
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Solving Set Cover and Dominating Set via Maximum Satisfiability

Zhendong Lei, Shaowei Cai∗
State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences

School of Computer and Control Engineering, University of Chinese Academy of Sciences
leizd@ios.ac.cn, shaoweicai.cs@gmail.com

Abstract

The Set Covering Problem (SCP) and Dominating Set Prob-
lem (DSP) are NP-hard and have many real world applica-
tions. SCP and DSP can be encoded into Maximum Satisfia-
bility (MaxSAT) naturally and the resulting instances share a
special structure. In this paper, we develop an efficient local
search solver for MaxSAT instances of this kind. Our algo-
rithm contains three phrase: construction, local search and
recovery. In construction phrase, we simplify the instance
by three reduction rules and construct an initial solution by
a greedy heuristic. The initial solution is improved during
the local search phrase, which exploits the feature of such
instances in the scoring function and the variable selection
heuristic. Finally, the corresponding solution of original in-
stance is recovered in the recovery phrase. Experiment results
on a broad range of large scale instances of SCP and DSP
show that our algorithm significantly outperforms state of the
art solvers for SCP, DSP and MaxSAT.

Introduction
Many combinatorial optimization problems that arise in the
real world are difficult to solve partly because they present
computational challenges. One of the most effective ap-
proach to solve such problems is to first model them in a
mathematical or logical language, and then solve them by
applying a suitable algorithm. This paper is concerned with
developing a practical algorithm to solve two optimization
problems modelled in a particular logical language, Maxi-
mum Satisfiability (MaxSAT) .

Given a propositional formula expressed in the Con-
junctive Normal Form (CNF), Satisfiability (SAT) concerns
about satisfying all clauses. MaxSAT is an optimization ver-
sion of SAT, and its most general form contains both hard
clauses and weighted soft clauses. Such a MaxSAT prob-
lem is referred to as weighted Partial MaxSAT (WPMS),
where the goal is to find an assignment that satisfies all the
hard clauses and maximize the total weight of satisfied soft
clauses.

There is a remarkable number of algorithms for (W)PMS
including complete solvers (Davies and Bacchus 2011;

∗Corresponding author
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Ansótegui, Bonet, and Levy 2013; Narodytska and Bac-
chus 2014; Martins, Manquinho, and Lynce 2014; Ansótegui
and Gabàs 2017) and incomplete solvers (Cai et al. 2014;
2016; Luo et al. 2017; Lei and Cai 2018). Due to the suc-
cess of these works, there has been much interest in solving
combinatorial optimization problems by this kind of logical
language (Demirovic and Musliu 2017; Jiang et al. 2018;
Demirovic, Musliu, and Winter 2019).

In real world, WPMS solvers are usually used for solving
problems from some specific domain. Each specific problem
has its own characteristics which are important for design-
ing algorithms. However, previous WPMS solvers are usu-
ally developed for general purpose and do not exploit the
feature of the instances from specific domains. In our opin-
ion, exploiting these features in WPMS solving would lead
to more effective solvers for WPMS from specific domains.

In this paper, we propose a WPMS solver to solve two
closely related NP hard combinatorial optimization prob-
lems of importance, namely Set Cover Problem (SCP) and
Dominating Set Problem (DSP). SCP has many applications,
from crew scheduling in railway and mass-transit compa-
nies to job assignment in manufacturing and service loca-
tion (Caprara et al. 1997; Bautista and Pereira 2006). DSP
also finds valuable applications in many fields (Hedetniemi
et al. 2003; Aoun et al. 2006; Chalupa 2018). For example,
Shen and Li (Shen and Li 2010) solve the multi-document
problem by encoding this problem to DSP.

Many works have been done to solve SCP and DSP over
the years. For SCP, there are complete algorithms (Caprara,
Toth, and Fischetti 2000), genetic algorithm (Beasley and
Chu 1996), simulated annealing (Jacobs and Brusco 1995)
and local search algorithm (Gao, Weise, and Li 2014). For
DSP, there are ant colony optimization (ACO) (Jovanovic et
al. 2010), swarm intelligence algorithm (Nitash and Singh
2014) and local search algorithm (Wang et al. 2018).

In this work, we formulate SCP and DSP into WPMS
and design a specific local search algorithm (denoted as
DomSAT) to solve them. The new algorithm contains three
phases: construction, local search and recovery. The main
contributions of this paper are as follows:

First, based on the features of such WPMS instances,
we propose three reduction rules to simplify the instances.

1569

Then, we construct a feasible solution greedily for the sim-
plified instance, which serves as the initial solution for the
local search phrase. The local search algorithm is mainly
based on a variable selection heuristic, which distinguishes
four different situations during the search, and employs dif-
ferent variable selection rules under each situation. Finally,
by extending the assignment returned by local search phase
with data structure of the reduction rules, we obtain the cor-
responding solution of the original intance.

We carry out experiments to compare our algorithm Dom-
SAT with state of art solvers for SCP, DSP and WPMS
on a broad range of benchmarks. According to the exper-
iments, DomSAT performs significantly better than all the
competitors. We also perform experimental analysis and ad-
ditional investigations to show the effectiveness of the pro-
posed heuristics.

The reminder of this paper is organized as follows. The
next section introduces preliminary knowledge. Section 3
presents the encodings from SCP and DSP to WPMS, and
the reduction rules. Section 4 present an overview of our
method. Then, the construction procedure and recovery pro-
cedure are introduced in Section 5. The main local search
procedure is presented in Section 6. Experimental results are
presented in Section 7. Finally, we conclude the paper.

Preliminaries
SCP: Given an universal set X and a set Y which contains
subsets of X with ∪∀y∈Y = X , each element in Y is asso-
ciated with a weight w(y), the goal is to find a set F ⊆ Y
of the smallest total weight but still contains all elements in
X , that is, ∪∀y∈F = X . We use U = (X,Y,W) to denote a
SCP instance.

DSP: An undirected graph G = (V,E) consists of a ver-
tex set V and an edge set E ⊆ V ×V in which each edge is a
2-element subset of V . A vertex weighted undirected graph
is an undirected graph in which each vertex v ∈ V is associ-
ated with an integer number w(v). We use G = (V,E,W)
to denote a vertex weighted graph. Given a vertex weighted
undirected graph G = (V,E,W), the Dominating Set Prob-
lem (DSP) is to find a subset D with the smallest total weight
of its vertices such that every vertex either belongs to D or
is adjacent to at least one vertex in D.

WPMS: Given a set of Boolean variables
{v1, v2, . . . , vn}, a literal is either a variables vi or its
negation ¬vi. A clause is a disjunction of literals which
can be expressed as a set of literals. A clause is satisfied if
it has at least one true literal, and falsified otherwise. An
empty clause � is falsified. A conjunctive normal form
(CNF) formula F is a conjunction of clauses which can be
expressed as a set of clauses. Two variables are neighbors iff
they occur in at least one clause. Let N(v) = {u|u ∈ V (F)
and u occurs in at least one clause with v}, which is the set
of all neighboring variables of variable v.

The Partial MaxSAT (PMS) problem, in which some
clauses are declared to be hard and the rest are declared
to be soft, is the problem of finding an assignment such
that all hard clauses are satisfied and the number of satis-
fied (resp. falsified) clauses is maximized (resp. minimized).
In Weighted PMS (WPMS), each soft clause s is associated

with a positive integer w(s) as its weight, and the goal is
to satisfy all hard clauses and maximize the total weight of
satisfied soft clauses.

A complete assignment for (W)PMS is a mapping that as-
signs to each variable either 0 or 1. For an assignment α,
we use α[v] to denote the assignment of variable v under
α. For a (W)PMS instance F , we say an assignment α is
feasible iff it satisfies all hard clauses in F . The cost of a
feasible assignment α is defined to be the number (resp. the
sum of weights) of falsified soft clauses under α for PMS
(resp. WPMS). In order to generalize this concept to infea-
sible assignments, we use soft cost (costs) to refer to this
measure for infeasible assignments.

A probabilistic sampling strategy named best from Mul-
tiple Selections(BMS) (Cai 2015) chooses t (t is an integer
parameter) candidates randomly with replacement from the
set of all candidates and returns the best one we want. In
our algorithm, t is set to 100 for small instances (< 10000
variables) and 60 for large instances (> 10000 variables).

Encodings and Reduction Rules
SCP and DSP can be encoded into WPMS instances natu-
rally. Based on the observations on such WPMS instances,
we propose several reduction rules to simplify the instances.

Encodings

For convenience, we present our encodings with the set form
of clause, i.e., a clause is expressed as a set of literals. In this
work, we consider SCP and DSP on weighted graphs, and
the unweighted versions can be viewed as a special case of
the weighted versions where each weight is equally one.

Given a SCP instance U = (X,Y,W), we encode it into
a WPMS instance as follows:
• Variables: For each element (a subset) in Y , the WPMS

instance has a boolean variable vy that represents whether
or not the subset y is selected in the solution.

• Hard clauses: For each element x ∈ X , generate a hard
clause {vy|y ∈ Y, x ∈ y}, to ensure that each element in
X is covered by at least one subset in Y .

• Soft clauses: For each element y ∈ Y , generate a soft
clause {¬vy} and its weight is equal to w(y).
Given a weighted graph G = (V,E,W), we encode a

DSP instance into a WPMS instance as follows:
• Variables: For each vertex in i ∈ V , the WPMS instance

has a boolean variable vi that that represents whether or
not the vertex i is selected in the solution.

• Hard clauses: For each vertex i ∈ V , generate a hard
clause {vj |(i, j) ∈ E} ∪ {vi}, to ensure that each ver-
tex in V is dominated.

• Soft clauses: For each vertex i ∈ V , generate a soft clause
{¬vi} and its weight is equal to w(i);
The resulting WPMS instances encoded from SCP and

DSP have two significant features:
• (a) Hard clauses only contain positive literals.
• (b) For each variable v, there is exactly one soft clause,

which is {¬v}.

1570

Reduction Rules

We propose several reduction rules to simplify the instances
with the two characteristics. A key concept underlying our
reduction rules is the “dominating” relation between vari-
ables, which is formally defined below.

Definition 1 (dominating relations). For any (W)PMS in-
stance with the two features (a) and (b) mentioned above,

• a variable v′ dominates another variable v, denoted as
v′ � v, if for any hard clause c, if v ∈ c then v′ ∈ c.

• a variable v′ strong dominates another variable v, de-
noted as v′ � v, if v′ � v and w({¬v′}) ≤ w({¬v}).
With the above definition, we present our reduction rules

below.
Hard Unit Clause Rule: If there is a hard unit clause

c = {v}, then variable v is assigned to 1 in order to satisfy
the unit clause.

The Hard Unit Clause Rule is trivially sound and indeed
applies to any WPMS instance. When it is applied to a in-
stances with features (a) and (b), with a hard unit clause
c = {v}, the WPMS instance is simplified by deleting all
clauses containing the literal v (as they are satisfied) and the
soft clause {¬v} becomes an empty clause.

Strong Dominating Rule: For a variable v, if ∃v′(v′ �
v), then v is assigned to 0.

When Strong Dominating Rule is applied to a WPMS in-
stances with features (a) and (b), the WPMS instance is sim-
plified by deleting the soft clause {¬v} (as it is satisfied),
and removing the literal v from all hard clauses containing
literal v.

Binary Weak Dominating Rule: For a variable v, if
there is a binary hard clause v ∨ v′ and v′ � v, then rewrite v
as ¬v′.

When Binary Weak Dominating Rule is applied to
a WPMS instances with features (a) and (b), the
WPMS instance is simplified as follows: first, delete
all hard clauses that contain v ∨ v′ (which is ¬v′ ∨
v′ after rewriting, and thus is a tautology); then, soft
clauses ({¬v}, w({¬v})) and ({¬v′}, w({¬v′})) beome
({�}, w({¬v})) and ({¬v′}, w({¬v′})− w({¬v})).

Let us denote the original WPMS instance as F and the
simplified formula as F ′. It is easy to see that, for both dom-
inating rules, every feasible solution for F ′ corresponds to a
feasible solution in F with the same cost. Nevertheless, the
proof of the optimal-reserving property (i.e., F and F ′ have
the same optimal cost) of these two rules is not trivial, and
is outlined below.

Proof : (1) Optimal-reserving of Strong Dominating rule:
Suppose F has an optimal solution α with α[v] = 1 where
v is the variable fixed to 0 by the rule. According to the
rule, we know that there exists a variable v′ such that v′ � v
and w({¬v′}) ≤ w({¬v}). We can construct a solution α′
which is modified from α by flipping the value of v to 0 and
setting α′[v′] = 1. We will show that cost(α′) ≤ cost(α).

Firstly, α′ satisfies all hard clauses. It is sufficient to con-
sider the hard clauses containing v. Such clauses also con-
tain v′ (as v′ � v), and by setting α′[v′] = 1, they are
satisfied. As for the cost, if α[v′] = 0 then cost(α′) =

Algorithm 1: DomSAT Algorithm
Input: PMS instance F
Output: A feasible assignment α of F and its cost

1 begin
2 (α0, F ′, RelV ar) := Construction(F);
3 α := LocalSearch(F ′, α0, cutoff time);
4 α := Recovery(α, RelV ar);
5 return (α, cost(α));

cost(α) − w({¬v}) + w({¬v′}) ≤ cost(α); if α[v′] = 1,
then cost(α′) = cost(α) − w({¬v}) < cost(α). Hence,
cost(α′) ≤ cost(α) always holds. Therefore, it is safe to
fix v to 0 without changing the optimal cost of the WPMS
instance.

(2) Optimal-reserving of Binary Weak Dominating rule:
If there is a binary hard clause v ∨ v′ and v′ � v, then
α[v] = 1−α[v′] in any optimal solution α. We prove this by
contradiction. Suppose there is an optimal solution α with
α[v] = α[v′]. Since α satisfies all hard clause, we conclude
that α[v] = α[v′] = 1, as α[v] = α[v′] = 0 would make the
hard clause x ∨ y falsified. Now, if we flip v to 0, it would
lead to a feasible solution with lower cost, which contradicts
with our assumption.

To illustrate the reduction rules, we provide a small exam-
ple below.

• Originally, the WPMS instance F has 8 hard clauses
as h1 := {v1, v2}, h2 := {v1, v2, v3, v4}, h3 :=
{v2, v3, v5}, h4 := {v2, v4, v5}, h5 := {v3, v4, v5},
h6 := {v5, v6, v7}, h7 := {v6, v7, v8} h8 := {v7, v8}
and 8 soft clauses with their weights as ({¬v1}, 2),
({¬v2}, 3), ({¬v3}, 2), ({¬v4}, 2), ({¬v5}, 7),
({¬v6}, 5), ({¬v7}, 3), ({¬v8}, 4).

• By Strong Dominating Rule, v8 is assigned to 0, then
{¬v8} is deleted and h7, h8 become {v6, v7} and {v7}
respectively.

• By Hard Unit Clause Rule, v7 is assigned to 1, then
h6, h7, h8 are deleted and ({¬v7}, 3) becomes (�, 3).

• By Weak Dominating Rule, v1 is rewrite to ¬v2, then h1,
h2 are deleted, and ({¬v1}, 2) and ({¬v2}, 3) become
({�}, 2) and ({¬v2}, 1) respectively.

• Finally, the simplified WPMS instances F ′ has 3 hard
clauses as h3 := {v2, v3, v5}, h4 := {v2, v4, v5}, h5 :=
{v3, v4, v5} and 7 soft clauses ({�}, 2), ({¬v2}, 1),
({¬v3}, 2), ({¬v4}, 2), ({¬v5}, 7), ({¬v6}, 5), ({�}, 3)
Note that, most instances do not have hard unit clause.

However, the applications of other rules may lead to hard
unit clauses, as illustrated in the above example.

Top-level Framework and Scoring Functions

In this section, we give a brief overview of our new algo-
rithm DomSAT. As shown in Algorithm 1, DomSAT con-
tains three phases: construction, local search and recovery.

In the construction phase, the original WPMS instance F
is simplified by the reduction rules, resulting in a simplified

1571

instance F ′. Then, a feasible assignment α0 for F ′ is con-
structed by a greedy heuristic. Note that, we also record the
data structure of the reduction rules, which will be used in
the final phase to obtain the final solution to the original in-
stance.

After that, a local search algorithm is called to solve the
simplified instance F ′, with α0 as the initial solution. This
leads to an improved solution α.

Finally, it is easy to obtain a feasible solution for the orig-
inal instance F by extending the assignment α returned by
local search, with the help of data structure on the execution
of the reduction rules.

In our algorithm, three scoring functions are used for
picking the variable to flip. The first two are hard score and
soft score (Cai et al. 2014).

Definition 2 (hard score). The hard score of a variable x,
denoted by hscore(x), is the increase of the total weight of
satisfied hard clauses by flipping x.

Definition 3 (soft score). The soft score of a variable x,
denoted by sscore(x), is the increase of the total weight of
satisfied soft clauses by flipping x.

The features of WPMS instances from SCP and DSP lead
to some important properties on hard score and soft score.

• If the current value of variable v is 1, then hscore(v) ≤ 0
and sscore(v) > 0;

• If the current value of variable v is 0, then hscore(v) ≥ 0
and sscore(v) < 0;

• As each variable v appears in only one soft clause
{¬v}, the absolute value of sscore(v) is always equal to
w({¬v}).
Besides these two functions, we design a special scoring

function, based on the features of the WPMS instances from
SCP and DSP.

Definition 4 (score). The score of a variable x is denoted
by score(x) s.t. score(x) = hscore(x)/|sscore(x)|

Hard clause weighting scheme is an effective technique
in local search algorithms for WPMS. In this work, we also
employ a hard clause weighting scheme. With this scheme,
the clause weights in the score functions are defined as
follows. For soft clauses, we use the original weight as
its weight which will not be modified during the search.
For hard clauses, the weights are updated according to the
weighting scheme. Specifically, each hard clause c is asso-
ciated with an integer number as its weight, which is ini-
tialized to 1. And the weight of each falsified hard clause is
increased by one at the end of each iteration of local search.

For WPMS instances from SCP and DSP, flipping a vari-
able x to satisfy more hard clauses always comes with an
increment on the soft cost, which is equal to |sscore(x)|.
This score function considers both merits and measures the
ratio.

Construction and Recovery Procedure

Before we present the details of the Construction and Re-
covery procedures, we first introduce the key data structure.

• RelV ar[x] = y indicates that the value of x refers to the
value of y, specifically that the value of x is the opposite
of y.

• RelV ar[x] = −1 indicates that the value of x does not
refer to any variable.

Algorithm 2: The Construction Procedure
Input: PMS instance F
Output: A feasible assignment α, simplified instance

F , RelV ar
1 begin
2 For each variable x, RelV ar[x] := −1,

α[x] := −1;
3 while any reduction rules are satisfied do
4 if Hard Unit Clause Rule is satisfied then
5 Apply Unit Clause Rule;
6 else if Strong Dominating Rule is satisfied then
7 Apply Strong Dominating Rule;
8 else if Binary Weak Dominating Rule is satisfied

then
9 Apply Binary Weak Dominating Rule;

10 Update RelV ar accordingly;

11 For each variable x with α[x] = −1, α[x] := 0;
12 while There exist falsified hard clause do
13 c := a randomly falsified hard clause;
14 v := a variable in c with the biggest score;
15 α := α with v flipped;
16 return (α, F,RelV ar)

The construction procedure consists two parts: reduction
(line 2-11) and greedy construction (line 12-16). In the re-
duction part, if any reduction rules are satisfied, the algo-
rithm simplifies the instance accordingly. In the construc-
tion procedure, during each step, ConstructionAlg picks
a falsified hard clause c randomly. Then, the variable with
the biggest score in c is picked and flipped untill there is no
falsified hard clauses. Note that, we can always find a fea-
sible solution because hard clauses only contains positive
literals. The construction procedure play an important role
in our new algorithm.

The Recovery phase is very simple: it scans all vari-
ables in the original WPMS instance, and for each vara-
iable v such that RelV ar[v]
= −1, then v is assigned to
1-α[RelV ar[v]]. This is for assigning the variables that have
been rewritten by the Binary Weak Dominating Rule.

Local Search Procedure

Before we present the details of the Local Search Procedure,
we first introduce the Configuration Checking strategy and
variable selection heuristic used in our algorithm.

Configuration Checking Strategy

Firstly proposed in (Cai and Su 2011), configuration check-
ing (CC) is a strategy aiming to prevent cycles in search, by

1572

forbidding flipping a variable x if none of its neighboring
variables has changed the value since x’s last flip. We pro-
pose a CC strategy that is tailored for WPMS instances from
SCP and DSP. The checking mechanism of our CC strategy
is one-side, only working on variables with α[v] = 0.

To implement the CC strategy, we employ an array
confChange, where confChange[v] = 1 means at least
one variables in N(v) has been flipped since v’s last flip;
and confChange[v] = 0 on the contrary. The CC strategy
can be described as follows:

Updating rules: For each variable v, ConfChange[v] is
initialized to 1. When a variable v is flipped from 1 to 0,
ConfChange[v] is reset to 0; and whenever a variable v is
flipped, ConfChange[u] is set to 1 for variables u ∈ N(v).

Using rules: While choosing a variable with α[v] = 0, our
new configuration checking strategy forbids any variable v
to be flipped if its configuration has not been changed, i.e.,
ConfChange[v] = 0.

For a variable v with α[v] = 1, flipping such a vari-
able will decrease the total cost of current solution (because
sscore(v) > 0), so we do not apply CC constrains in this
situation.

Variable Selection Heuristic

Our variable selection heuristic depends on the existence of
three particular types of variables, which are defined below.

Definition 5. For a variable x, x is decreasing iff
hscore(x) = 0 and sscore(x) > 0, and is hard-decreasing
iff hscore(x) > 0 and ConfChange[v] = 1, and is soft-
decreasing iff sscore(x) > 0.

We distinguish four situations during the search, accord-
ing to the existence of the above types of variables. Based on
this, we design a variable selection heuristic with four levels.

Descent Mode (first level): The current assignment α is
feasible and there exist decreasing variables. Flipping de-
creasing variables would decrease the cost without break-
ing any hard clause, leading to a better feasible solution. So,
a decreasing variable is picked according to BMS strategy
w.r.t. highest sscore. This is the fastest way towards the goal
of WPMS under this situation.

Exploitation Mode (second level): If α is not feasible,
we aim to get a feasible assignment while at the same time
try to keep soft cost as small as possible. Thus, we pick a
variable from a random falsified hard clause c, which would
at least satisfy c. Specifically, a hard-decreasing variable v in
c is picked by BMS strategy w.r.t. highest score. If flipping
v would make the soft cost lower than cost∗ (the best found
cost), then v is flipped. Otherwise, the algorithm goes to the
third level.

Aspiration Mode (third level): Note that the second
level usually fails if cost∗ is close to optimal. To address
this issue, we propose the aspiration mode. When the sec-
ond level fails, we pick a soft-decreasing variable u by BMS
strategy w.r.t. score. And if score(v)+score(u) > 0, which
means flipping these two variables is generally good, both v
and u are flipped.

Perturbation Mode (fourth level): When all the preced-
ing modes are not applicable, which means the search gets

“stuck”, the algorithm switches to the perturbation mode.
Two soft-decreasing variables v1 and v2 are picked by BMS
strategy w.r.t. score, to explore the search space.

The Local Search Procedure

Algorithm 3: Local Search Procedure
Input: PMS instance F , an complete assignment α,

cutoff
Output: A feasible assignment α

1 begin
2 α∗ := α, cost∗ := cost(α);
3 while elapsed time < cutoff do
4 if α is feasible & cost(α) < cost∗ then
5 α∗ := α, cost∗ := cost(α);
6 if α is feasible then
7 if there exist decreasing variables then
8 v := the decreasing variable by BMS

w.r.t. highest sscore;
9 α := α with v flipped;

10 else
11 perturbation();

12 else
13 c := a random falsified hard clause;
14 v := a hard-decreasing variable in c is

picked by BMS w.r.t. highest score;
15 if costs(α)− sscore(v) < cost∗ then
16 α := α with v flipped;
17 else
18 u := a soft-decreasing variable is

picked by BMS w.r.t. highest score;
19 if score(v) + score(u) > 0 then
20 α := α with v and u flipped;
21 else
22 perturbation();

23 update confChange and the weights of hard
clause;

24 return α∗;

Based on the variable selection heuristic in the preceding
subsection, we develop an efficient local search algorithm
for solving the simplified instances. The local search proce-
dure is outlined in Algorithm 3.

In the beginning, the best found solution α∗ is initial-
ized as the input solution α. After that, a loop (line 3-23)
is executed to iteratively modify α until a given time limit
is reached. During the search, whenever a better feasible
solution is found, the best feasible solution α∗ and cost∗
are updated (line 4-5). At each iteration, DomSAT chooses
a variables and flips it, according to the variable selection
heuristic, with all ties broken by age.

First, if the current solution α is feasible and there exist
decreasing variables, DomSAT picks a decreasing variable

1573

Table 1: Results on unweighted Set Cover Problem

Instance DomSAT WCC SATLike Loandra Open-wbo
cmin time cmin time cmin time cmin time cmin time

STS135 103 8.98 103 4.13 103 52.1 104 65.83 104 158.44
STS243 198 0.11 198 0.18 198 0.74 201 402.35 202 117.26
STS405 335 321.29 335 91.11 340 296.78 346 699.56 344 836.03
STS729 617 36.41 617 61.16 639 404.77 643 5.97 652 614.74

Table 2: Summary Results on random weighted SCP instances

Benchmark #inst. DomSAT WCC SATLike Loandra Open-wbo
#win time #win time #win time #win time #win time

OR small 45 45 0.01 45 0.02 13 2.96 34 58.44 2 0.26
OR large 20 20 0.92 20 0.72 3 4.10 9 81.96 4 1.70

by BMS w.r.t. sscore, breaking ties by age (line 6-9, De-
scent Mode). If α is feasible and there is no decreasing vari-
able, then the algorithm performs perturbation by flipping
two soft-decreasing variables picked by BMS w.r.t. sscore.

If α is infeasible, DomSAT chooses a falsified hard clause
c randomly. Then DomSAT picks a hard-decreasing vari-
able v by BMS strategy w.r.t. score, and checks whether
cost(α) − sscore(v) < cost∗. If this is the case, then v is
flipped (line 15-16, Exploitation Model); otherwise, a soft-
decreasing variable u is picked by BMS strategy w.r.t. score,
and if score(v) + score(u) > 0, DomSAT flips v and u si-
multaneously (line 18-20, Aspiration Model). Finally, if all
above modes fail, a perturbation step is executed to explore
other areas of search space. At the end of each iteration, it
updates confChange accordingly and increases the weight of
each falsified hard clause by 1.

In the end, when the loop terminates upon reaching the
time limit, DomSAT reports the best feasible solution α∗
that has been found.

Experimental Evaluation

We evaluate our DomSAT algorithm on a wide range of
benchmarks including many massive real world instances.
These testing benchmarks are described in detail below.

• The first benchmark (OR-Library) (Beasley 1990) is a
collection of test data sets for a variety of Operations Re-
search (OR) problems, which was originally described by
J.E.Beasley. OR-Library instances are weighted SCP in-
stances are divided into two sets OR small and OR large
according to their size.

• The second benchmark (Rail)1 contains real-world
weighted SCP instances that arise from an application in
Italian railways and have been contributed by Paolo No-
bili.

• The third benchmark (STS) (Fulkerson, Nemhauser, and
Trotter 1974) which is from Steiner triple systems, con-
tains unweighted SCP instances.

1http://people.brunel.ac.uk/ mastjjb/jeb/orlib/files/

• Moreover, we consider the 65 massive real world graphs
from (Wang et al. 2018) as DSP instances. To obtain the
corresponding weighted DSP instances, we use the same
method as in (Wang et al. 2018), i.e., for the ith vertex vi,
w(vi)=(i mod 200)+1.

Our algorithm is compared against five state of art algo-
rithms including SCP, DSP and WPMS solvers.
• WCC (Gao, Weise, and Li 2014) is the best SCP solver

which can work on weighted and unweighted version. The
algorithm was not given a name, but since the main ideas
of the algorithm include constraint Weighting and Con-
figuration Checking, we denote it as WCC in our experi-
ment.

• FastMWDS (Wang et al. 2018) is the best DSP solvers for
weighted DSP instances.

• SATLike (Lei and Cai 2018) is the best local search solver
for WPMS and won two unweighted categories of incom-
plete track in MSE (MaxSAT Evaluation) 2018.

• Open-WBO (Martins, Manquinho, and Lynce 2014) won
the weighted 60s timeout category of incomplete track in
MSE 2018 and its improved version TT-Open-WBO-inc
won two weighted categories of incomplete track in MSE
2019. We compare with the best version TT-Open-WBO-
inc, and we denote it as Open-WBO for convenience.

• Loandra (MaxSAT Evaluation 2019) won two unweighted
categories, and was ranked 2nd in two weighted cate-
gories of incomplete track in MSE 2019.

Experiment Preliminaries

DomSAT is implemented in C++ and compiled by g++ with
-O3 option. Our experiments were conducted on a server us-
ing Intel Xeon E7-8850 v2 @2.30GHz, 2048GB RAM, run-
ning Ubuntu 16.04.5 Linux operation system. Each solver is
executed 10 times on each instance with different seeds. The
time limit of all algorithms is 1000 seconds on all bench-
marks except OR instances. For OR instances, the time limit
of all algorithm is 10 seconds. In each run, the solver prints
successively the best solution it has found so far. For each in-
stance, cmin is the cost of the best feasible solution found.

1574

Table 3: Results on industrial weighted SCP instances

Instance DomSAT DomSAT- WCC SATLike Loandra Open-wbo
cmin time cmin time cmin time cmin time cmin time cmin time

rail1 703 718.02 712 19.76 732 884.17 N/A N/A 1106 998.99 1123 5.06
rail2 967 721.80 979 19.85 1006 945.08 N/A N/A 1433 990.10 1464 4.96
rail3 1100 770.77 1116 19.21 1148 906.89 N/A N/A 1903 28.28 1734 6.07
rail4 1564 782.14 1589 17.60 1618 976.23 N/A N/A 2561 23.47 2356 6.56
rail5 174 166.15 175 6.55 176 358.26 233 7.65 206 276.35 245 46.76
rail6 182 3.74 182 1.67 182 205.73 216 7.17 197 696.02 202 965.76
rail7 211 443.22 212 8.16 213 300.89 273 9.46 245 500.24 285 28.96

Table 4: Summary Results on DSP benchmarks

Benchmark #inst. DomSAT FastWMDS SATLike Loandra Open-wbo
#win time #win time #win time #win time #win time

unweighted 65 62 441.75 16 324.87 1 19.88 4 143.35 0 N/A
weighted 65 62 583.10 2 499.92 1 920.99 2 115.13 0 N/A
No Reduction
unweighted 65 47 318.51 17 281.62 2 111.27 7 116.58 0 N/A
weighted 65 40 588.58 13 819.56 8 734.58 5 125.17 0 N/A

For each solver on each instance family, we report the num-
ber of instances where the solver finds the best solution
among all solvers in the table, denoted by “#win” and the
mean time of doing so over such winning instances. The
winner is the solver which finds the best solution for the
most instances and ties are broken by selecting the solver
with the minimum mean time. In bold we present the best
results for each family.

Experiment Results on SCP instances

In this subsection, we compare DomSAT with state of the art
solvers on SCP benchmarks. As we can see from Table 1 and
2, DomSAT and WCC achieved the same results on these
benchmarks, while the other solvers perform much worse
than DomSAT and WCC. Rail instances are large scale in-
dustrial instances (> 10000 variables) and are considered
difficult to solve. Experiment results on these instances are
presented in Table 3. DomSAT- represent the version of
DomSAT without the reduction procedure. DomSAT and
DomSAT- outperform all other solvers on all these instances,
and DomSAT performs better than DomSAT-, which indi-
cates a dramatic improvement for solving large scale in-
stances.

Experiment Results on DSP instances

We also compare DomSAT with state of the art solvers on
DSP benchmarks. We present the summary results of com-
paring DomSAT and other solvers on all benchmarks (un-
weighted + weighted DSP benchmarks) in Table 4. It is en-
couraging to see that, for both weighted and unweighted
DSP problems, DomSAT is much better than all other
solvers. For 130 instances (unweighted + weighted), Dom-
SAT find the best solution for 124 of them while this num-
ber is only 18, 2, 6, 0 for FastWMDS, SATLike, Loandra
and Open-wbo respectively. These results show the strong

Table 5: Summary Results on DSP benchmarks

Benchmark DomSAT DomSAT alt1 DomSAT alt2 DomSAT alt3
#win time #win time #win time #win time

STS 4 225.01 4 225.01 4 237.26 4 242.14
OR 65 0.29 65 0.29 64 0.42 65 0.47
Rail 5 423.20 0 N/A 4 514.56 4 326.25
we DSP 38 687.72 10 546.78 21 718.27 9 543.80
unwe DSP 63 441.01 4 38.32 31 47.30 23 105.60

performance of DomSAT for solving DSP. Furthermore, we
can see that, without reduction procedure, our algorithm is
still much better than other solvers.

Experimental Analysis on DomSAT

There are three main ideas in our algorithm DomSAT. Thus,
in order to demonstrate the effectiveness of these three ideas
in our algorithm, we conduct experiments to compare Dom-
SAT with the three alternative versions.

• DomSAT alt1: This alternative version does not utilize
the reduction procedure to simplify instances.

• DomSAT alt2: This alternative version does not utilize
the CC strategy.

• DomSAT alt3: This alternative version does not utilize
the Aspiration Mode.

From Table 5, we can see that DomSAT outperforms three
alternatives significantly on large scale instances, which
shows that our heuristics play an important role in our al-
gorithm. For STS and all OR instances, all alternatives per-
form as well as DomSAT does. The main reason is that these
small instances are easy to solve for our algorithm structure.

Conclusion

In this work, we formulated SCP and DSP into weighted
Partial Maximum Satisfiability and proposed several reduc-

1575

tion rules to simplify these MaxSAT instances. We also de-
signed a local search algorithm tailored for such instances.
Experiments result showed that our algorithm is better than
all state of the art algorithms for SCP, DSP and MaxSAT.
The strong results show that exploiting the features of the
instances from specific domains in MaxSAT solving would
lead to more effective solvers. We would like to explore fea-
tures of other combinatorial optimization problems to design
MaxSAT solvers for them.

Acknowledgement

This work is supported by Youth Innovation Promotion As-
sociation, Chinese Academy of Sciences (No.2017150).

References
Ansótegui, C., and Gabàs, J. 2017. WPM3: an (in)complete algo-
rithm for weighted partial maxsat. Artif. Intell. 250:37–57.
Ansótegui, C.; Bonet, M. L.; and Levy, J. 2013. Sat-based maxsat
algorithms. Artif. Intell. 196:77–105.
Aoun, B.; Boutaba, R.; Iraqi, Y.; and Kenward, G. W. 2006. Gate-
way placement optimization in wireless mesh networks with qos
constraints. IEEE Journal on Selected Areas in Communications
24(11):2127–2136.
Bautista, J., and Pereira, J. 2006. Modeling the problem of locating
collection areas for urban waste management. an application to the
metropolitan area of barcelona. Omega 34(6):617–629.
Beasley, J. E., and Chu, P. 1996. A genetic algorithm for the
set covering problem. European Journal of Operational Research
94(2):392–404.
Beasley, J. E. 1990. Or-library: distributing test problems
by electronic mail. Journal of the operational research society
41(11):1069–1072.
Cai, S., and Su, K. 2011. Local search with configuration checking
for SAT. In IEEE 23rd International Conference on Tools with Ar-
tificial Intelligence, ICTAI 2011, Boca Raton, FL, USA, November
7-9, 2011, 59–66.
Cai, S.; Luo, C.; Thornton, J.; and Su, K. 2014. Tailoring local
search for partial maxsat. In Proceedings of the Twenty-Eighth
AAAI Conference on Artificial Intelligence, July 27 -31, 2014,
Québec City, Québec, Canada., 2623–2629.
Cai, S.; Luo, C.; Lin, J.; and Su, K. 2016. New local search meth-
ods for partial maxsat. Artif. Intell. 240:1–18.
Cai, S. 2015. Balance between complexity and quality: Local
search for minimum vertex cover in massive graphs. In Proceed-
ings of the Twenty-Fourth International Joint Conference on Artifi-
cial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31,
2015, 747–753.
Caprara, A.; Fischetti, M.; Toth, P.; Vigo, D.; and Guida, P. L.
1997. Algorithms for railway crew management. Math. Program.
79:125–141.
Caprara, A.; Toth, P.; and Fischetti, M. 2000. Algorithms for the
set covering problem. Annals OR 98(1-4):353–371.
Chalupa, D. 2018. An order-based algorithm for minimum domi-
nating set with application in graph mining. Inf. Sci. 426:101–116.
Davies, J., and Bacchus, F. 2011. Solving MAXSAT by solving
a sequence of simpler SAT instances. In Principles and Practice
of Constraint Programming - CP 2011 - 17th International Con-
ference, CP 2011, Perugia, Italy, September 12-16, 2011. Proceed-
ings, 225–239.

Demirovic, E., and Musliu, N. 2017. Maxsat-based large neighbor-
hood search for high school timetabling. Computers & OR 78:172–
180.
Demirovic, E.; Musliu, N.; and Winter, F. 2019. Modeling and
solving staff scheduling with partial weighted maxsat. Annals OR
275(1):79–99.
Fulkerson, D.; Nemhauser, G. L.; and Trotter, L. 1974. Two com-
putationally difficult set covering problems that arise in computing
the 1-width of incidence matrices of steiner triple systems. In Ap-
proaches to integer programming. 72–81.
Gao, C.; Weise, T.; and Li, J. 2014. A weighting-based local search
heuristic algorithm for the set covering problem. In Proceedings
of the IEEE Congress on Evolutionary Computation, CEC 2014,
Beijing, China, July 6-11, 2014, 826–831.
Hedetniemi, S. M.; Hedetniemi, S. T.; Jacobs, D. P.; and Srimani,
P. K. 2003. Self-stabilizing algorithms for minimal dominating
sets and maximal independent sets. Computers & Mathematics
with Applications 46(5-6):805–811.
Jacobs, L. W., and Brusco, M. J. 1995. Note: A local-search
heuristic for large set-covering problems. Naval Research Logistics
(NRL) 42(7):1129–1140.
Jiang, H.; Li, C.; Liu, Y.; and Manyà, F. 2018. A two-stage maxsat
reasoning approach for the maximum weight clique problem. In
Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence, (AAAI-18), the 30th innovative Applications of Arti-
ficial Intelligence (IAAI-18), and the 8th AAAI Symposium on Ed-
ucational Advances in Artificial Intelligence (EAAI-18), New Or-
leans, Louisiana, USA, February 2-7, 2018, 1338–1346.
Jovanovic; Raka; Milan; and Dana. 2010. Ant colony optimiza-
tion applied to minimum weight dominating set problem. Plant
Physiology 146(3):173–176.
Lei, Z., and Cai, S. 2018. Solving (weighted) partial maxsat
by dynamic local search for SAT. In Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intelligence,
IJCAI 2018, July 13-19, 2018, Stockholm, Sweden., 1346–1352.
Luo, C.; Cai, S.; Su, K.; and Huang, W. 2017. CCEHC: an efficient
local search algorithm for weighted partial maximum satisfiability.
Artif. Intell. 243:26–44.
Martins, R.; Manquinho, V. M.; and Lynce, I. 2014. Open-wbo:
A modular maxsat solver,. In Theory and Applications of Satisfi-
ability Testing - SAT 2014 - 17th International Conference, Held
as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria,
July 14-17, 2014. Proceedings, 438–445.
Narodytska, N., and Bacchus, F. 2014. Maximum satisfiability us-
ing core-guided maxsat resolution. In Proceedings of the Twenty-
Eighth AAAI Conference on Artificial Intelligence, July 27 -31,
2014, Québec City, Québec, Canada., 2717–2723.
Nitash, C. G., and Singh, A. 2014. An artificial bee colony algo-
rithm for minimum weight dominating set. In 2014 IEEE Sympo-
sium on Swarm Intelligence, SIS 2014, Orlando, FL, USA, Decem-
ber 9-12, 2014, 313–319.
Shen, C., and Li, T. 2010. Multi-document summarization via the
minimum dominating set. In Proceedings of the 23rd international
conference on computational linguistics, 984–992.
Wang, Y.; Cai, S.; Chen, J.; and Yin, M. 2018. A fast local search
algorithm for minimum weight dominating set problem on mas-
sive graphs. In Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence, IJCAI 2018, July 13-
19, 2018, Stockholm, Sweden., 1514–1522.

1576

