend to copy long se-
quences.

4.4 ML-aided interactive world creation

To quantify if models can aid players in designing their own
worlds, evaluators designed a nine-location game environ-

1698



Feature Model Locations Characters Objects Containers

Random 8.2 5.9 5.9 5.7
Data Proportional 0.0 9.8 20.1 5.9

Name Only Information Retrieval 18.2 7.5 8.2 9.6
Fasttext 9.1 12.8 15.6 27.4
Starspace 44.5 17.7 13.3 20.1

Name and Description Information Retrieval 30.0 19.0 21.9 —
Fasttext 28.2 17.0 16.8 —
Starspace 45.5 35.7 47.3 —
BERT Bi-Encoder 30.2 30.2 34.0 —
BERT Cross-Encoder 28.2 36.1 35.5 —

Table 3: Comparison of Various Approaches to Worldbuilding. We report Hits at 1 on the test set for arranging locations and
populating with objects, characters, and placing objects within container objects. Starspace models perform well on all tasks.

Figure 6: Machine Learning Models Aiding Human Game
Design. Having access to model suggestions for which ele-
ments to place next allows evaluators to create fun and inter-
esting game environments more quickly.

Model Location Character Object Affordance

- Pretrain 23.3 28.4 32.5 57.0
+ Pretrain 26.3 29.3 38.8 62.6

Table 4: Comparison of Game Element Generation. We re-
port F1 on the test set.

ment. Evaluators were explicitly told the goal was to make a
text-based game interesting and fun. To add game elements,
they have access to a search bar with autocomplete, so they
can type what they wish to place and select from a list (see
Appendix for an image of the user interface). Half of the
evaluators have access to model predictions, which are sur-
faced as suggestions at the top of the search dropdown. How-
ever, they can choose to ignore the suggestions.

Evaluators created 10 game environments with access to
model suggestions and 10 without. While they reported sim-
ilar satisfaction with the diversity and quality of their gen-
erated worlds in both settings, the amount of time spent
was different. Evaluators spent 10 minutes or less to create
maps with suggestions and 10-20 minutes without sugges-
tions (Figure 6, top left). Those with suggestions said they
would want to play an actual game in their created world
more (Figure 6, top right). Finally, evaluators had a posi-
tive reaction to model suggestions (Figure 6, bottom): 100%

Given Location: The forest

Generated This forest has been a part of the
Background: kingdom for centuries. It is a great

resource to have when needed. Most
people consider it a necessity to have a
peaceful and peaceful environment.

Generated The forest is filled with wild animals
Description: that live in the forest, but are unable

to climb up trees. It is clear the trees are
not in use.

Given Character: A Princess

Generated I love to help people and I love my
Persona: family. I spend my days fighting,

protecting my people and my children.
I love to help the royal family!

Generated She is a fierce looking princess that has
Description: been trained to protect any people.
Given Object: wooden sword

Generated This wooden sword is worn down and
Description: damaged, to say the least, it is a sword

that would be useful for a knight’s duty.

Generated gettable
Affordances: weapon

Table 5: Generations of New Game Elements, given the de-
sired name. Examples are chosen from the test set.

of evaluators agreed that suggestions made it faster to cre-
ate a world and definitely would want to have them again,
80% said they often chose from suggestions, and 90% said
the suggestions were diverse. Freeform feedback was pos-
itive, with comments such as suggestions foster creativity
and especially for characters, the suggestions showed what
I wanted. Additional results are shown in the Appendix.

5 Conclusion

We proposed a method to procedurally generate game en-
vironments by using machine learning algorithms to arrange
locations, place characters and objects within those locations
and objects within containers, and write descriptions for
new game elements. We explored different neural network
based models for these tasks, and show with various auto-
matic metrics and human studies that the maps generated by
our approach are cohesive, interesting and diverse. Finally,
we show that our machine learning approach can be used
to aid humans in creating game worlds as well. Together,
these steps show a path to creating cohesive game worlds
from crowd-sourced content, both with model-assisted hu-

1699



man creation tooling and fully automated generation.

References

Ammanabrolu, P., and Riedl, M. 2019. Playing text-adventure
games with graph-based deep reinforcement learning. In NAACL-
HLT, 3557–3565.
Barros, G. A.; Liapis, A.; and Togelius, J. 2016. Murder mystery
generation from open data. In Proceedings of the International
Conference on Computational Creativity.
Bordes, A.; Usunier, N.; Garcia-Duran, A.; Weston, J.; and
Yakhnenko, O. 2013. Translating embeddings for modeling multi-
relational data. In Advances in neural information processing sys-
tems, 2787–2795.
Briot, J.; Hadjeres, G.; and Pachet, F. 2017. Deep learning tech-
niques for music generation - A survey. CoRR.
Brunet, M.; Alkalay-Houlihan, C.; Anderson, A.; and Zemel, R. S.
2019. Understanding the origins of bias in word embeddings. In
ICML.
Devlin, J.; Chang, M.; Lee, K.; and Toutanova, K. 2019. BERT:
pre-training of deep bidirectional transformers for language under-
standing. In NAACL-HLT, 4171–4186.
Fan, A.; Grangier, D.; and Auli, M. 2018. Controllable abstractive
summarization. In ACL Workshop on Neural Machine Translation
and Generation.
Fan, A.; Lewis, M.; and Dauphin, Y. 2018. Hierarchical neural
story generation. In ACL.
Gatys, L. A.; Ecker, A. S.; and Bethge, M. 2016. Image style
transfer using convolutional neural networks. In Proceedings of
the IEEE conference on computer vision and pattern recognition,
2414–2423.
Ghazvininejad, M.; Shi, X.; Choi, Y.; and Knight, K. 2016. Gen-
erating topical poetry. In EMNLP, 1183–1191.
Graham, R.; McCabe, H.; and Sheridan, S. 2003. Pathfinding in
computer games. The ITB Journal 4(2):6.
Guzdial, M., and Riedl, M. 2018. Automated game design via
conceptual expansion. In Fourteenth Artificial Intelligence and In-
teractive Digital Entertainment Conference.
Humeau, S.; Shuster, K.; Lachaux, M.-A.; and Weston, J. 2019.
Real-time inference in multi-sentence tasks with deep pretrained
transformers. arXiv preprint arXiv:1905.01969.
Janghorbani, S.; Modi, A.; Buhmann, J.; and Kapadia, M. 2019.
Domain authoring assistant for intelligent virtual agent. In Pro-
ceedings of the 18th International Conference on Autonomous
Agents and MultiAgent Systems, 104–112. International Founda-
tion for Autonomous Agents and Multiagent Systems.
Karras, T.; Aila, T.; Laine, S.; and Lehtinen, J. 2018. Progressive
growing of gans for improved quality, stability, and variation. In
ICLR.
Khalifa, A.; Perez-Liebana, D.; Lucas, S. M.; and Togelius, J. 2016.
General video game level generation. In Proceedings of the Genetic
and Evolutionary Computation Conference 2016, 253–259. ACM.
Liapis, A.; Yannakakis, G. N.; Nelson, M. J.; Preuss, M.; and
Bidarra, R. 2018. Orchestrating game generation. IEEE Trans-
actions on Games 11(1):48–68.
Liapis, A.; Yannakakis, G. N.; and Togelius, J. 2014. Computa-
tional game creativity. Citeseer.
Lin, Z.; Riedl, M.; and Xiao, K. 2019. Generationmania: Learning
to semantically choreograph. In Proceedings of the 2nd Workshop
on Knowledge Extraction from Games.

Marti, M.; Vieli, J.; Witoń, W.; Sanghrajka, R.; Inversini, D.;
Wotruba, D.; Simo, I.; Schriber, S.; Kapadia, M.; and Gross, M.
2018. Cardinal: Computer assisted authoring of movie scripts. In
23rd International Conference on Intelligent User Interfaces, 509–
519. ACM.
Martin, L.; de la Clergerie, E.; Sagot, B.; and Bordes, A. 2019.
Controllable sentence simplification.
Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; and
Sutskever, I. 2019. Language models are unsupervised multitask
learners.
Risi, S.; Lehman, J.; D’Ambrosio, D. B.; Hall, R.; and Stanley,
K. O. 2012. Combining search-based procedural content genera-
tion and social gaming in the petalz video game. In Eighth Artificial
Intelligence and Interactive Digital Entertainment Conference.
Sbai, O.; Elhoseiny, M.; Bordes, A.; LeCun, Y.; and Couprie,
C. 2018. Design: Design inspiration from generative networks.
In Proceedings of the European Conference on Computer Vision
(ECCV), 0–0.
See, A.; Roller, S.; Kiela, D.; and Weston, J. 2019. What makes a
good conversation? how controllable attributes affect human judg-
ments. In NAACL-HLT, 1702–1723.
Sennrich, R.; Haddow, B.; and Birch, A. 2016. Neural machine
translation of rare words with subword units. In ACL.
Shaker, N.; Liapis, A.; Togelius, J.; Lopes, R.; and Bidarra, R.
2016. Constructive generation methods for dungeons and levels.
In Procedural Content Generation in Games. Springer. 31–55.
Stephenson, M., and Renz, J. 2016. Procedural generation of levels
for angry birds style physics games. In Twelfth Artificial Intelli-
gence and Interactive Digital Entertainment Conference.
Summerville, A.; Guzdial, M.; Mateas, M.; and Riedl, M. O. 2016.
Learning player tailored content from observation: Platformer level
generation from video traces using lstms. In 12th Artificial Intelli-
gence and Interactive Digital Entertainment Conference.
Urbanek, J.; Fan, A.; Karamcheti, S.; Jain, S.; Humeau, S.; Dinan,
E.; Rocktäschel, T.; Kiela, D.; Szlam, A.; and Weston, J. 2019.
Learning to speak and act in a fantasy text adventure game. In
EMNLP.
Van der Linden, R.; Lopes, R.; and Bidarra, R. 2013. Designing
procedurally generated levels. In 9th Artificial Intelligence and
Interactive Digital Entertainment Conference.
Vara, C. F. 2014. Creating dreamlike game worlds through pro-
cedural content generation. In Seventh Intelligent Narrative Tech-
nologies Workshop.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.;
Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. Attention is
all you need. NIPS.
Wang, T.-C.; Liu, M.-Y.; Zhu, J.-Y.; Tao, A.; Kautz, J.; and Catan-
zaro, B. 2018. High-resolution image synthesis and semantic ma-
nipulation with conditional gans. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, 8798–8807.
Wu, L. Y.; Fisch, A.; Chopra, S.; Adams, K.; Bordes, A.; and We-
ston, J. 2018. Starspace: Embed all the things! In Thirty-Second
AAAI Conference on Artificial Intelligence.
Zhao, J.; Wang, T.; Yatskar, M.; Cotterell, R.; Ordonez, V.; and
Chang, K. 2019. Gender bias in contextualized word embeddings.
In NAACL-HLT, 629–634.
Zhu, S.; Urtasun, R.; Fidler, S.; Lin, D.; and Change Loy, C. 2017.
Be your own prada: Fashion synthesis with structural coherence.
In Proceedings of the IEEE International Conference on Computer
Vision, 1680–1688.

1700


