
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Justifying All Differences Using Pseudo-Boolean Reasoning

Jan Elffers,1,2 Stephan Gocht,1,2 Ciaran McCreesh,3 Jakob Nordström2,4

1Lund University, Lund, Sweden
2University of Copenhagen, Copenhagen, Denmark

3University of Glasgow, Glasgow, Scotland
4KTH Royal Institute of Technology, Stockholm, Sweden

{jan.elffers, stephan.gocht}@cs.lth.se, ciaran.mccreesh@glasgow.ac.uk, jn@di.ku.dk

Abstract

Constraint programming solvers support rich global con-
straints and propagators, which make them both powerful and
hard to debug. In the Boolean satisfiability community, proof-
logging is the standard solution for generating trustworthy
outputs, and this has become key to the social acceptability
of computer-generated proofs. However, reusing this technol-
ogy for constraint programming requires either much weaker
propagation, or an impractical blowup in proof length. This
paper demonstrates that simple, clean, and efficient proof log-
ging is still possible for the all-different constraint, through
pseudo-Boolean reasoning. We explain how such proofs can
be expressed and verified mechanistically, describe an imple-
mentation, and discuss the broader implications for proof log-
ging in constraint programming.

Introduction

Constraint programming solvers are increasingly being used
for fully automated decision making without a human in
the loop, even in safety-critical applications. Unfortunately,
these solvers will sometimes have bugs, and these bugs are
hard to detect using conventional testing methods (Akgün
et al. 2018; Gillard, Schaus, and Deville 2019). Meanwhile,
formal proofs of correctness can be useful in verifying the
mathematical description of some of the algorithms under-
lying these solvers, but are not yet suitable for verifying a
full implementation of a high-performance modern solver. It
would therefore be reassuring to have a different way to be
confident that a solver has produced a correct answer.

When a constraint programming solver outputs “yes” for
a decision instance, it is usually relatively easy to verify that
the answer it provides is valid—for example, by having a
different person implement a solution checker, which is typ-
ically much simpler than writing a program which finds a
solution. Similarly, for optimisation problems, verifying the
feasibility of a solution is simple. However, for “no” decision
instances, and for verifying optimality, a solver likely took
a large number of complicated steps to reach that conclu-
sion, and there is no simple way of demonstrating that those
steps were valid. In the Boolean satisfiability community,

Copyright © 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

proof logging is the standard approach to this problem: in
order to take part in the SAT competitions (Heule, Järvisalo,
and Suda 2019), a solver must be able to output a “certifi-
cate” or “proof log” alongside a claimed unsatisfiable result.
This log is a (potentially very large) file in a standard for-
mat known as DRAT (Heule, Hunt Jr., and Wetzler 2013b;
2013a; Wetzler, Heule, and Hunt Jr. 2014), which may be
verified by an external tool. Importantly, the proof verifying
tools used are much simpler than the solvers, giving us confi-
dence in their correctness. Proof logging for Boolean satisfi-
ability has been key to the social acceptance of computer-
produced proofs of mathematical conjectures (e.g. Heule,
Kullmann, and Marek 2016, Lamb 2016).

Due to their use of rich global constraints like “all
different”, constraint programming solvers cannot simply
reuse this approach: compiling constraint programming to
Boolean satisfiability results in weaker reasoning for many
constraints (Bessiere et al. 2009b), and although it is theoret-
ically possible to use the DRAT format to justify rich prop-
agation, developing any approach that is feasible in practice
has remained stubbornly out of reach.

In this work, we instead propose the use of a new proof
format based upon pseudo-Boolean reasoning and cutting
planes proofs (Cook, Coullard, and Turán 1987). We show
that this format can easily and efficiently capture all of the
reasoning carried out by the all different propagator. This
allowing us to develop, for the first time, an efficient verifi-
cation system for non-trivial constraint programming infer-
ence techniques: we describe a tool which can verify these
proofs, as well as the implementation of a small constraint
solver which produces them. We conclude with a discussion
of the broader implications for constraint programming.

Pseudo-Boolean Models

An instance of the pseudo-Boolean (PB) decision problem,
or a PB formula, is defined by a set of {0, 1}-valued vari-
ables {x1, . . . , xn} and a set of linear constraints over these
variables, each of which is of the form

∑n
i=1 ai�i ≥ A,

where the ais and A are all integers, and each �i is either an
unnegated literal xi or a negated literal xi. Using the equal-
ity xi + xi = 1, which encodes the semantics of negation,
we can always rewrite a PB constraint so that all ai are non-

1486

negative and A is strictly positive, and so when describing
reasoning rules we will assume that all constraints are writ-
ten in this so-called normalized form (this is purely for no-
tational convenience, and does not affect expressive power).
For a constraint in normalized form, A is often referred to as
the degree of falsity, or just degree. The objective is to assign
values to the variables so that all constraints are respected.
If this is possible, we say that the PB instance is satisfiable;
otherwise it is unsatisfiable.

By treating 0 as “false” and 1 as “true”, any instance of the
Boolean satisfiability (SAT) problem in conjunctive normal
form (CNF) can be viewed as a PB formula by observing
that, e.g. x ∨ y ∨ z is satisfied if and only if x+ y + z ≥ 1.
On the other hand, not all pseudo-Boolean constraints can
be translated into a single SAT clause. For example, “cardi-
nality” constraints such as x1+x2+x3+x4+x5 ≥ 3 must
be encoded before they can be handled by a SAT solver, and
more general constraints such as x1 + 2x2 + 3x3 + 4x4 +
5x5 ≥ 7 require even more complicated handling.

Cutting Planes Proofs

To reason about satisfiability or unsatisfiability of pseudo-
Boolean formulae we use the cutting planes proof sys-
tem (Cook, Coullard, and Turán 1987), which can be de-
scribed as follows. We have four sets of derivation rules,
which we describe using the standard notation with a list of
preconditions above a horizontal line that allow us to infer
the constraint below the line. Initially, these preconditions
can be the constraints in the PB formula, which we refer to
as (input) axioms, but later they can be any constraint de-
rived by a previous rule application. Firstly, we may assert
unconditionally the literal axiom that any xi or xi is non-
negative:

�i ≥ 0

Secondly, we may create a new constraint by addition of any
two constraints:

∑
i ai�i ≥ A

∑
i bi�i ≥ B

∑
i(ai + bi)�i ≥ A+B

(Here we implicitly assume that the equality xi + xi = 1
is applied to cancel any literals of opposing signs, and shift
any constant terms to the right-hand side, so that the result-
ing constraint is in normalized form). Thirdly, we can apply
multiplication by a positive integer c to any constraint:

∑
i ai�i ≥ A

∑
i cai�i ≥ cA

Fourthly, we may apply division by any positive integer c,
where all fractional values in the divided constraint are
rounded upwards:

∑
i ai�i ≥ A

∑
i

⌈
ai

c

⌉
�i ≥

⌈
A
c

⌉

(Note that the soundness of this rule requires that the con-
straint is in normalized form.)

Cutting planes is a complete proof system for pseudo-
Boolean formulas in the same way that the resolution proof

system (Blake 1937; Davis and Putnam 1960) is complete
for CNF formulas—it is always possible to derive 0 ≥ 1
from a PB formula using a cutting planes proof if and only
if this formula is unsatisfiable. We refer the interested reader
to Buss and Nordström (2019) for more details.

Unit Propagation

Two key notions in the context of SAT solving and pseudo-
Boolean solving, which will be important for us also, are
those of propagating and conflicting constraints. Let C =∑

i ai�i ≥ A be a PB constraint and let ρ be a partial truth
value assignment. Then the slack of C under ρ measures
how much room there is left for error if we want to satisfy C
given ρ. Formally, slack(C; ρ) =

∑
i : ρ(�i) �=0 ai − A is the

sum of the coefficients of all non-falsified literals minus the
degree. If slack(C; ρ) < 0, then there is no way C can be
satisifed, and we say that the constraint is conflicting un-
der ρ. If for some coefficient ai we have slack(C; ρ) < ai,
then �i must be set to true to avoid conflict, and we say that
C unit propagates �i under ρ. By way of example, for the
empty assignment the constraint C = x1 + 2x2 + 3x3 +
4x4 + 5x5 ≥ 7 has slack 8 and does not propagate any-
thing, but if we set x5 = 1 then the slack drops to 3 and
C propagates x4 = 0. If we instead set x4 = 1, then the
slack decreases to −1 and we have a conflict. We note that
the pseudo-Boolean notation of unit propagation is just a
generalization of that used in conflict-driven clause learning
(CDCL, Marques Silva and Sakallah 1999), since a disjunc-
tive clause unit propagates only when the slack is 0 (since all
coefficients are 1), which happens precisely when all literals
in the clause except one is falsified.

Reverse Unit Propagation

The concept of unit propagation has turned out to be very
useful for proof logging as explained next. A constraint C
can be derived from a PB formula F if and only if F to-
gether with the negation of C is unsatisfiable. In general,
deciding whether this is so is an NP-complete problem, but
in the context of CDCL solving it is much easier. Namely,
if F is the set of clauses derived so far and C is the new
clause learned from the most recent conflict, then it holds
that F plus ¬C (i.e., the conjunction of the negations of all
literals in C) unit propagates to conflict. When this is the
case, we say that C follows from F by reverse unit propa-
gation (RUP) or is a RUP clause. The correctness of a ba-
sic CDCL proof search loop can be verified efficiently by
just emitting the learned clauses one by one and checking
that they are RUP clauses (Goldberg and Novikov 2003;
Van Gelder 2008). The more expressive DRAT proof log-
ging format (Heule, Hunt Jr., and Wetzler 2013b; 2013a;
Wetzler, Heule, and Hunt Jr. 2014) used in current state-of-
the-art SAT solvers is based on an extension of this simple
but powerful idea.

The RUP concept readily transfers to a pseudo-Boolean
setting. We say that the constraint

∑
i ai�i ≥ A is RUP

for a PB formula F if the negation of this constraint (i.e.∑
i −ai�i ≥ 1−A) together with F unit propagates to con-

flict, and if this is the case then it is clearly sound to derive

1487

∑
i ai�i ≥ A from F . This is useful in that, as we will show,

it allows for very efficient proof logging for some constraint
programming propagation algorithms.

Machine-Verifiable Proofs

In order to produce a machine-verifiable proof of unsatis-
fiability for a PB formula, we need a file that expresses the
problem, and a second file that provides the proof. There is a
standard format1 for expressing pseudo-Boolean problems,
which we use as a starting point. Briefly, each line in the file
is either a comment (starting with an asterisk), or specifies a
constraint. For example, the line

3 x1 + 2 ~x3 -3 x6 >= 2 ;

specifies that 3x1+2x3−3x6 ≥ 2. For solver competitions,
a series of additional guarantees are provided, such that the
file will start with a special header comment, and that the
variables will be named “x1” through “xN”. Many pseudo-
Boolean solvers treat these guarantees as requirements on
the input, and will reject or misbehave if they are not fol-
lowed, so these guarantees are de facto rules. Our tools can
generate files following these restrictions, but do not have to
do so: we find it more readable to be able to generate PB
variable names like “xFoo 3” to correspond to a constraint
programming variable “Foo” taking the value 3.

For logging proofs, we have created a new format. The
format is a simple text file, which is at least somewhat
human-readable, and which has been designed to reduce the
amount of work required from solver implementers to a min-
imum. In particular, a key design choice is that solver writers
will not need to maintain an entire pseudo-Boolean solver
alongside their existing constraint programming solver, and
can instead output proofs using a simpler template-based
approach—we discuss this further in the following section.

Proof headers. The proof file must begin with a header
line. Typically, this will immediately be followed by an “f”
rule, as follows (the asterisk line is a comment and is ig-
nored):

pseudo-Boolean proof version 1.0
* read in the 18 model constraints
f 18 0

This “f” rule instructs the proof verifier to read in the
pseudo-Boolean model file. The “18” must correspond to
the number of constraints in the problem, except that any
“equals” constraint in the model is considered to be two in-
equalities instead. Each constraint read in is numbered, start-
ing from 1. The zero is a line terminator.

Deriving constraints. Subsequent lines in a proof will use
these numbered constraints, ultimately deriving a contradic-
tion. The first way to do so is using a “p” rule, which takes
an expression in reverse Polish notation, and creates a new
numbered constraint with its result. For example, the line

p 42 3 * 43 + 2 d 0

1http://www.cril.univ-artois.fr/PB12/format.pdf

means “create a new constraint by multiplying the constraint
numbered 42 by 3, then adding constraint 43, then divid-
ing by 2”; again, the zero is a line terminator. The “p” rule
can thus express any number of applications of the addition,
multiplication, and division axioms as a single step—during
development we found this to be much more convenient and
compact than requiring a step per axiom application.

Literal axioms. The “p” rule may also be used to intro-
duce literal axioms. For example, the line

p x1 ~x2 + 5 + 0

will create a new constraint by adding the literal axioms
x1 ≥ 0 and x2 ≥ 0 to constraint number 5.

Reverse unit propagation. The “u” rule gives another
way of introduction of a new constraint, which this time is
given explicitly in OPB format. For example,

u -1 x8 -1 x25 -1 x26 -1 x5 >= -3 ;

would create a new numbered constraint saying

−x8 +−x25 +−x26 +−x5 ≥ −3.

In order for such a constraint to be introduced, it must be
an “obvious” consequence of the constraints known so far.
Here “obvious” is defined to mean “follows by reverse unit
propagation”, as described in the previous section.

Although the “u” rule is theoretically no more power-
ful than the “p” rule, using this rule substantially reduces
the implementation effort for solver authors. It avoids the
need for solvers to understand pseudo-Boolean constraints
to (e.g.) perform cancellations correctly, and instead offloads
that work onto the proof verifier. It also avoids the need to
explicitly log any steps for propagation of constraints which
can be encoded into pseudo-Boolean form in a way where
unit propagation gives the same propagation strength as the
constraint.

Asserting contradiction. Once a contradiction has been
derived, the “c” rule is used to verify that assertion and ter-
minate the proof. So, a typical proof may end as follows:

u >= 1 ;
c 146750 0

Here the penultimate line asserts that contradiction (0 ≥ 1)
follows by unit propagation from the constraints learned so
far, and the final line asserts that the previous constraint
(which has number 146750) is in fact a contradiction.

Other rules. The proof format also supports other rules,
including ways of deleting constraints (for reduced memory
usage) and verifying solutions. These are explained in the
documentation for our proof-checking tool, which we will
now describe.

1488

A Proof Checking Tool

We have implemented a proof checking tool for this proof
format.2 It is written in Python, with critical parts in C++
for performance reasons. The tool can also output a log of
exactly what it is deriving at every stage of the verification
process, which we have found to be tremendously helpful
when debugging solvers.

Constraint Programming

In constraint programming, we have a more general prob-
lem to solve than in the pseudo-Boolean setting. We still
have a set of variables, but now variables may take their
values from a finite set, rather than being Boolean; we will
use capital letters for constraint programming variables, to
distinguish them from PB variables. We also have a set of
constraints, but these may be in a variety of forms. This gen-
erality is a particular strength of constraint programming:
in a single model, we may mix Boolean constraints, arith-
metic constraints, and other “global” constraints such as “all
different”. The all different constraint operates on a set of
variables of any size, and states that each variable in this set
must be given a different value. A given problem could have
a single all different constraint, which could operate over
some or all of its variables, or it could have many all differ-
ent constraints, each operating over a different (and poten-
tially overlapping) subset of values. The all different con-
straint was one of the first global constraints to have a dedi-
cated propagation algorithm (Régin 1994), and remains one
of the core constraints present in any constraint program-
ming toolkit—it therefore presents a good minimum stan-
dard that any proof logging system must be able to meet.

Compiling Constraint Programming

One approach to solving a constraint programming prob-
lem is to compile it to another format, such as Boolean
or pseudo-Boolean satisfiability. A simple way of doing so
is as follows: for each constraint programming variable X
with domain D(X), we create |D(X)| Boolean variables.
We then need constraints saying that at least one of these
Boolean variables is set to true—this is a disjunction, which
may be expressed directly in CNF, or as a single sum in-
equality in pseudo-Boolean notation. Then we need to man-
date that at most one of these Boolean variables is set to
true—this is also a sum inequality in pseudo-Boolean nota-
tion, but requires all-pairs binary constraints in CNF.

For example, given a constraint satisfaction problem with
variables W ∈ {1, 2, 3}, X ∈ {2, 3}, Y ∈ {1, 3}, and Z ∈
{2, 4}, we might compile this into OPB format as follows
(we omit the header line):

* variable W in { 1 2 3 }
1 xW_1 1 xW_2 1 xW_3 >= 1 ;
-1 xW_1 -1 xW_2 -1 xW_3 >= -1 ;
* variable X in { 2 3 }
1 xX_2 1 xX_3 >= 1 ;
-1 xX_2 -1 xX_3 >= -1 ;

2https://github.com/StephanGocht/VeriPB/, https://doi.org/10.
5281/zenodo.3548582

* variable Y in { 1 3 }
1 xY_1 1 xY_3 >= 1 ;
-1 xY_1 -1 xY_3 >= -1 ;
* variable Z in { 2 4 }
1 xZ_2 1 xZ_4 >= 1 ;
-1 xZ_2 -1 xZ_4 >= -1 ;

Note that for compatibility with pseudo-Boolean solvers, it
would be better to use variable names “x1” through “x9”;
our tools can also generate numbered variable names, but
here will will use more descriptive variable names.

To compile a constraint programming not-equals con-
straint X �= Y into either CNF or pseudo-Boolean form,
we post a “not both true” constraint for each value that ap-
pears in the intersection of the two domains. For example,
we could encode W �= X in the above model using two
constraints:

* W not equals X, value 2
-1 xW_2 -1 xX_2 >= -1 ;
* W not equals X, value 3
-1 xW_3 -1 xX_3 >= -1 ;

Note that no constraint appears for the value 1, which is only
present in W ’s domain.

This suggests a very simple way of compiling an all dif-
ferent constraint: for each distinct pair of variables X and Y
in the constraint’s scope, we follow the steps to compile a
X �= Y constraint. However, a much more compact encod-
ing is possible in pseudo-Boolean form. For each value that
appears in at least one domain, we post a constraint sum-
ming over every Boolean variable that corresponds to a CP
variable in that constraint taking that value, saying that this
sum is at most one. In other words, we are saying that each
value can be used at most one time. For example, we could
compile an all-different constraint over all four variables as:

-1 xW_1 -1 xY_1 >= -1 ;
-1 xW_2 -1 xX_2 -1 xZ_2 >= -1 ;
-1 xW_3 -1 xX_3 -1 xY_3 >= -1 ;
-1 xZ_4 >= -1 ;

(The final line could be deleted, because only Z can take the
value 4, but leaving it in place reduces the number of special
cases needed when implementing a solver.)

Other more sophisticated compilation methods exist, such
as those described by Ohrimenko and Stuckey (2008) and
Bessiere et al. (2009a). However, these methods are aimed
at getting better performance out of solvers, whilst we need
only a correct encoding for proof-logging purposes.

Propagators

Constraint programming solvers rarely use these decom-
position methods. Instead, solvers have special algorithms
called propagators associated with each constraint. A prop-
agator can do two things (Schulte and Tack 2009):
1. It can signal that no solution is possible for its associ-

ated constraint, based upon the values remaining in the
domains of the associated variables.

2. It can remove values from the domains of its associated
variables.

1489

A propagator may only remove a value from a domain
if that value cannot occur in any solution to that constraint.
A propagator which will always remove all such values is
known as “achieving generalised arc consistency (GAC)”
(or sometimes “domain consistency”). For some constraints,
achieving GAC is either intractable or impractical, but for
the all different constraint GAC may be achieved efficiently
and practically (Régin 1994; Gent, Miguel, and Nightin-
gale 2008). Furthermore, GAC for the all different constraint
cannot be achieved by any polynomial-sized decomposition
into Boolean satisfiability (Bessiere et al. 2009b). This is im-
portant in practice: there are many examples where strong
propagation of constraints is the key to solving hard prob-
lems (e.g. Stergiou and Walsh 1999).

From Propagating to Justifying All-Different

The canonical GAC propagation algorithm was introduced
by Régin (1994), and has seen considerable subsequent work
on how to implement it as efficiently as possible (Gent,
Miguel, and Nightingale 2008). We will briefly describe,
without proofs, the basic (non-incremental) form of the algo-
rithm, although everything we describe can also be applied
to more modern highly tuned implementations. The algo-
rithm works in two stages: firstly, it determines whether it
is possible to satisfy the constraint at all, and then if it is, it
finds the complete set of values which may safely be deleted
from its variables.

Matchings and Hall violators. Let {X1, . . . , XN} be the
set of variables in an all-different constraint. The value
graph for this constraint is a bipartite graph, with a ver-
tex in its left set for each variable Xn, and a vertex in its
right set for each value that is present in at least one Xn’s
domain; there is an edge between a variable’s vertex and a
value’s vertex if and only if that variable’s domain contains
that value. A matching is a set of edges in a bipartite graph
such that no vertex appears as an endpoint of more than one
edge; a matching is left-saturating if it covers every vertex
on the left, and is of maximum cardinality if it contains as
many edges as possible.

It is easy to see that left-saturating matchings in a value
graph are in one-to-one correspondence with solutions to the
all-different constraint. In particular, the constraint can be
satisfied if and only if a maximum cardinality matching is
left-saturating. Since finding a maximum cardinality match-
ing may be done in polynomial time (Hopcroft and Karp
1973), it is easy to implement a propagator which checks
whether or not the constraint is satisfiable.

We are now left with the problem of justifying a back-
track if we find that a maximum cardinality matching is
not left-saturating. Using only resolution, this would require
exponentially many steps (Haken 1985), but with pseudo-
Boolean proofs we are in a better situation. We use Hall’s
(1935) marriage theorem, which states that a left-saturating
matching exists in a bipartite graph if and only if for every
subset W ⊆ {X1, . . . , XN} we have that |W | ≤ |N(W)|,
where N(W) denotes the neighbourhood of W . In particu-
lar, if a left-saturating matching does not exist, then there ex-

ists a Hall violator W where |N(W)| < |W |; in our terms,
this is a set of n variables whose domains contain strictly
fewer than n values between them.

A conventional propagator does not care about the exis-
tence of Hall violators, and only looks at the size of a max-
imum cardinality matching. However, the usual augmenting
paths algorithm for finding a maximum cardinality matching
can easily be extended to output a Hall violator by follow-
ing an alternating path backwards from an unmatched left-
vertex.

Given such a set of variables H , a justifying propaga-
tor must be able to express that “either one of the variables
in H must be given a value that is currently not present in
its domain, or there is a contradiction”. To do this, we count
sets of variable-value pairs in two different ways. Firstly, we
have (from the model) that each variable in H must be given
at least one value—call these constraints AL1 (h). We sum
together these constraints, to achieve an expression of the
form

∑
h∈H AL1 (h) ≥ |H|. Now, letting D(H) mean the

values in the union of the domains of the variables in H ,
and denoting the “value can be used at most once” con-
straints from the model as AM1 (v), we sum these to get∑

v∈D(H) AM1 (v) ≤ |D(H)|. Since H is a Hall violator,
|H| > |D(H)|, so the sum of these two sums gives a suitable
justification.

Continuing our running example, suppose that the Z vari-
able could not take the value 4, due to it being eliminated by
another constraint or by a guessed assignment during search.
In this case, a maximum cardinality matching in the value
graph would leave a single variable uncovered. Suppose the
matching found is {W = 1, X = 2, Y = 3} leaving Z un-
covered. In this case, the Hall violator has the four variables
{W,X, Y, Z}, and the three associated values are {1, 2, 3}.
By summing up the lines saying

1 xW_1 1 xW_2 1 xW_3 >= 1 ;
1 xX_2 1 xX_3 >= 1 ;
1 xY_1 1 xY_3 >= 1 ;
1 xZ_2 1 xZ_4 >= 1 ;
-1 xW_1 -1 xY_1 >= -1 ;
-1 xW_2 -1 xX_2 -1 xZ_2 >= -1 ;
-1 xW_3 -1 xX_3 -1 xY_3 >= -1 ;

using a proof logging command which could look like (if the
lines for the variable axioms for W , X , Y and Z are 1, 3, 5
and 7, and the all-different constraint starts on line 9):

p 1 3 + 5 + 7 + 9 + 10 + 11 + 0

we derive the constraint

1 xZ_4 >= 1 ;

which means that Z must take the value 4 after all—and if it
cannot then we have proved unsatisfiability.

Strongly connected components and Hall sets. The sec-
ond stage of the propagation process takes place only if a
left-saturating matching has been found. If such a matching
M exists, a new directed bipartite graph known as the resid-
ual graph is created by taking the value graph, and direct-

1490

ing edges as right-to-left if they are present in M and left-
to-right otherwise. This graph has the property that certain
edges that start in one strongly connected component and
end in another correspond to variable-value assignments that
will never appear in any maximum cardinality matching—
we refer to Gent, Miguel, and Nightingale (2008) for full
details.

Again, we cannot directly express graph-theoretic proper-
ties in a proof log, but a connection between combinatorics
and graph theory saves us. Every edge which describes a
deletion is due to the existence of a Hall set—that is, a set of
n variables whose union contains exactly n values (Quimper
and Walsh 2005). More specifically, there is no solution to
an all-different constraint where variable Xi gets value vj if
and only if there exists a set H of variables not including Xi

whose domains contain exactly |H| values between them,
one of which is vj .

Given a Hall set H , we may output a pseudo-Boolean con-
straint justifying the deletions it triggers by following the
same process as for a Hall violator: we sum up the “variable
must be given at least one value” constraints and the “value
must be used at most once” constraints, and this time arrive
at an equality which shows that no variable outside of the
Hall set may be given any value in the Hall set.

It remains only to identify the relevant Hall sets, which
is also straightforward: they correspond precisely to the
strongly connected components in the residual graph which
have a deletion edge entering them (Dulmage and Mendel-
sohn 1958). Note that a single Hall set can justify multiple
deletions (and for space reasons it is advantageous to detect
this and avoid emitting duplicate constraints).

Returning to our running example, the variables
{W,X, Y } form a Hall set with three values {1, 2, 3}. The
Z variable also includes the value 2, which may be deleted.
We may justify this by summing the lines

1 xW_1 1 xW_2 1 xW_3 >= 1 ;
1 xX_2 1 xX_3 >= 1 ;
1 xY_1 1 xY_3 >= 1 ;
-1 xW_1 -1 xY_1 >= -1 ;
-1 xW_2 -1 xX_2 -1 xZ_2 >= -1 ;
-1 xW_3 -1 xX_3 -1 xY_3 >= -1 ;

using a command like

p 1 3 + 5 + 9 + 10 + 11 + 0

to derive a new constraint

1 ~xZ_2 >= 1 ;

which corresponds to saying that Z may not take the value 2.
If we had another variable Q with domain {2, 5, 6}, the con-
straint generated using the same sum would instead be

1 ~xZ_2 1 ~xQ_2 >= 2

showing that neither Z nor Q could take the value 2.
Finally, we note that Hall sets may nest. For example,

given A,B ∈ {1, 2}, C,D ∈ {1, 2, 3, 4}, and E ∈
{1, 2, 3, 4, 5}, the process we describe would output Hall
sets {A,B} and {C,D}, not necessarily in that order. This
does not matter for our purposes (so long as we are using

the “u” proof rule rather than a series of “p” steps to de-
scribe the search tree, as discussed in the following section).
However, if it would for some reason be preferable to output
Hall sets {A,B} and {A,B,C,D} (which justify the same
deletions from E, independently of the order in which they
are carried out), this may be done by outputting every ver-
tex in the residual graph which is reachable from the end of
the deletion edge, rather than looking at strongly connected
components.

Justifications Versus Explanations

Much of what we have discussed resembles the explana-
tions produced by lazy clause generation constraint pro-
gramming solvers (Ohrimenko, Stuckey, and Codish 2009;
Downing, Feydy, and Stuckey 2012). Lazy clause genera-
tion solvers will create new clauses on the fly as the result of
propagations, allowing for SAT-style conflict analysis to be
mixed with constraint programming propagation. However,
explanations can be created “out of nowhere” without jus-
tification: an explaining propagator merely asserts that the
clause it produces is valid, and does not have to demonstrate
its derivation. Nonetheless, there is potential for crossover
between these two areas going forward: in one direction,
perhaps generating more expressive PB constraints and us-
ing PB conflict analysis will lead to better lazy clause gen-
eration solvers, and in the other direction, it may be possible
to reduce the amount of work needed to produce justifying
propagators by building upon what is known about explana-
tions.

Another related piece of work is the constraint program-
ming solver described by Veksler and Strichman (2010),
which fits somewhere in between justifications and explana-
tions. This solver produces proof logs, but in a format which
requires the proof verifier to support specialised inference
rules for every new global constraint. In contrast, our ap-
proach shows that practical proof logging is still possible
even without requiring the proof verifier to know about the
propagation behaviour of any global constraint.

A Justifying Constraint Programming Solver

Finally, we briefly describe the implementation of a small
constraint programming solver which can output a justifi-
cation of all of the choices it makes.3 This solver is im-
plemented in C++, and supports the all different constraint
with full GAC propagation, as well as equals, not-equals,
and (forward checking) table constraints. The solver has not
been designed for performance, but rather to identify the
best engineering decisions for implementing a proof logging
solver.

The solver differs from a conventional constraint pro-
gramming solver in three areas: being able to compile mod-
els to the pseudo-Boolean format, being able to log search
operations, and being able to log propagation.

Compilation. As well as solving a constraint program-
ming model, a proof-logging solver must be able to trans-

3https://github.com/ciaranm/certified-constraint-solver, https://
doi.org/10.5281/zenodo.3549712

1491

late the model into an equivalent pseudo-Boolean model.
We described the theory behind this in the previous sec-
tion. From an implementation perspective, this was reason-
ably straightforward: the solver must track the PB variable
naming used for each variable-value which it encodes, and
some constraints must remember the line number used when
outputting some of their rules (for example, the all different
constraint must be able to recall the appropriate “at most
one” line for each of the values in its scope).

Search. Proof logging during search is remarkably simple
when using reverse unit propagation. Whenever the solver
backtracks (either due to propagation failure, or a domain
wipeout), it suffices to output a proof line of the form

u -1 xA_3 -1 xB_4 -1 xC_1 >= -2 ;

where the variables are the decision variables on the solver’s
trail—that is, the solver is asserting that whatever it just
guessed “obviously” leads to a contradiction, and so at least
one of the guessed assignments must be incorrect. Ulti-
mately, this leads to the solver outputting

u >= 1 ;

after backtracking on the first decision variable, which can
then be followed by the assertion of contradiction.

Propagation. Due to reverse unit propagation, it is not
necessary to make any changes at all for the equals and not-
equals constraints—these propagations need not be logged.
For the all different constraint, it suffices to output “p” rules
for every Hall violator and Hall set which leads to a contra-
diction or propagation, as described in the previous section.
(Again due to the use of reverse unit propagation, there is no
need to adapt these constraints to mention the trail.)

We believe this demonstrates the simplicity of proof log-
ging in this format. In earlier prototypes not making use of
reverse unit propagation, the burden upon the solver writer
was vastly greater, with a trail-aware “p” rule being required
for every single propagating step.

Experiments

To test our solver and proof verifier, we generated a number
of 25× 25 unsatisfiable Sudoku instances. Solving such in-
stances in a reasonable amount of time requires the full capa-
bilities of all-different propagation, and tests all of the func-
tionality of our tools. For a representative instance which re-
quired 1,691 guessed decisions to solve, our solver took 41
seconds to prove unsatisfiability, which increased to 42 sec-
onds when logging a proof (we stress that this implementa-
tion has not been designed for performance). The proof log
contained 109,519 Hall set propagations, and 846 Hall vio-
lators, and could be verified in 6 seconds.

We also tried deliberately introducing bugs into our
solver—for example, by failing to find maximum cardinal-
ity matchings that required two augmenting steps, and by
randomly omitting logging for a small number of Hall sets.
In each case the proof verifier caught the mistakes, although
only if the instances selected actually triggered the faulty

behaviour. (For example, it is surprisingly rare for multiple
augmenting path steps to be required to find a maximum car-
dinality matching, when starting from a greedy matching.)
Because our solver was designed from the ground up with
proof logging, we were also able to use proof logs to catch
bugs early on in the development process that had not been
detected by conventional testing techniques.

Conclusion
We have shown that it is both possible and practical for a
constraint programming solver to produce a pseudo-Boolean
proof log for unsatisfiability, even when all different con-
straints are in use. This is unexpected: pseudo-Boolean rea-
soning knows nothing about graphs, matchings, augmenting
paths, or strongly connected components, all of which are
required for all different propagation. This suggests that we
should be more broadly interested not just in algorithms for
propagation, but in languages for justifying propagation—
unlike in the Boolean satisfiability community, these con-
cepts are not equivalent. We therefore intend to investigate
which other families of global constraint can be justified eas-
ily using pseudo-Boolean reasoning. Obviously, any con-
straint for which we already know a strongly-propagating
SAT or pseudo-Boolean encoding requires no further work,
but we believe that several other common constraints are
also justifiable.

One might ask whether a new proof format is really nec-
essary. The main difference to the existing DRAT proof for-
mat used by SAT solvers is that we are using cutting planes
proofs instead of resolution proofs. This makes it very sim-
ple to express the counting arguments we are using to justify
propagations and conflict of the all-different constraint. This
kind of reasoning cannot be done efficiently with resolution.
However, DRAT allows the introduction of new variables,
which is known to be very powerful. (Our proof format cur-
rently does not have this capability but an extension is in
progress.) In theory, using additional variables allows DRAT
to verify cutting planes reasoning and hence to justify the
all-different constraint.

A natural and interesting question, therefore, is how
DRAT proof logging would compare to our approach. As we
already mentioned previously, though, the problem is that
DRAT proof logging for cardinality reasoning is a theoreti-
cal result. The fact that DRAT logging can be done in princi-
ple, with at most a polynomial blow-up, does not mean that it
is possible to do in practice, and to the best of our knowledge
no-one has been able to produce any implementation that
can be used to run practical experiments. This means that
we cannot compare the performance of our pseudo-Boolean
proof logging with DRAT proof logging, not because DRAT
would run so much more slowly, but because it is so much
more complicated that no-one has even implemented it. In
contrast, our pseudo-Boolean proof logging is both fast and
simple.

The approach we describe does still require the user to
trust that the pseudo-Boolean model file produced corre-
sponds exactly to the high level constraint programming
model given as input. This should not necessarily be taken
as given—not all global constraints can be encoded in as

1492

straightforward a manner as all different, and addition-
ally the compilers for higher-level constraint modelling lan-
guages such as Essence and MiniZinc could introduce fur-
ther bugs. It may therefore be worthwhile to investigate tech-
niques from conventional compilers to verify this part of the
process.

We stress that our approach does not prove that a solver
is correct—it simply ensures that if a solver ever produces
an incorrect answer, then this can be detected and a human
brought in to fix the problem. On the other hand, when a
justifying solver does produce a correct answer by legitimate
means, the proof can be archived for posterity. We can thus
always be confident that the answer is indeed correct, even
if we do not trust the solver that produces the proof or the
person who is claiming that the proof was produced by a
trustworthy solver. And finally, we note that proof logging
will catch more esoteric problems such as compiler bugs,
hardware errors, and cosmic rays that could make a correct
solver output an incorrect answer.

Acknowledgments

The first and second authors were funded by the Swedish
Research Council (VR) grant 2016-00782. The fourth author
was also supported by the Knut and Alice Wallenberg grant
KAW 2016.0066 and the VR grant 621-2012-5645. The
third author was supported by the Engineering and Physical
Sciences Research Council [grant number EP/P026842/1].

References

Akgün, Ö.; Gent, I. P.; Jefferson, C.; Miguel, I.; and Nightingale,
P. 2018. Metamorphic testing of constraint solvers. In Hooker,
J. N., ed., Principles and Practice of Constraint Programming -
24th International Conference, CP 2018, Lille, France, August 27-
31, 2018, Proceedings, volume 11008 of Lecture Notes in Com-
puter Science, 727–736. Springer.
Bessiere, C.; Katsirelos, G.; Narodytska, N.; Quimper, C.; and
Walsh, T. 2009a. Decompositions of all different, global cardi-
nality and related constraints. In Boutilier (2009), 419–424.
Bessiere, C.; Katsirelos, G.; Narodytska, N.; and Walsh, T. 2009b.
Circuit complexity and decompositions of global constraints. In
Boutilier (2009), 412–418.
Blake, A. 1937. Canonical Expressions in Boolean Algebra. Ph.D.
Dissertation, University of Chicago.
Boutilier, C., ed. 2009. IJCAI 2009, Proceedings of the 21st In-
ternational Joint Conference on Artificial Intelligence, Pasadena,
California, USA, July 11-17, 2009.
Buss, S., and Nordström, J. 2019. Proof complexity and SAT solv-
ing. Chapter to appear in the 2nd edition of Handbook of Sat-
isfiability, Draft version available at https://www.math.ucsd.edu/
∼sbuss/ResearchWeb/ProofComplexitySAT/.
Cook, W. J.; Coullard, C. R.; and Turán, G. 1987. On the com-
plexity of cutting-plane proofs. Discrete Applied Mathematics
18(1):25–38.
Davis, M., and Putnam, H. 1960. A computing procedure for quan-
tification theory. J. ACM 7(3):201–215.
Downing, N.; Feydy, T.; and Stuckey, P. J. 2012. Explaining alldif-
ferent. In Reynolds, M., and Thomas, B. H., eds., Thirty-Fifth Aus-
tralasian Computer Science Conference, ACSC 2012, Melbourne,

Australia, January 2012, volume 122 of CRPIT, 115–124. Aus-
tralian Computer Society.
Dulmage, A. L., and Mendelsohn, N. S. 1958. Coverings of bipar-
tite graphs. Canadian Journal of Mathematics 10:517–534.
Gent, I. P.; Miguel, I.; and Nightingale, P. 2008. Generalised arc
consistency for the alldifferent constraint: An empirical survey. Ar-
tif. Intell. 172(18):1973–2000.
Gillard, X.; Schaus, P.; and Deville, Y. 2019. Solvercheck: Declar-
ative testing of constraints. In CP 2019, Proceedings of the 25th
International Conference on Principles and Practice of Constraint
Programming. To appear.
Goldberg, E. I., and Novikov, Y. 2003. Verification of proofs of
unsatisfiability for CNF formulas. In Design, Automation and Test
in Europe Conference (DATE), 10886–10891. IEEE Computer So-
ciety.
Haken, A. 1985. The intractability of resolution. Theor. Comput.
Sci. 39:297–308.
Hall, P. 1935. On representatives of subsets. Journal of the London
Mathematical Society s1-10(1):26–30.
Heule, M.; Hunt Jr., W. A.; and Wetzler, N. 2013a. Trimming
while checking clausal proofs. In Formal Methods in Computer-
Aided Design, FMCAD 2013, Portland, OR, USA, October 20-23,
2013, 181–188. IEEE.
Heule, M.; Hunt Jr., W. A.; and Wetzler, N. 2013b. Verifying
refutations with extended resolution. In Bonacina, M. P., ed., Auto-
mated Deduction - CADE-24 - 24th International Conference on
Automated Deduction, Lake Placid, NY, USA, June 9-14, 2013.
Proceedings, volume 7898 of Lecture Notes in Computer Science,
345–359. Springer.
Heule, M.; Järvisalo, M.; and Suda, M. 2019. The international
SAT Competitions web page. http://www.satcompetition.org.
Heule, M. J. H.; Kullmann, O.; and Marek, V. W. 2016. Solving
and verifying the boolean pythagorean triples problem via cube-
and-conquer. In Creignou, N., and Berre, D. L., eds., Theory and
Applications of Satisfiability Testing - SAT 2016 - 19th Interna-
tional Conference, Bordeaux, France, July 5-8, 2016, Proceedings,
volume 9710 of Lecture Notes in Computer Science, 228–245.
Springer.

Hopcroft, J. E., and Karp, R. M. 1973. An n5/2 algorithm for max-
imum matchings in bipartite graphs. SIAM J. Comput. 2(4):225–
231.
Lamb, E. 2016. Two-hundred-terabyte maths proof is largest ever.
Nature 545:17–18.
Marques Silva, J. P., and Sakallah, K. A. 1999. GRASP: A search
algorithm for propositional satisfiability. IEEE Trans. Computers
48(5):506–521.
Ohrimenko, O., and Stuckey, P. J. 2008. Modelling for lazy clause
generation. In Harland, J., and Manyem, P., eds., Theory of Com-
puting 2008. Proc. Fourteenth Computing: The Australasian The-
ory Symposium (CATS 2008), Wollongong, NSW, Australia, Jan-
uary 22-25, 2008. Proceedings, volume 77 of CRPIT, 27–37. Aus-
tralian Computer Society.
Ohrimenko, O.; Stuckey, P. J.; and Codish, M. 2009. Propagation
via lazy clause generation. Constraints 14(3):357–391.
Quimper, C., and Walsh, T. 2005. The all different and global car-
dinality constraints on set, multiset and tuple variables. In Hnich,
B.; Carlsson, M.; Fages, F.; and Rossi, F., eds., Recent Advances
in Constraints, Joint ERCIM/CoLogNET International Workshop
on Constraint Solving and Constraint Logic Programming, CSCLP
2005, Uppsala, Sweden, June 20-22, 2005, Revised Selected and

1493

Invited Papers, volume 3978 of Lecture Notes in Computer Sci-
ence, 1–13. Springer.
Régin, J. 1994. A filtering algorithm for constraints of difference
in CSPs. In Hayes-Roth, B., and Korf, R. E., eds., Proceedings
of the 12th National Conference on Artificial Intelligence, Seattle,
WA, USA, July 31 - August 4, 1994, Volume 1., 362–367. AAAI
Press / The MIT Press.
Schulte, C., and Tack, G. 2009. Weakly monotonic propagators. In
Gent, I. P., ed., Principles and Practice of Constraint Programming
- CP 2009, 15th International Conference, CP 2009, Lisbon, Portu-
gal, September 20-24, 2009, Proceedings, volume 5732 of Lecture
Notes in Computer Science, 723–730. Springer.
Stergiou, K., and Walsh, T. 1999. The difference all-difference
makes. In Dean, T., ed., Proceedings of the Sixteenth International
Joint Conference on Artificial Intelligence, IJCAI 99, Stockholm,
Sweden, July 31 - August 6, 1999. 2 Volumes, 1450 pages, 414–
419. Morgan Kaufmann.
Van Gelder, A. 2008. Verifying RUP proofs of propo-
sitional unsatisfiability. In 10th International Sympo-
sium on Artificial Intelligence and Mathematics (ISAIM).
http://isaim2008.unl.edu/index.php?page=proceedings.
Veksler, M., and Strichman, O. 2010. A proof-producing CSP
solver. In Fox, M., and Poole, D., eds., Proceedings of the Twenty-
Fourth AAAI Conference on Artificial Intelligence, AAAI 2010, At-
lanta, Georgia, USA, July 11-15, 2010. AAAI Press.
Wetzler, N.; Heule, M.; and Hunt Jr., W. A. 2014. Drat-trim: Ef-
ficient checking and trimming using expressive clausal proofs. In
Sinz, C., and Egly, U., eds., Theory and Applications of Satisfia-
bility Testing - SAT 2014 - 17th International Conference, Held as
Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria,
July 14-17, 2014. Proceedings, volume 8561 of Lecture Notes in
Computer Science, 422–429. Springer.

1494

