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Abstract

Improving the explainability of the results from machine
learning methods has become an important research goal.
Here, we study the problem of making clusters more inter-
pretable by extending a recent approach of [Davidson et al.,
NeurIPS 2018] for constructing succinct representations for
clusters. Given a set of objects S, a partition π of S (into
clusters), and a universe T of tags such that each element in
S is associated with a subset of tags, the goal is to find a rep-
resentative set of tags for each cluster such that those sets are
pairwise-disjoint and the total size of all the representatives is
minimized. Since this problem is NP-hard in general, we de-
velop approximation algorithms with provable performance
guarantees for the problem. We also show applications to ex-
plain clusters from datasets, including clusters of genomic se-
quences that represent different threat levels.

1 Introduction

As AI and machine learning (ML) methods become per-
vasive across all domains from health to urban planning,
there is an increasing need to make the results of such
methods more interpretable. Providing such explanations
has now become a legal requirement in some countries
(Goodman and Flaxman 2016). Many researchers are in-
vestigating this topic under supervised learning, particu-
larly for methods in deep learning (see e.g., (Proc. XAI-
2017 Workshop 2017; Proc. XAI-2018 Workshop 2018)).
Clustering is a commonly used unsupervised ML technique
(see e.g., (Blondel et al. 2008; Bolla 2013; Fortunato 2010;
Tan, Steinbach, and Kumar 2006; Han and Kamber 2011;
Zaki and Meira 2014)). It is routinely performed on di-
verse kinds of datasets, sometimes after constructing net-
work abstractions, and optimizing complex objective func-
tions (e.g., modularity (Blondel et al. 2008)). This can of-
ten make clusters hard to interpret especially in a post-hoc
analysis. Thus, a natural question is whether it is possible
to explain a given set of clusters, using additional attributes
which, crucially, were not used in the clustering procedure.
One motivation for our work is to understand the threat lev-
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els of pathogens for which genomic sequences are avail-
able. In (Jain, Gali, and Kihara 2018; Jain and Kihara 2018;
Hamid and Friedberg 2018; Ramesh and Warren 2018),
researchers have been able to identify some genomic se-
quences as coming from harmful pathogens (through lab ex-
periments and bioinformatics analysis). Understanding what
makes some sequences harmful and distinguishing them
from harmless sequences corresponds to the problem of in-
terpreting the clusters.

Davidson et al. (2018) present the following formulation
of the Cluster Description Problem for explaining a given
set of clusters. Let S = {s1, . . . , sn} be a set of n objects.
Let π = {C1, . . . , Ck} be a partition of S into k ≥ 2 clus-
ters. Let T be the universe of tags such that each object
si ∈ S is associated with a subset ti ⊆ T of tags. A de-
scriptor Di for a cluster Ci (1 ≤ i ≤ k) is a subset of T . An
object sj in cluster Ci is said to be covered by the descriptor
Di if at least one of the tags associated with sj is in Di. The
goal is to find k pairwise disjoint descriptors (one descrip-
tor per cluster) so that all the objects in S are covered and
the total number of tags used in all the descriptors, which
will henceforth be referred to as the “cost” of the solution,
is minimized. Davidson et al. (Davidson, Gourru, and Ravi
2018) showed that even deciding whether there exists a fea-
sible solution (with no restriction on cost) is NP-hard. They
use Integer Linear Programming (ILP) methods to solve the
problem and other relaxed versions (e.g., not requiring cov-
erage of all objects in S, referred to as the “cover-or-forget”
version, if there is no exact feasible solution) on social media
datasets. They point out that this gives interesting and repre-
sentative descriptions for clusters. However, they leave open
the questions of designing efficient and rigorous approxima-
tion algorithms, which can scale to much larger datasets, and
a deeper exploration of different notions of approximate de-
scriptions for real world datasets.
Our contributions. We find in some datasets that the ex-
act cover formulation of (Davidson, Gourru, and Ravi 2018)
does not have a feasible solution. The “cover-or-forget” vari-
ation does give a solution, but might have highly unbalanced
coverage, i.e., one cluster gets covered well, but not the oth-
ers. We extend the formulation of (Davidson, Gourru, and
Ravi 2018) to address these issues, develop a suite of scal-
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able algorithms with rigorous guarantees, and evaluate them
on several real world datasets. A list of our contributions is
given below.
(1) Formulation. We introduce the MinConCD problem for
cluster description, with simultaneous coverage guarantees
on all the clusters (defined formally in Section 2). Infor-
mally, given a requirement Mi ≤ |Ci| for the number of
objects to be covered in each cluster Ci, the goal is to find
pairwise disjoint descriptors of minimum cost such that at
least Mi objects are covered in Ci. MinConCD gives more
useful cluster descriptions in several datasets, as we discuss
below. However, this problem turns out to be very hard—
specifically, we show (in (Sambaturu et al. 2019)) that if the
coverage constraints for each cluster must be met, then un-
less P = NP, for any ρ ≥ 1, there is no polynomial time
algorithm that can approximate the cost to within a factor
of ρ. Therefore, we consider (α, δ)–approximate solutions,
which ensure coverage of at least αMi objects in cluster Ci

(1 ≤ i ≤ k) using a cost of at most δB∗, where B∗ is the
minimum cost needed to satisfy the coverage requirements.
(2) Rigorous algorithms. We design a randomized algo-
rithm, ROUND, for MinConCD, which is based on round-
ing a linear programming (LP) solution. We prove that it
gives an (1/8, 2)–approximation, with high probability. For
the special case of k = 2, we present an (1 − 2/e, 1)-
approximation algorithm using techniques from submodular
function maximization over a matroid (Section 4).
(3) Experimental results. We evaluate our algorithms on
real and synthetic datasets (Section 5). We observe that
MinConCD gives more appropriate descriptions than those
computed using the formulations of (Davidson, Gourru, and
Ravi 2018). Our results show that the approximation bounds
of ROUND are comparable with the optimum solutions of
(Davidson, Gourru, and Ravi 2018) (computed using integer
linear programming), and significantly better than the worst-
case theoretical guarantees. ROUND also scales well to in-
stances which are over two orders of magnitude larger than
those considered in (Davidson, Gourru, and Ravi 2018). The
different “knobs” in the formulation (coverage requirement
per cluster, cost budget and the allowed overlap) provide a
spectrum of descriptions, which allow a practitioner to better
explore and understand the clusters. Qualitative analysis of
the descriptions gives interesting insights into the clusters.
In particular, for the threat sequence dataset, our results give
a small set of intuitive attributes which separate the harmful
sequences from the harmless ones.
(4) Extensions and additional algorithmic results. The
theoretical guarantees of ROUND hold only when Mi =
Θ(|Ci|) for each i (i.e., the requirement is to cover a con-
stant fraction of objects in each cluster); the analysis breaks
down when Mi = o(|Ci|) for some clusters. When the Mi’s
are arbitrary, we develop a different randomized rounding
algorithm that gives an (O(1), η)–approximation, where η
is the maximum number of objects covered by any tag. Fur-
ther, we show that ROUND also works for a bounded overlap
version of the problem for k = 2, where cluster descrip-
tors may overlap. Finally, when |ti| ≤ γ for each si, we
design a simple dynamic programming algorithm that gives
an O( 1γ , 1)-approximation; see (Sambaturu et al. 2019).

Our techniques. While the cluster description problem in-
volves covering constraints for each cluster (as in the stan-
dard maximum coverage problem (Khuller, Moss, and Naor
1999)), it is much harder because the disjointness require-
ment leads to independence constraints on the tags to be cho-
sen. A standard approach for approximating covering prob-
lems is randomized rounding (see, e.g.,(Srinivasan 1995)).
However, here, the events that two objects si and si′ are
covered are dependent if ti ∩ ti′ �= ∅; as a consequence,
a standard Chernoff bound type concentration analysis can-
not be used. We address these issues by observing that the
events that si and si′ are not covered have a specific type of
dependency for which the upper tail bound by Janson and
Rucinski (Janson and Rucinski 2002) gives a concentration
bound. We develop a new way to analyze our randomized
rounding scheme by bounding the number of objects which
are not covered in each cluster.

Though coverage is a submodular function (see, e.g., (Ca-
linescu et al. 2011)), it is not clear how to use submodular
function maximization techniques to simultaneously max-
imize the coverage within all clusters. We show that the
“saturation” technique of (Krause, McMahan, and Guestrin
2008), which uses the sum of the minimum of each sub-
modular function and a constant, can be adapted for the case
k = 2, but not for larger k because the problem in (Krause,
McMahan, and Guestrin 2008) is for a uniform matroid con-
straint, whereas here we have partition matroid constraints.
Related work. The topic of “Explainable AI” (Gunning
2017) has attracted a lot of attention especially under su-
pervised learning. In particular, many researchers have stud-
ied the topic in conjunction with methods in deep learning
(e.g., (Proc. XAI-2018 Workshop 2018)). To our knowledge,
not much work has been done in the context of interpret-
ing results from clustering. The topic of allowing a human
to interpret a given clustering and provide suggestions for
improvement was considered in (Kuo et al. 2017). Their
goal was to improve the clustering quality through human
guidance, and they used constraint programming techniques
to obtain improvements. Other methods for improving a
given clustering were considered in (Dang and Bailey 2010;
Qi and Davidson 2009). The notion of “descriptive cluster-
ing” studied in (Dao et al. 2018) is different from our work;
their idea is to allow the clustering algorithm to use both
the features of the objects to be clustered and the descrip-
tive information for each object. They present methods for
constructing the Pareto frontier based on two objectives, one
based on features and the other based on the descriptive in-
formation. Like (Davidson, Gourru, and Ravi 2018), the fo-
cus of our work is not on generating a clustering; instead,
the goal is to explain the results of clustering algorithms.
While the cluster description problem considered here uses
a formulation similar to the one used in (Davidson, Gourru,
and Ravi 2018), their focus was on expressing the problem
as an ILP and solving it optimally using public domain ILP
solvers. In particular, approximation algorithms with prov-
able performance guarantees were not considered in (David-
son, Gourru, and Ravi 2018).
Additional details. Due to the space limits, several proofs
are omitted; they can be found in (Sambaturu et al. 2019).
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2 Preliminaries

Notation and Definitions. Let S = {s1, . . . , sn} be a set
of n objects, and π = {C1, . . . , Ck} be a partition of S
into k ≥ 2 clusters. Let T be the universe of m tags such
that each object si ∈ S is associated with a subset ti ⊆ T
of tags. A solution is a subset X ⊆ T , and will be repre-
sented as a partition X = (X1, . . . , Xk), where X� is the
descriptor (i.e., subset of tags) used for cluster C�. We say
that si ∈ S is covered by a set X ⊆ T of tags if X ∩ ti �= ∅.
Let E(j) = {si : j ∈ ti} be the set of all objects that can
be covered by the tag j ∈ T . Let η = maxj |E(j)| denote
the maximum number of objects covered by any tag in T .
Let γ = maxi |ti| denote the maximum number of tags as-
sociated with any object in S. Objects si, si′ ∈ S are said
to be dependent if ti ∩ ti′ �= ∅, i.e., if their tag sets over-
lap. Let Δ(i) = |{i′ : ti ∩ ti′ �= ∅}| denote the degree of
dependence of si, and let Δ = maxi Δ(i) be the maximum
dependence. Finally, for a solution X = (X1, . . . , Xk), let
V�(X) = {si ∈ C� : ti ∩X� �= φ} be the subset of objects
in C� covered by X , 1 ≤ 	 ≤ k. For any integer k ≥ 1, we
use [k] to denote the set {1, . . . , k}.
Problem statement. Our objective is to find a solution X
that simultaneously ensures high coverage |V�(X)| in each
cluster C�, 1 ≤ 	 ≤ k. An obvious choice is to consider a
max-min type of objective X = argmaxmin� |V�(X)| (see,
e.g., (Udwani 2017)). However, this doesn’t allow domain
specific coverage requirements (e.g., higher coverage for the
cluster of threat sequences in genomic data). Therefore, we
consider a more general formulation, which specifies a cov-
erage requirement for each cluster.
Minimum Constrained Cluster Description
(MinConCD)

Instance: A set S = {s1, . . . , sn} of objects, a partition π =
{C1, . . . , Ck} into k ≥ 2 clusters, a universe T of m tags,
tag set ti ⊆ T for each object si and parameter M� for each
cluster C�, 1 ≤ 	 ≤ k.
Requirement: Find a solution X = (X1, . . . , Xk) that min-
imizes the cost

∑k
�=1 |X�| and satisfies the following con-

straints: (i) the subsets in X are pairwise-disjoint and (ii) for
each cluster C�, |V�(X)| ≥ M�.
Comparison with the formulation in (Davidson, Gourru,
and Ravi 2018). The main problem considered in (David-
son, Gourru, and Ravi 2018) is to minimize the cost (i.e.,∑

� |X�|) under the constraint that all the objects in S are
covered. This was formulated as an integer linear program
(ILP). That reference also presented an ILP for minimiz-
ing the cost under the requirement that at least a total of
α|S| objects are covered over all the clusters for a given α,
0 < α ≤ 1. (This was called the “cover or forget” formula-
tion in (Davidson, Gourru, and Ravi 2018).) One difficulty
with this formulation is that solutions that satisfy the total
coverage requirement may cover a large percentage of the
objects in some clusters while covering only a small per-
centage of those in other clusters. (We will present an ex-
ample of this phenomenon using a real life dataset in Sec-
tion 5.) Our formulation avoids this difficulty by allowing
the specification of the coverage requirement for each clus-
ter separately. As mentioned in Section 1, our formulation

in conjunction with the disjointness requirement introduces
additional challenges in developing efficient approximation
algorithms with provable performance guarantees.
Approximation algorithms. As shown in (Sambaturu et al.
2019), if the coverage requirements must be met, then the
cost cannot be approximated to within any factor ρ ≥ 1,
unless P = NP. Therefore, we study bi-criteria approxi-
mation algorithms. We say that a solution X is an (α, δ)-
approximation if (i) for each cluster C�, |V�(X)| ≥ αM�

and (ii)
∑

� |X�| ≤ δB∗, where B∗ is the optimal cost.
Other variations. Another variation we will explore, re-
ferred to as MINCONCDO, allows limited overlap between
different descriptors. Given input parameters M� for 	 ∈ [k]
and overlap limit Bo, the objective here is to find a solution
X = (X1, . . . , Xk) of minimum cost such that |V�(X)| ≥
M� for each 	 and

∑
� �=�′ |X� ∩X�′ | ≤ Bo; this problem is

discussed in (Sambaturu et al. 2019).

3 Algorithm ROUND: approximation using

Linear Programming and Rounding

Our approach for approximating MinConCD is based on LP
relaxation and then rounding the fractional solution. This is
a common approach for many combinatorial optimization
problems, especially those with covering constraints (see,
e.g., (Williamson and Shmoys 2011)). However, the disjoint-
ness requirement for descriptors poses a challenge in terms
of dependencies and requires a new method of rounding. We
start with an ILP formulation.
ILP Formulation. For each j ∈ T and 	 ∈ [k], x�(j) is
an indicator (i.e., {0,1}-valued) variable, which is 1 if tag
j ∈ X�. We have an indicator variable z(i) for each si ∈ S,
which is 1 if object si is covered. The objective and con-
straints of the ILP formulation are as follows.

(IP) Minimize
k∑

�=1

∑
j∈T

x�(j) such that

∀�, ∀si ∈ C� :
∑

j∈ti

x�(j) ≥ z(i), ∀� :
∑

si∈C�

z(i) ≥ M�

∀j :
∑

�

x�(j) ≤ 1, All variables ∈ {0, 1}

Algorithm 1 describes the steps of ROUND. The linear
program P (from Step 1) can be solved (Step 2) using stan-
dard techniques in polynomial time (e.g., (Kleinberg and
Tardos 2006)) and a fractional solution to the variables of P
can be obtained efficiently whenever there is a feasible solu-
tion. We analyze the performance of ROUND in Theorem 1.
Most of our discussion will focus on analyzing the solution
X = (X1, . . . , Xk) computed in any iteration of Steps 4–14
of Algorithm 1. For each 	, define Z� =

∑
si∈C�

Z(i). A
proof of the following lemma appears in (Sambaturu et al.
2019).

Lemma 1. For each 	 ∈ [k], the expected number of objects
covered in cluster C� by a solution X in any round of Step 4
of algorithm ROUND is at least M�/4.

Challenge in deriving a lower bound on the number of
objects covered in each cluster. Lemma 1 implies that, in
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Algorithm 1: Algorithm ROUND

Input : S, π = {C1, . . . , Ck}, T , M� for each
	 = 1, . . . , k. (Note: |S| = n.)

Output: X = (X1, . . . , Xk)
1 Let P be a linear relaxation of the ILP IP , obtained by

requiring all variables to be in [0, 1] (instead of being
binary).

2 Solve P . If it is not feasible, return “no feasible
solution”. Else, let x∗, z∗ denote the optimal fractional
solution and B denote the associated cost.

3 For all j, and for all 	, set x�(j) = x∗
� (j)/2, and for all

si set z(i) = z∗(i)/2.
4 for 4 lnn times do
5 for j ∈ T and 	 = 1, . . . , k do
6 With probability x�(j), round X�(j) = 1 and

X�′(j) = 0 for all 	′ �= 	.
7 With probability 1−∑

� x�(j), set X�′(j) = 0
for all 	′.

8 end
9 for si ∈ S do

10 If X�(j) = 1 for some j ∈ ti, define Z(i) = 1.
11 end
12 For each 	, define Z� =

∑
si∈C�

Z(i).
13 If Z� ≥ M�/8 for each 	, and

∑
�

∑
j X�(j) ≤ 2B,

return X as the solution and stop.
14 end
15 Return failure.

expectation, a constant fraction of the objects in each clus-
ter are covered. If the variables Z(i) were all independent,
we could use a Chernoff bound (see, e.g., (Dubhashi and
Panconesi 2009)) to show that Z� is concentrated around
E[Z�] = Θ(M�). However, Z(i) and Z(i′) are dependent
when ti ∩ ti′ �= ∅. Therefore, the standard Chernoff bound
cannot be used in this case, and a new approach is needed.
We address this issue by considering the number of objects
which are not covered in C�. There are dependencies in this
case as well; however, they are of a special type, which can
be handled by Janson’s upper tail bound (Janson and Rucin-
ski 2002), which is one of the few known concentration
bounds for dependent events.

For si ∈ C�, let Y (i) = 1 − Z(i) be an indicator for
si not covered by the solution X . We apply the upper tail
bound of (Janson and Rucinski 2002) to obtain a concentra-
tion bound on Y� =

∑
si∈C�

Y (i). We first observe that the
dependencies among the Y� variables are of the form con-
sidered in (Janson and Rucinski 2002). Let Γ = T , and let
ξj� be an indicator that is 1 if X�(j) = 0. For a fixed 	, the
variables X�(j) are independent over all j, since ROUND
rounds the variables for each j independently. Hence, for a
fixed 	, the random variables ξj� are all independent. Then,
for si ∈ C�, Y (i) =

∏
j∈ti

ξj�. This implies that Y (i) and
Y (i′) are independent if ti ∩ t′i = ∅. Therefore, the ran-
dom variables Y (i) are of the type considered in (Janson
and Rucinski 2002). Let Δ be the maximum number of sets
ti′ which intersect with any ti, as defined earlier in Section

2, and let λ = E[Y�]. Then, the bound from (Janson and
Rucinski 2002) gives

Pr[Y� ≥ λ+ t] ≤ (Δ + 1) exp
(
− t2

4(Δ + 1)(λ+ t/3)

)
.

We use this bound in the lemma below.

Lemma 2. Assume M� ≥ a|C�| for all 	 ∈ [k] for a constant
a ∈ (0, 1], and let (Δ+1) ≤ min�∈[k]

d|C�|
logn , where d ≤ a2

576 .
Let t = M�/8. Then, for any fixed 	 ∈ [k] and any round of
Step 4 of ROUND, Pr(Y� ≥ E[Y�] + t) ≤ 1

n .

Proof. We consider a fixed 	 here. We have Pr[Y (i) = 1] =
1− Pr[Z(i) = 1] ≤ 1− z∗(i)/2, from the proof of Lemma
1. Next,

∑
si∈C�

Y (i) +Z(i) = Y� +Z� = |C�|. Therefore,
from Lemma 1

E[Y�] = |C�| − E[Z�] ≤ |C�| − M�

4
≤ (1− a

4
)|C�|,

since M� ≥ a|C�|. Let λ = E[Y�]. Then

(Δ + 1)λ ≤ d|C�|2(1− a
4 )

log n
≤ d|C�|2(1− a

4 )a
2

a2 log n

≤ d(1− a
4 )64t

2

a2 log n

Also

(Δ + 1)
t

3
≤ d|C1|ta

3a log n
≤ dM1t

3a log n
=

8dt2

3a log n
Therefore,

4(Δ + 1)(λ+
t

3
) ≤ 8dt2

a log n

[8(1− a/4)

a
+

1

3

]

Putting these together, we have
t2

4(Δ + 1)(λ+ t
3 )

≥ log n
8d
a [ 8(1−a/4)

a + 1
3 ]

≥ 2 log n,

where the last inequality follows because d ≤ a2

576 ; thus,
8d
a

[
8(1−a/4)

a + 1
3

]
≤ 1

2 . Applying Janson’s upper tail bound,

Pr(Y� ≥ λ+ t) ≤ (Δ + 1)exp
( −t2

4(Δ + 1)(λ+ t/3)

)

≤ (Δ + 1) exp(−2 log n) ≤ (Δ + 1)

n2

≤ M�

n2
≤ 1

n
,

where the last inequality is because M� ≤ |C�| ≤ n.

Theorem 1. Suppose an instance of MinConCD satisfies the
following conditions: (1) M� ≥ a|C�| for all 	 ∈ [k], and for
some constant a ∈ (0, 1], and (2) (Δ+1) ≤ min�

d|C�|
logn and

d ≤ a2

576 , and (3) k ≤ n/4. If the LP relaxation (P) is feasi-
ble, then with probability at least 1− 1

n , algorithm ROUND
successfully returns a solution X , which is an (1/8, 2)–
approximation.

Proof. We analyze the properties of a solution X computed
in each round of Step 4 of ROUND. From Lemma 2, for any
	 ∈ [k], Y� ≤ E[Y�] +

M�

8 with probability at least 1 −
1
n . Substituting E[Y�] ≤ |C�| − M�

4 (shown in the proof of
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Lemma 2) in the above equation we have,

Y� ≤ |C�| − M�

4
+

M�

8
≤ |C�| − M�

8
with the same probability, for each 	. Therefore,

Z� ≥ |C�| − Y� ≥ |C�| −
(
|C�| − M�

8

)
≥ M�

8
,

for each 	, with probability at least 1 − 1/n. This implies
Pr[Z� <

M�

8 ] ≤ 1/n, so that Pr[∃ 	 with Z� <
M�

8 ] ≤ k/n.
Therefore, with probability at least 1 − k/n, for all 	 ∈ [k],
we have Z� ≥ M�

8 .
Next, we consider the cost of the solution (i.e., the

total number of tags used). The rounding ensures that
Pr[X�(j) = 1] = x�(j), for each 	, j. Thus, by linearity
of expectation, the expected cost of the solution is

E
[∑

�

∑
j

X�(j)
]
=

∑
j

∑
�

x�(j) ≤ B

By Markov’s inequality, Pr[
∑

�

∑
j X�(j) > 2B] ≤ 1

2 .
Putting everything together, for each round, the probabil-

ity of success (i.e., the cost is at most 2B and Z� ≥ M�/8
for each 	) is at least 1

2 − k
n ≥ 1

4 , since k ≤ n/4. There-
fore, the probability that at least one of the 4 lnn rounds is a
success is at least 1− ( 34 )

4 lnn ≥ 1− 1
n .

4 Approximation using submodularity

The MinConCD problem can be viewed as a problem of sub-
modular function maximization with constraints which can
be expressed as a matroid. For convenience, we assume that
a cost budget B is also specified as part of an instance of
MinConCD and that the goal of the (α, δ)–approximation
algorithm is to produce a solution that covers at least αM�

objects in each cluster C� and has a cost of at most δB. This
assumption can be made without loss of generality since
the optimal cost is an integer in [1 .. |T |]; one can do a bi-
nary search over this range by executing the algorithm with
O(log |T |) different budget values and using the smallest
budget for which the algorithm produces a solution. We first
discuss the necessary concepts, and then describe our algo-
rithm. We refer the reader to (Calinescu et al. 2011) for more
details regarding submodular function maximization subject
to matroid constraints.

A matroid is a pair M = (Y, I), where I ⊆ 2Y and
(1) ∀A′ ∈ I, A ⊂ A′ ⇒ A ∈ I, and (2) ∀A,A′ ∈ I,
|A| < |A′| ⇒ ∃x ∈ A′ − A such that A ∪ {x} ∈ I. A
function f : 2Y → R≥0 is submodular if f(A ∪ {x}) −
f(A) ≥ f(A′ ∪ {x})− f(A′) for all A ⊆ A′. Function f(·)
is monotone if f(A) ≤ f(A′) for all A ⊆ A′.
Constructing a matroid for MinConCD. For each tag j ∈
T , let Yj = {aj , bj}. Let Y = ∪jYj . Let I = {A ⊂ Y :
|A ∩ Yj | ≤ 1, ∀j and |A| ≤ B}. Then M = (Y, I) can be
seen as an intersection of a partition matroid, which requires
|A∩Yj | ≤ 1 for all j, and a uniform matroid, which requires
|A| ≤ B.
Lemma 3. M = (Y, I) is a matroid.
Constructing a submodular function. It is easy to verify
that the function |V�(X)|/M� (which is the fraction of ob-
jects covered by solution X in cluster C�) is a submodu-
lar function of X . When k = 2, we need to find a solu-

tion X such that |V1(X)|/M1 ≥ 1 and |V2(X)|/M2 ≥
1 hold simultaneously. This can be achieved by requiring
min

{
|V1(X

A)|
M1

, |V2(X
A)|

M2

}
≥ 1. However, the minimum of

two submodular functions is not submodular, in general. We
handle this by using the “saturation” technique of (Krause,
McMahan, and Guestrin 2008): for A ⊆ Y , define XA

1 =
{j ∈ T : aj ∈ A} and XA

2 = {j ∈ T : bj ∈ A}, and

let XA = (XA
1 , XA

2 ). Define F1(A) = min
{

|V1(X
A)|

M1
, 1
}

,

F2(A) = min{ |V2(X
A)|

M2
, 1} and F (A) = F1(A) + F2(A).

It is easy to verify the following lemma.
Lemma 4. F1(A), F2(A), and F (A) are monotone sub-
modular functions of A.
Our algorithm for MinConCD with k = 2 involves the fol-
lowing steps.
1. Use the algorithm of (Calinescu et al. 2011) to find a set
A ∈ I which maximizes F (A) = F1(A) + F2(A).
2. Return the solution XA = (XA

1 , XA
2 ).

Theorem 2. Suppose there is a feasible solution to an in-
stance (S, π, T,B,M1,M2) of MinConCD, with k = 2.
Then, the above algorithm runs in polynomial time and re-
turns an (1− 2/e, 1)-approximate solution XA.

In (Sambaturu et al. 2019), we show how the above ap-
proach can be extended to approximate the objective of max-
imizing the total coverage (i.e.,

∑
� |V�(X)|), for any k.

5 Experimental results
Our experiments focus on the following questions.
1. Benefit of allowing cluster specific coverage. How do
the results from our MinConCD formulation compare with
those of (Davidson, Gourru, and Ravi 2018)?
2. Dependence of the cost on coverage. Does the cost in-
crease gradually as the coverage requirement increases?
3. Descriptions with pairs of tags. Does adding pair of tags
to the tagset provide better explanations of clusters? How do
these results compare to those where pairs of tags are not
used?
4. Performance. Does ROUND give solutions with good ap-
proximation guarantees in practice, and does it scale to large
real world datasets?
5. Explanation of clusters. Do the solutions provide inter-
pretable explanations of clusters in real world datasets?

5.1 Datasets and methods

Datasets. Table 1 provides details of the real and synthetic
datasets used in our experiments. In the synthetic datasets,
an object is associated with a tag with probability p.

The Threat and Uniref90 datasets (Jain and Kihara 2018;
Ramesh and Warren 2018) contain genome sequences and
information that may indicate a given gene’s threat potential,
which is established manually by domain experts— this is
used to partition the sequences into four clusters (referred to
as threat bins 1–4). The tags associated with these sequences
are various characteristics of the genes in them, obtained
from Bioinformatics repositories. Uniref90 is an expanded
version of the Threat dataset, with additional attributes com-
puted using sequence similarity.
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Real/Synthetic |S| |T | |C1| |C2|
Genome (Threat) 248 4632 73 175

Uniref90 21537 2193 13406 8131
Flickr 2455 175 1052 1402

Philosophers 249 14549 110 139
Synthetic-1 100 100 48 52
Synthetic-2 1000 1000 502 498
Synthetic-3 1000 1000 478 522

Table 1: Description of datasets. The three synthetic datasets
above were generated using probability values 0.05, 0.2 and
0.05 respectively.

The Flickr dataset (Yang, McAuley, and Leskovec 2013)
consists of images as nodes and relationships between im-
ages as edges. A relationship could correspond to images be-
ing submitted from the same location, belonging to the same
group, or sharing common tags, etc. We use the Louvain
algorithm in Networkx (Aric A. Hagberg and Swart 2008)
to generate communities of images, and pick the communi-
ties as clusters. User defined tags, such as “dog”, “person”,
“car”, etc., are provided for each image. The Philosophers
dataset (Yang, McAuley, and Leskovec 2013) consists of
Wikipedia articles (considered to be the objects to be clus-
tered) on various philosophers. The tags corresponding to
each object are the non-philosopher Wikipedia articles to
which there is an outlink from the philosopher article. The
clusters in the philosopher data are generated by grouping
communities that share a common keyword as a single clus-
ter. The Synthetic-2 and Synthetic-3 datasets are generated
with four clusters. In some experiments, we merge the clus-
ters in these datasets into two clusters, one corresponding to
clusters 1 and 2, and the other corresponding to clusters 3
and 4, as shown in Table 1. In many of our experiments, we
consider k = 2, and fixed M1 and M2 close to 70% of that
of |C1| and |C2|, respectively. The Twitter dataset used in
(Davidson, Gourru, and Ravi 2018) was unavailable due to
the terms of the dataset, and we are unable to compare with
the results of (Davidson, Gourru, and Ravi 2018).
Methods. We study the performance of ROUND in our ex-
periments. We run the rounding steps 4-14 in Algorithm 1
for 10 iterations. We use the ILP as a baseline. Note that for
the complete coverage version (i.e., M� = |C�|), the ILP is
exactly the method used by Davidson et al. (2018).
Code. The code is available at https://github.com/
prathyush6/ExplainabilityCodeAAAI20.git.

5.2 Results

1. Benefit of allowing cluster specific coverage. The exact
coverage formulation of (Davidson, Gourru, and Ravi 2018)
(which corresponds to M� = |C�| for all 	) is infeasible
for some of the datasets we consider. Instead, we examine
the cluster descriptions computed using the cover-or-forget
formulation of (Davidson, Gourru, and Ravi 2018), which
maximizes the total number of objects covered. Figures 1(a)
and 1(b) show the coverage percent for each cluster, i.e.,
(|V�(X)|/M�) × 100%, (y-axis) versus the cost of the so-
lution (x-axis), for the Flickr and Uniref90 datasets, respec-

(a) Flickr

(b) Uniref90

Figure 1: Coverage percent in each cluster (y-axis) and the
solution cost (x-axis) for the Flickr and Uniref datasets.

tively. Both figures show that the coverage is highly imbal-
anced. For instance, with 3 tags, almost 90% of elements
in cluster C2 are covered, whereas only 57% of elements
in C1 are covered in Figure 1(a). This is a limitation of the
cover-or-forget approach, and the cluster specific coverage
requirements in MinConCD can help alleviate this problem.
2. Dependence of cost on the coverage requirement. Fig-
ures 2(a) and 2(b) show the cost of the solution vs the cover-
age fraction. Initially, the cost grows slowly, but after a point,
the cost increases rapidly. For some parameter settings, there
is no feasible solution, which corresponds to the ends of the
curves. As the number of clusters increases, the cost to cover
a given fraction of elements increases.
3. Descriptions with pairs of tags. We extend the set of tags
T to Text by adding every pair (j, j′), where j, j′ ∈ T , and
use Text for finding descriptions. For some datasets, this in-
creases the feasible regime, but when the instance is feasible,
the solutions using T and Text are pretty close. However,
even if the description cost is very similar, using Text some-
times provides more meaningful descriptions. For instance,
on Philosophers dataset, we found pairs such as (‘Bene-
dict XIV’, ‘Roman Catholic religious order’) picked to de-
scribe the cluster corresponding to Wikipedia articles related
to Christianity.
4. Performance. First, we consider the approximation guar-
antee of ROUND in practice. Figure 3(a) shows the approx-
imation ratios (i.e., the ratio of the coverage achieved by
ROUND, to that of an optimum solution) on the y-axis,
and the solution cost on the x-axis. Recall that the anal-
ysis in Theorem 1 only guarantees a coverage factor of
1/8 = 0.125, but the plot for k = 2 shows that the ap-
proximation factors in practice are much higher—they are
always ≥ 0.8, and > 0.9 in most cases. Note that the curves
are non-monotone—this is due to the stochastic nature of
ROUND. However, for k = 4, the approximation ratios are
lower as shown in Figure 3(b).
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(a) k = 2 clusters

(b) k = 4 clusters

Figure 2: Overall fraction of coverage (x-axis) vs the cost B
(y-axis). The minimum coverage requirement in each cluster
is set to at least 50%.

We also observe that ROUND is quite scalable. The run-
ning time is dominated by the time needed to solve the LP.
We use the Gurobi solver, which is able to run successfully
on datasets whose data matrix (i.e., the matrix of objects and
tags) has up to 108 entries. In contrast, the ILP does not scale
beyond datasets with more than 106 entries.
5. Explanation of clusters

(a) Genomic threat sequences (harmful v harmless). Our
method chose 13 tags for the harmful cluster. Upon expert
review of our results, we found that certain tags served as
indicators that genes found within the harmful cluster can
intrinsically be viewed as harmful, while others may need to
act in concert, be viewed in combination with other tags, or
be representative of selection bias. Of the 13 tags selected,
4 indicate intrinsic capability of being harmful: KW-0800
(toxin), 155864.Z3344 (Shiga toxin 1), IPR011050 (Pectin
lyase fold/virulence), and IPR015217 (invasin domain). An-
other 4 tags are suggestive that the genes implicated are in-
volved in processes or locations commonly associated with
threat: KW-0732 (signal peptide), KW-0614 (plasmid), KW-
0964 (secreted), and GO:0050896 (response to stimulus).
Other tags associated with the threat partition such as KW-
0002 (3-D structure) indicate a limited amount of data and
perhaps bias in the research literature for the clusters ana-
lyzed. The definitions of these tags are presented in (Sam-
baturu et al. 2019).

To define the clusters, each gene was used as a seed to ob-
tain constituent members of Uniref90 groups. By including
genes greater than or equal to 90% sequence identity to the
manually curated set, clusters were created and the number
of sequences with associated attributes increased to 63,305.
(b) Philosophers dataset: Here, Cluster 1 is the set of
Wikipedia pages related to India and Greece, whereas Clus-
ter 2 has pages related to Christianity. The tags picked by our

(a) Datasets with 2 clusters

(b) Datasets with 4 clusters

Figure 3: Approximation ratio of ROUND (y-axis) vs budget
(x-axis) for different datasets (higher is better).

algorithm to explain Cluster 1 are Buddhist terms and con-
cepts, Metaphysics, Sanyasa, Buddhism, Athenian, Mathe-
matician, Greek Language, which are consistent with the
pages in the cluster. The tags picked to explain Cluster 2
are Constantinople, Existentialism, Abortion, Political Phi-
losophy, Theology, England, which are consistent with the
contents of that cluster.

6 Conclusions

We formulated a version of the cluster description problem
that allows simultaneous coverage requirements for all the
clusters. We presented rigorous approximation algorithms
for the problem using techniques from randomized round-
ing of linear programs and submodular optimization. Our
rounding-based algorithm exhibits very good performance
in practice. Using a real world data set containing genomic
threat sequences, we observed that the descriptors found us-
ing the algorithm give useful insights. In our experiments,
we considered several different parameters including cover-
age level, budget, and overlap. Using these parameters, our
approach can be used to obtain a range of solutions from
which a practitioner can choose appropriate descriptors.
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