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Abstract

Programming-by-example (PBE) is a synthesis paradigm that
allows users to generate functions by simply providing input-
output examples. While a promising interaction paradigm,
synthesis is still too slow for realtime interaction and more
widespread adoption. Existing approaches to PBE synthesis
have used automated reasoning tools, such as SMT solvers,
as well as works applying machine learning techniques. At
its core, the automated reasoning approach relies on highly
domain specific knowledge of programming languages. On
the other hand, the machine learning approaches utilize the
fact that when working with program code, it is possible to
generate arbitrarily large training datasets. In this work, we
propose a system for using machine learning in tandem with
automated reasoning techniques to solve Syntax Guided Syn-
thesis (SyGuS) style PBE problems. By preprocessing Sy-
GuS PBE problems with a neural network, we can use a data
driven approach to reduce the size of the search space, then al-
low automated reasoning-based solvers to more quickly find
a solution analytically. Our system is able to run atop exist-
ing SyGuS PBE synthesis tools, decreasing the runtime of the
winner of the 2019 SyGuS Competition for the PBE Strings
track by 47.65% to outperform all of the competing tools.

Introduction

The term “program synthesis” refers to automatically gen-
erating code to satisfy some specification. That specification
describes what the code should do, without going into de-
tails about how it should be done. The specification could
be given as a set of constraints (Manna and Waldinger 1979;
Kuncak et al. 2010), it can be deduced from the program
and its environment (Gvero et al. 2013; Feng et al. 2017),
or it can be inferred from a large corpus (Balog et al. 2017;
Santolucito et al. 2017).

One paradigm of program synthesis is called program-
ming by example (Cypher et al. 1993) (PBE). In the PBE
approach, a user only provides a set of pairs of input-output
examples that illustrate the desired behavior of the code.
From these examples, the PBE engine should then generate
code that generalizes from the examples to create a program
which covers the unspecified examples as well.
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The idea of automated code synthesis is an area of re-
search with a long history (cf. the Church synthesis prob-
lem (Church 1963)). However, due to the problem’s un-
decidability and high computational complexity for decid-
able fragments, for almost 50 years the research in pro-
gram synthesis was mainly focused on addressing theoret-
ical questions and the size of synthesized programs was rel-
atively small. However, the state of affairs has drastically
changed in the last decade. By leveraging advances in auto-
mated reasoning and formal methods, there has been a re-
newed interest in software synthesis. The research in pro-
gram synthesis has recently focused on developing efficient
algorithms and tools, and synthesis has even been used in
industrial software (Gulwani 2011). Today, machine learn-
ing plays a vital role in modern software synthesis and there
are numerous tools and startups that rely on machine learn-
ing and big data to automatically generate code (cod 2019;
Balog et al. 2017).

With numerous synthesis tools and formats being devel-
oped, it was difficult to empirically evaluate and compare
existing synthesis tools. The Syntax Guided Synthesis (Sy-
GuS) format language (Alur et al. 2013; Raghothaman and
Udupa 2019) was introduced in an effort to standardize the
specification format of program synthesis, including PBE
synthesis problems. The SyGuS language specifies synthesis
problems through two components - a set of constraints (eg
input-output examples), and a grammar (a set of functions).
The goal of a SyGuS synthesis problem is to construct a pro-
gram from functions within the given grammar that satisfies
the given constraints. With this standardized synthesis for-
mat and an ever expanding set of benchmarks, there is now
a yearly competition of synthesis tools (Alur et al. 2019),
which pushes the frontier of scalable synthesis further.

The SyGuS Competition splits synthesis problems into
tracks, for example PBE Strings or PBE BitVectors, assign-
ing a different grammar for each track - and sometimes even
varying the grammar within a single track. As the gram-
mar defines the search space in SyGuS, this allows bench-
mark designers to ensure problems are relatively in-scope of
current tools. However, when synthesis is deployed in real-
world applications, we must allow for larger grammars that
account for the wide range of use-cases users require (San-
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tolucito, Hallahan, and Piskac 2019). While larger grammars
allow for more expressive power in the synthesis engine, it
also slows down the whole synthesis process.

In our own experimentation, we found that by manually
removing some parts of the grammar from the SyGuS Com-
petition benchmarks, we can significantly improve synthesis
times. Accordingly, we sought to automate this process. Re-
moving parts of a grammar is potentially dangerous though,
as we may remove the possibility of finding a solution al-
together. In fact, understanding the grammar’s impact on
synthesis algorithms is a complex problem, connected to the
concept of overfitting (Padhi et al. 2019).

In this paper, we utilize machine learning to automate an
analysis of a SyGuS grammar and a set of synthesis con-
straints. We generate a large number of SyGuS problems,
and use this data to train a neural network. Given a new Sy-
GuS problem, the neural network predicts how likely it is for
a given grammar element to be critical to synthesizing a so-
lution to that problem. Our key insight is that, in addition to
criticality, we predict how much time we expect to save by
removing this grammar element. We combine these predic-
tions to efficiently filter grammars to fit a specific synthesis
problem, in order to speed up synthesis times. Even with
these reduced grammars, we are still able to find solutions
to the problems.

We implemented our approach in a modular tool, GRT,
that can be attached to any existing SyGuS synthesis engine
as a blackbox. We evaluated GRT by running it on the Sy-
GuS Competition Benchmarks from 2019 in the PBE Strings
track. We found GRT outperformed CVC4, the winner of the
SyGuS Competition from 2019, reducing the overall synthe-
sis time by 47.65%. Additionally, GRT was able to solve a
benchmark for which CVC4 timed out.

In summary, the core contributions of our work are as fol-
lows:

1. A methodology to generate models that can reduce time
needed to synthesize PBE SyGuS problems. In particular,
our technique reduced the grammar by identifying which
functions to try to eliminate to increase the efficiency of
a SyGuS solver. It also learns a model to predict which
functions are critical for a particular PBE problem.

2. A demonstration of the effectiveness of our methodology.
We show experiments on existing SyGuS PBE Strings
track that demonstrates the speed up resulting from us-
ing our filtering as a preprocessor for an existing SyGuS
solver. Over the set of benchmarks, our techniques de-
creases the total time taken by synthesis by 47.65%.

Related

One approach to SyGuS is to directly train a neural net-
work to satisfy the input/output examples (Andrychowicz
and Kurach 2016; Devlin et al. 2017b; Graves, Wayne,
and Danihelka 2014; Joulin and Mikolov 2015; Kaiser and
Sutskever 2015; Chen, Liu, and Song 2017). However, such
approaches struggle to generalize, especially when the num-
ber of examples is small (Devlin et al. 2017a). Some existing
work (Wang et al. 2018; Bunel et al. 2018) aims to represent
aspects of the syntax and semantics of a language in a neural

network. In contrast to these existing approaches, which aim
to outright solve SyGuS problems, our work acts as a prepro-
cessor for a separate SyGuS solver. However, one could also
explore using our work as a preprocessor for one of these ex-
isting neural network directed synthesis approaches. Other
works have explored combining logic-directed and machine
learning guided synthesis approaches (Nye et al. 2019). This
work sought to split synthesis tasks between generating high
level sketches with neural networks, and fill in the holes of
the sketch with an enumerative solver. Our work could be
complementary to this, by assisting in pruning of the search
space needed to fill in the holes.

Like our work, DeepCoder (Balog et al. 2017) and
Neural-Guided Deductive Search (NGDS) (Kalyan et al.
2018) identify pieces of a grammar that should be removed
from the grammar. However, in our parlance, these works
only consider criticality, which measures how important a
part of the grammar is to completing synthesis. Unlike our
work, they do not consider the time savings from removing
or keeping a part of the grammar. NGDS (Kalyan et al. 2018)
does note that different models could be trained for different
pieces of a grammar, however, it provides no means of au-
tomating this process. Rather, the user would have to man-
ually elect to train individual neural networks for different
grammatical elements. Work by Si et al (Si et al. 2018) aims
to learn an efficient solver for a SyGuS from scratch, rather
than, as in our work, acting as a preprocessor for a separate
solver.

Background
A SyGuS synthesis problem is a tuple (C,G) of constraints,
C, and a context-free grammar, G. In our case we restrict
the set of constraints to the domain of PBE, so that all con-
straints are in the form of pairs (i, o) of input-output exam-
ples. We write G \ g to denote the grammar G, but without
the terminal symbol g. The set of terminal symbols are the
component functions that can be used in constructing a pro-
gram (e.g. +, -, str.length). We also use the notation, π(G), to
denote the projection of G into its set representation, which
is the set of the terminal symbols in the grammar.

The problem statement of syntax-guided synthesis (Sy-
GuS) is; given a grammar, G, and a set of constraints C, find
a program, P ∈ G, such that the program satisfies all the
constraints – ∀c ∈ C.P � c. For brevity, we equivalently
write P � C. If our synthesis engine is able to find such a
program in t seconds or less, we write that (G,C)�t P . We
use the notation TC

G to indicate the time to run (G,C)�t P .
If the SyGuS solver is not able to find a solution within the
timeout (TC

G > t), we denote this as (G,C) ��t P . We
typically set a timeout on all synthesis problems of 3600
seconds, the same value of the timeout used in the SyGuS
competition. We write (G,C) � P and (G,C) �� P as
shorthand for (G,C) �3600 P and (G,C) ��3600 P , re-
spectively.

We define G as the grammar constructed from the maxi-
mal set of terminal symbols we consider for synthesis. We
call a terminal, g, within a grammar, critical for a set of con-
straints, C, if (G \ g, C) �� P . For any given set of con-
straints, if a solution exists with G, there is also a grammar,
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Figure 1: GRT uses the grammar G and constraints C to pre-
dict how critical each function is, and the amount of time that
would be saved by eliminating it from the grammar. Then, it
outputs a new grammar G�, which it expects will speed up
synthesis over the original grammar (that is, it expects that
TC
G� < TC

G ).

Gcrit, that contains exactly the critical terminal symbols re-
quired to find a solution. More formally, Gcrit is constructed
such that

(Gcrit, C)� P ∧ ∀g ∈ Gcrit. (G \ g, C) �� P

Note that Gcrit is not unique.
The goal of our work is to find a grammar, G�, where

π(Gcrit) ⊆ π(G�) ⊆ π(G). This will yield a grammar
that removes some noncritical terminal symbols so that the
search space is smaller, but still sufficient to construct a cor-
rect program.

Overview

Our system, GRT, works as a preprocessing step for a Sy-
GuS solver. The goal of GRT is to remove elements from the
grammar and thus, by having a smaller search space, save
time during synthesis. To do this we combine two metrics,
as shown in Figure 1: our predicted confidence that a gram-
mar element is not needed, and our prediction of how much
time will be saved by removing that element. We focus on
removing only elements where we are both confident that
the grammar element is noncritical, and that removing the
grammar element significantly impacts synthesis times. By
giving the constraints and the grammar definition to GRT,
we predict which elements of the grammar can be safely
removed. By analyzing running times we predict which of
these elements are benefical to remove. We describe GRT
in three sections, addressing dataset generation, the training
stage, and our evaluation.

Data Generation

In order to learn a model for GRT, we need to generate a la-
belled dataset that maps constraints to grammar components
in Gcrit. This will allow us to predict, given a new set of
constraints C ′, which grammar elements are noncritical for

synthesis, and accordingly prune our grammar. The genera-
tion of data for application to machine learning for program
synthesis is a nontrivial problem, requiring careful construc-
tion of the dataset (Shin et al. 2019). We break the generation
of this dataset into two stages: first, we generate a set of pro-
grams, P from G. Then, for each program in P , we generate
constraints for that program. We additionally need a dataset
of synthesis times, in order to predict how long synthesis
takes for a given set of constraints.

Criticality Data

To generate a set of programs P , that can be generated
from a grammar G, we construct a synthesis query with
no constraints. We then run CVC4 with the command
--sygus-stream, which instructs CVC4 to output as
many solutions as it can find. With no constraints, all func-
tions satisfy the specification, and CVC4 will generate all
permutations of (well-formed and well-typed) functions in
the grammar, until the process is terminated (we terminate
after generating n programs). Because CVC4 generates so-
lutions of increasing size, we collect all generated programs,
then shuffle the order to prevent data bias with respect to the
order (size) in which CVC4 generated programs.

After generating programs, we generate corresponding
constraints (in the form of input-output examples for PBE)
for these functions. To do this, for each program, P , we ran-
domly generate a set of inputs I , and compute the input-
output pairs C = {(i, P (i)) | i ∈ I}. We then form a SyGuS
problem (G,C), where we know that the program P satis-
fies the constraints, and is part of the grammar: P � C and
P ∈ G. This amounts to programs that could be synthesized
from the constraints (i.e. (G,C)�∞ P ). It is important that
our dataset represent programs that could be synthesized, as
opposed to what can be synthesized (i.e. (G,C) �3600 P ).
This is important because we will use this data set to try to
learn the “semantics” of constraints, and we do not want to
use this data set to additionally, inadvertently learn the limi-
tations of the synthesis engine.

At this point, we have now constructed a dataset of triples
of grammars (fixed for all benchmarks), constraints, and
programs, D = {(G,C1, P1) . . . (G,Cn, Pn)}. In order to
use D to helps us predict Gcrit, we break up each triple by
splitting each constraint set C into its individual constraints.
For a triple (G,C, P ), where C = {c1 . . . cm}, we generate
a new set of triples {(G, c1, P ) . . . (G, cm, P )}. The union
of all these triples of individual constraints form our train-
ing set, T Rcrit, that will be used to predict critical functions
in the grammar for a given set of constraints.

Timing Data

In addition to a training set for predicting Gcrit, we also
need a separate training set for predicting the time that can
be saved by removing a terminal from the grammar. This
dataset maps grammar elements g ∈ G to the effect on syn-
thesis times, R, when g is dropped from the grammar. To do
this we require synthesis problems that more closely model
the types of constraints that humans typically write. We col-
lect these set of benchmarks from users of the live coding in-
terface for SyGuS (Santolucito, Hallahan, and Piskac 2019).
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Because we had limited number of human-generated con-
straint examples, we augmented this with constraints gener-
ated from T Rcrit.

We run synthesis for each problem with the full grammar,
as well as with all grammars constructed by removing one
element, g. For every synthesis problem benchmark, 1 ≤
i ≤ m, we record the difference in synthesis times between
running with the full grammar, and removing g:

TCi

G − TCi

G\g (1)

Thus, we create a training set, T Rtime, relating each ter-
minal g ∈ π(G) and a set of constraints, to the time it takes
to synthesize a solution without that terminal.

Training

Predicting criticality

Our goal is to predict, given a set of constraints C, if a ter-
minal g belongs to the set of terminals π(Gcrit) for C. To
do this, we use a Feedforward Neural Network (Multi-Layer
Perceptron), with an extra embedding layer to encode the
string valued input-output examples into feature vectors. We
train the neural network to predict the membership of each
terminal g ∈ π(G) to the critical set π(Gcrit), based on a
single constraint c ∈ C. This prediction produces a 1D bi-
nary vector of length |π(G)|, where 1 at position i in the
binary vector indicates the terminal in position i is predicted
to belong to the critical set.

When a SyGuS problem has multiple (|C| ≥ 2) con-
straints, we run our prediction on each constraint individ-
ually. We then use a voting mechanism to come to consen-
sus on the construction of G�. After computing |C| binary
vectors across all constraints, the vectors are summed to pro-
duce a final voting vector. The magnitude of each element in
this final voting vector represents the number of votes “from
each constraint” that the terminal represented by that ele-
ment is in the critical set. We then use this final voting vector
in combination with our time predictions.

Predicting time savings

It is only worthwhile to remove a terminal symbol g from
a grammar G if TC

G\g is less than TC
G . If a g stands to only

give us a small gain in synthesis times, it may not be worth
the risk that we incorrectly predicted its criticality.

To predict the amount of time saved by removing a termi-
nal g we examine the distribution of times in our training set
T Rtime. For each terminal g, we calculate Ag , the average
time increase that results from removing g from the gram-
mar. Denoting the time to run (G,C) � P as TC

G , we can
write Ag as:

Ag =

∑n
i=1 T

Ci

G − TCi

G\g
n

If a terminal g has a negative Ag , then removing it from
the grammar actually slows down synthesis, on average. As
such, dropping the terminal from the grammar is not gener-
ally helpful. Thus, we only consider those terminals with a
positive Ag in our second step.

Combining predictions

With our predictions of the criticality a terminal g and of
time saved by removing g, we must make a final decision on
whether or not we should remove g. To do this, we take the
top three terminals with the greatest average positive impact
on synthesis time over the training set, as computed with
Ag . These tended to be terminals that mapped between types
which saved more time due to the internal mechanisms and
heuristics of the CVC4 solver. We then use the final voting
vector from our criticality prediction to choose only two out
of the three to remove from G to form G�. We chose to re-
move only two terminals from G in order to minimize the
likelihood of generating a G�, such that π(G�) ⊆ π(Gcrit).
We conjecture that the number of terminals removed is a
grammar-dependent parameter that must be selected on a per
grammar basis, just as the number of terminals with Ag > 0
is grammar specific.

Falling back to the full grammar

There is some danger that G� will, in fact, not be sufficient
to synthesize a program. Thus, we propose a strategy that
• first, tries to synthesize a program with the grammar G�

• second, if synthesis with G� is unsuccessful, falls back to
attempting synthesis with the full grammar G.
We determine how long to wait before switching from G�

to G by finding an x that minimizes:

n∑
i=1

{
TCi

G� TCi

G� < x

min(x+ TCi

G , t) TCi

G� > x

}
(2)

where C1 . . . Cn are the constraints from the training set,
and t is the timeout for synthesis.

Ideally, as captured in the first line of the sum,
(Ci, G

�) �x P will finish before TCi

G� = x. However, if a
benchmark does not finish in that time, it will fall back on
the full grammar. Then, either (Ci, G

�) �t−x P will suc-
ceed, and synthesize the expression in total time x+TCi

G , or
synthesis will timeout, in total time (t− x) + x = t.

Experiments

The SyGuS competition (Alur et al. 2017) provides public
competition benchmarks and results from previous years.
In particular, the PBE Strings dataset provides a collection
of PBE problems over a grammar that includes string, in-
teger, and Boolean manipulating functions. First, we de-
scribe our approach to generating a training set of PBE
problems over strings. Then, we present our results run-
ning GRT against the 2019 competition’s winner in the PBE
Strings track, CVC4 (Nötzli et al. 2019; Barrett et al. 2011;
Alur et al. 2019). We are able to reduce synthesis time by
47.65% and synthesize a new solution to a benchmark that
was left unsolved by CVC4.

Technical details

The data triples generated during our initial data generation
process of T Rcrit are triples of strings. However, the neural
network cannot process input-output pairs of type string as
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Figure 2: The top 20 problems with longest synthesis time for CVC4 (excepting timeouts), and the corresponding synthesis
times for GRT+CVC4.

input. Thus, this data must be encoded numerically before
it can be utilized to train the neural network. Each character
in the input-output pairs is converted to its ASCII equiva-
lent integer value. The size of each pair is then standardized
by adding a padding of zeros to the end of each newly en-
coded input and output vector respectively. This creates two
vectors: the encoded input and the encoded output, both of
which have a length of 20. These two vectors are then con-
catenated to give us a single vector for training. By the end
of this process the triples created in our first data generation
step are now one vector of type N

40 representing the input-
output pair and a correct label P that will be predicted.

To generate the training set for predicting synthesis times,
T Rtime, we combine human generated and automatically
generated SyGuS problems. Specifically, we use 10 human
generated SyGuS problems, and 20 randomly selected prob-
lems from T Rcrit.

The overall architecture of our model can be categorized
as a multi-layer perceptron (MLP) neural network. More
specifically, our model is made up of five fully connected
layers: the input layer, three hidden layers, and the output
layer. By using the Keras Framework, we include an em-
bedding layer along with our input layer which enables us
to create unique vector embeddings of length 100 for any
given input-output pair in the dataset. This embedding layer
learns the optimal weights used to create these unique vec-
tors through the training process. Thus, we create an encod-
ing of the input-output pairs for training, while simultane-
ously standardizing the scale of the vector before it reaches
the first hidden layer. The hidden layers of the model are all
fully connected, and all use the sigmoid activation function.
In addition, we implement dropout during training to ensure
that overfitting does not occur. The size of the hidden layers
was calculated using a geometric series to ensure that there
was a consistent decrease in layer size as the layers get closer
to the output layer. Specifically, the size of each hidden layer
was calculated by:

HLsize(n) = inputsize
(outputsize
inputsize

) n
Lnum+1 (3)

where Lnum represents the total number of layers in the
network. Our model used the Adam optimization method
and the binary-cross entropy loss function as it is well suited
for multi-label classification. Overall, our model was trained
on 124928 data points for 15 epochs with a batch size of 200
producing a training time of 228 seconds.

Results

After generating our data sets and training our model, we
wrote a wrapper script to run GRT as a preprocessor for
CVC4’s SyGuS engine. We compared the synthesis results
of GRT+CVC4 with the synthesis results of running CVC4
alone. All experiments were run on MacBook Pro with a 2.9
GhZ Intel i5 processor with 8GB of RAM. CVC4 uses a
default random seed, and is deterministic over the choice
of that seed, so the results of synthesis from CVC4 on a
given grammar and set of constraints are deterministic. We
note that our training data in no way used any of the SyGuS
benchmarks.

GRT+CVC4 outperformed directly calling CVC4 on 32
out of 64 benchmarks (50%), with a reduction in total syn-
thesis time over all benchmarks from 1304.87 seconds with
CVC4 to 683.09 seconds with GRT+CVC4. On one bench-
mark, CVC4 timed out and was not able to find a solution
(even when the timeout was increased to 5000 seconds),
while GRT+CVC4 found a solution within the timeout spec-
ified by the SyGuS Competition rules (3600 seconds). On
one benchmark, both CVC4 and GRT+CVC4 timeout (TO)
and are not able to find a solution. On the other 31 bench-
marks, CVC4 performed the same (within ±0.1s) with and
without the preprocessor. All the benchmarks for which
CVC4 performed the same as GRT+CVC4 finish in under
2 seconds, and 28 of the 31 finish in under a second. In
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Figure 3: When the GRT+CVC4 found a different solution
than CVC4, it was on average shorter than the solution found
with the full grammar.

these cases there was little room for improvement even with
GRT+CVC4.

Figure 4 shows the exact running times with both the full
and reduced grammars from the benchmarks with the 30
largest running times with the full grammar. These are the
benchmarks for which the synthesis times and size of the so-
lution diverge most meaningfully, however all other data is
available in the supplementary material for this paper. Fig-
ure 4 also shows |P | and |P ∗|, the sizes of the programs
found by the CVC4 and GRT+CVC4, respectively. We de-
fine size of a program as the number of nodes in the abstract
syntax tree of the program. In terms of the grammar G, this
is the number of terminals (including duplicates) that were
composed to create the program.

In Figure 2, we present a visual comparison of the results
for the 20 functions that took CVC4 the longest, while still
finishing in the 3,600 second time limit. We note that we
have the largest gains on the problems for which CVC4 is
the slowest. Problems that CVC4 already handles quickly
stand to benefit less from our approach.

In order to get a better baseline to understand the impact
of GRT on running times, we ran a version of GRT with
only the criticality prediction, which we call GRTC. In this
case, GRTC+CVC4 actually performed worse than CVC4
by itself, increasing the running time on 53 out of the 62
benchmarks that did not timeout on CVC4.

On all but 5 benchmarks, CVC4 synthesized the same pro-
gram when running with G and G�. The sizes of the pro-
grams (in terms of the number of terminal symbols used) for
the benchmarks on which CVC4 synthesized different pro-
grams are shown in Figure 3. While on some benchmarks
GRT+CVC4 produced a larger solution than CVC4, as a
whole the sum of the size of all solutions for CVC4 was
806, while for GRT+CVC4 it was 789. Thus, overall, we
were able to outperform CVC4 on size of synthesis as well.

The SyGuS competition scores each tool using the for-
mula: 5N +3F +S, where N is the number of benchmarks
solved (non-timeouts), F is based on a “pseudo-logarithmic

id file TC
G TC

G� |P | |P �|
34 lastname-small.sl 1.80 1.84 4 4
35 bikes-long.sl 1.97 1.76 3 3
36 bikes-long-repeat.sl 2.08 1.71 3 3
37 lastname.sl 2.31 1.83 4 4
38 phone-6-short.sl 3.23 1.22 11 11
39 phone-7-short.sl 3.26 1.26 11 11
40 initials-long-repeat.sl 3.33 2.54 7 7
41 phone-5-short.sl 3.72 1.51 9 9
42 phone-7.sl 4.57 2.03 11 11
43 phone-8.sl 4.72 2.17 11 11
44 phone-6.sl 4.85 1.97 11 11
45 phone-5.sl 4.88 2.20 11 11
46 phone-9-short.sl 4.88 4.73 52 52
47 phone-10-short.sl 8.81 8.28 49 49
48 phone-9.sl 12.08 4.86 56 52
49 phone-10.sl 31.23 8.49 97 49
50 lastname-long.sl 32.40 25.49 4 4
51 lastname-long-repeat.sl 32.49 24.92 4 4
52 phone-6-long-repeat.sl 83.59 25.31 11 11
53 phone-5-long-repeat.sl 84.77 33.68 11 11
54 phone-7-long.sl 87.83 26.15 11 11
55 phone-7-long-repeat.sl 89.13 26.23 11 11
56 phone-5-long.sl 90.81 30.01 11 11
57 phone-8-long-repeat.sl 91.04 35.64 11 11
58 phone-9-long-repeat.sl 91.19 77.02 47 50
59 phone-6-long.sl 98.15 24.75 11 11
60 phone-8-long.sl 108.06 29.94 11 11
61 phone-10-long-repeat.sl 149.53 129.43 49 65
62 phone-10-long.sl 153.32 133.22 49 65
63 initials-long.sl TO TO - -
64 phone-9-long.sl TO 3516.21 - 49

Figure 4: Synthesis results over the 30 longest running
benchmarks from SyGuS Competition’s PBE Strings track.

scale” (Alur et al. 2017) indicating speed of synthesis, and
S is based on a “pseudo-logarithmic scale” indicating size
of the synthesized solution. On all three of these measure-
ments, GRT+CVC4 performed better than CVC4. There are
number of other synthesis tracks available in the SyGuS
competition, which do not involve PBE constraints. We note
that our approach can selectively be applied as a preprocess-
ing step for input in the PBE track without incurring an over-
head on other synthesis tasks.

Although we implemented a strategy to manage a switch
from the reduced grammar back to the full grammar, we
found in practice that the optimal strategy for our system
was to exclusively use the reduced grammar. Because we
had conservatively pruned the grammar, we had no need to
switch back to the full grammar.

Conclusions

In a way, by training on a dataset we generate from the out-
put of the interpreter of the language, we are encoding an ap-
proximation of the semantics into our neural network. While
the semantic approximation is too coarse to drive synthesis
itself, we can use it to prune the search space of potential
programs. By predicting terminals impact on synthesis time,
we more conservatively remove only terminals likely to have
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a positive impact. In conjunction with analytically driven
tools, we can then significantly improve synthesis times with
very little overhead.

While we have presented GRT, which demonstrates a sig-
nificant gain in performance over all existing SyGuS solvers,
we still have many opportunities for further improvement. In
our prediction of the potential time saved by removing a ter-
minal from the grammar, we have simply used the average
expected value over all samples in the dataset. By using a
neural network here, we may be able to leverage some prop-
erty of the SyGuS problem constraints to have more accurate
potential time savings predictions. This would allow us, pos-
sibly in combination with a more advance prediction com-
bination strategy, to more aggressively prune the grammar.
The drawback to this approach is that we may then poten-
tially remove too much from the grammar. One of the key
features of GRT is that it introduces no new timeouts, that
is, it does not remove any critical parts of the grammar.

Additionally, our prediction of criticality of a terminal
uses a voting mechanism to combine the prediction based
on each constraint. While this worked well in practice, this
strategy ignores the potential for interaction between con-
straints. In our preliminary exploration, we were not able to
construct a model that captures this inter-constraint interac-
tion in a useful way. This may be a path for future work. In a
similar vein, there exist a number of other works that define
a criticality measure for each terminal in the SyGuS gram-
mar (Balog et al. 2017; Kalyan et al. 2018). It may be possi-
ble to leverage these in place of our criticality measure, and
in combination with our time savings prediction, to achieve
better results.

So far we have only explored the PBE Strings track of the
SyGuS Competition. The competition also features a PBE
BitVectors track where our technique may have significant
gains as well. This would require a new encoding scheme,
but the overall approach would remain similar. In general,
extending this work to allow for other PBE types, as well as
more general constraints, would broaden the potential real-
world application of SyGuS.
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