
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Guiding CDCL SAT Search via Random Exploration amid Conflict Depression

Md Solimul Chowdhury, Martin Müller, Jia-Huai You
Department of Computing Science, University of Alberta

Edmonton, Alberta, Canada.
{mdsolimu, mmueller, jyou}@ualberta.ca

Abstract

The efficiency of Conflict Driven Clause Learning (CDCL)
SAT solving depends crucially on finding conflicts at a
fast rate. State-of-the-art CDCL branching heuristics such
as VSIDS, CHB and LRB conform to this goal. We take a
closer look at the way in which conflicts are generated over
the course of a CDCL SAT search. Our study of the VSIDS
branching heuristic shows that conflicts are typically gener-
ated in short bursts, followed by what we call a conflict de-
pression phase in which the search fails to generate any con-
flicts in a span of decisions. The lack of conflict indicates that
the variables that are currently ranked highest by the branch-
ing heuristic fail to generate conflicts. Based on this analy-
sis, we propose an exploration strategy, called expSAT , which
randomly samples variable selection sequences in order to
learn an updated heuristic from the generated conflicts. The
goal is to escape from conflict depressions expeditiously. The
branching heuristic deployed in expSAT combines these up-
dates with the standard VSIDS activity scores. An extensive
empirical evaluation with four state-of-the-art CDCL SAT
solvers demonstrates good-to-strong performance gains with
the expSAT approach.

Introduction

Modern CDCL SAT solvers have become the enabling tech-
nology for many real-world problems, such as hardware de-
sign verification (Gupta, Ganai, and Wang 2006), classi-
cal planning (Rintanen 2012) and encryption (Massacci and
Marraro 2000). The key decision-making step in a CDCL
SAT solver is selecting a variable from the current set of
unassigned variables using a branching heuristic, before
making a boolean assignment to it. Variable selection has
a dramatic effect on search efficiency. Popular branching
heuristics include VSIDS (Moskewicz et al. 2001) and its
variants, LRB (Liang et al. 2016b) and CHB (Liang et al.
2016a). These heuristics reward variables involved in re-
cent conflicts. The intuition is that assignments of these vari-
ables are likely to generate further conflicts, leading to use-
ful learned clauses and thus pruning the search space.

Global Learning Rate (GLR) (Liang et al. 2017) measures
the number of conflicts obtained per branching decision. In
CDCL, a single decision may generate multiple conflicts.

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

State-of-the-art branching heuristics, such as LRB, VSIDS
or CHB, have average GLR values of about 0.5, i.e., average
one conflict per two decisions (Liang et al. 2017).

In this work, we first perform a study of conflict genera-
tion during CDCL search. We find that there are clear non-
random patterns of short bursts of conflicts, called conflict
burst (CB), followed by longer phases of what we call con-
flict depression (CD), in which the search fails to generate
any conflicts in a span of decisions. To correct the course
of such a search, we propose to use exploration to combat
conflict depression. We therefore design a new SAT solver
extension, called expSAT, which applies random walks in
the context of CDCL SAT solving. In a conflict depres-
sion phase, random walks help to identify more promising
variables for branching. Note that exploration visits possi-
ble future search states, while the standard CDCL branching
heuristics rely on conflicts generated from past search states.

The contributions of this paper are:
• An empirical study of the pathological state of conflict de-

pression, using one of the strongest purely VSIDS-based
solvers, glucoseLCM1 (gLCM), on recent SAT competi-
tion benchmarks, shows that CD phases occur at a high
rate and often with long average duration.
• A formulation of expSAT for an exploration-driven exten-

sion of VSIDS-based SAT solvers. expSAT performs ran-
dom exploration when a substantial CD phase is detected.
The goal is a swift escape from conflict depression.
• An empirical evaluation of expSAT implemented on top

of four state-of-the-art SAT solvers, gLCM, MapleCOM-
SPS (MplCOMSPS), Maple CM (MplCM) and MapleL-
CMDist ChronoBT (MplCBT). On the benchmarks of
main track of SAT Competitions 2017 and 2018 (SAT-
2017 and SAT-2018), all four expSAT extensions solve
more instances and achieve lower PAR-2 score2 than their
respective baselines. The best performing expSAT solver
solves 16 more instances than its baseline, which is a
strong performance gain. On 52 hard instances from SAT-
Coin cryptographic benchmarks, most of our expSAT ex-
tensions show strong gains over their respective baselines.
1glucose 4.2.1, which implements the Learned Clause Mini-

mization (LCM) (Luo et al. 2017) technique on top of glucose 4.1.
2Defined as the sum of all run-times for solved instances + 2 ∗

timeout for unsolved instances; lowest score wins.

1428

• An analysis of the experimental results shows that our re-
sults are consistent with two standard performance met-
rics, GLR and average LBD (Liang et al. 2017). In addi-
tion, exploration reduces average length of CD phases.

• An algorithm to update exploration parameters during the
search and an experimental comparison of this adaptive
version of expSAT with the non-adaptive one3.

Preliminaries

We assume familiarity with SAT solving (Biere et al. 2009).
Here we briefly review the most relevant concepts.
VSIDS Heuristic: VSIDS (Moskewicz et al. 2001) is a pop-
ular family of dynamic branching heuristics. We focus on
exponential VSIDS as used in gLCM. VSIDS maintains an
activity score for each variable in the given formula. It in-
creases the activity score of each variable that is involved in
conflict resolution by a variable bumping factor gz , where
g > 1 is a constant and z is the count of the number of con-
flicts in the search so far. This strongly favors variables that
participated in the most recent conflicts.
Literal Block Distance (LBD): The LBD score (Audemard
and Simon 2009) of a learned clause is the number of dis-
tinct decision levels in it. If this score is n, then the clause
contains n propagation blocks, where each block has been
propagated within the same branching decision. As variables
in a block are considered to be related, learned clauses with
a lower LBD score are likely of higher quality. Especially,
when LBD score is 2, they are known to be glue clauses.
Global Learning Rate (GLR): Suppose a CDCL solver
takes d decisions to solve a given formula F and generates q
conflicts. The GLR of the solver for F is defined as q

d . GLR
measures the overall ability of a solver to generate conflict
for a given problem (Liang et al. 2017).

Software, Hardware and Test Environment In this
work, we adopt four baseline solvers: gLCM4, MplCOM-
SPS5 (winner of SAT-2016), MplCM4 (second runner up
of SAT-2018) and MplCBT4 (winner of SAT-2018). While
gLCM uses only VSIDS as its branching heuristic, the other
three combine VSIDS with other heuristics.

All experiments presented in this paper were run on a
workstation with 64GB RAM and a processor clock speed
of 2.4 GHz. Two test sets were used in experiments.

(a) Test Set 1 contains 750 instances from the main track of
SAT-2017 (350) and 2018 (400) and is run with a time
limit of 5000 seconds per instance.

(b) Test Set 2 consists of 52 hard instances from SATCoin
(Bit Coin Mining) cryptographic benchmark, which are
generated with the instance generator from (Manthey
and Heusser 2018). We generated these instances by

3Source code of the expSAT solvers and 52 SATCoin in-
stances are available at: https://figshare.com/articles/expSAT
Solvers Instances/10324172.

4Source: http://sat2018.forsyte.tuwien.ac.at/solvers/main\
and\ glucose\ hack/

5Source: https://sites.google.com/a/gsd.uwaterloo.ca/maplesat/

varying the range parameter, which determines the dif-
ficulty of a SATCoin instance. For experiments, we set
the time limit to be 36,000 seconds per instance.

Conflict Depression and Conflict Bursts

Consider a run of a CDCL SAT solver Ψ which makes a
total of d decisions. In each decision, a variable is selected
according to a branching heuristic. Each decision i (0 < i ≤
d) leads to some number ci ≥ 0 of conflicts. Let us represent
the conflict history of the search by the sequence of ci and
define a conflict depression (CD) phase as a sequence of one
or more consecutive decisions with no conflict. Let us define
a conflict burst (CB) phase as a sequence of one or more
consecutive decisions with at least one conflict.

Let us further define the length of a CD and CB phase
as the number of decisions in it E.g., the conflict history
of decisions (1,0,0,0,0,4,2,1,0,1,0,0), where a number repre-
sents the number of conflicts at that decision, contains 3 CD
phases: one starting at decision 2 with length 4, one starting
at decision 9 with length 1, and one at the end with length 2.
It also contains 3 CB phases at decision 1 with length 1, at
decision 6 with length 3 and at decision 9 with length 1.
DR, CDR, FDC, FDOC and FDMC: Suppose the solver
Ψ takes a total of d decisions, encounters u CD phases and
gives r restarts. We define the Decision Rate (DR) as d/r
and CD phase Rate (CDR) as u/r.

We also define Fraction of Decisions with Conflicts
(FDC) as the measure of the fraction of decisions which pro-
duce at least one conflict. This measure is related to but dif-
ferent from GLR. It counts decision with conflicts, not con-
flicts. We further partition FDC into FDOC+FDMC, where
FDOC and FDMC are Fraction of Decisions with One Con-
flict (FDOC) and Fraction of Decisions with Multiple Con-
flicts (FDMC), respectively.

Conflict Depression in gLCM

We now study conflict depression empirically, using VSIDS
as a representative CDCL branching heuristic, and gLCM
as the underlying SAT solver. We collect the statistics for
each search of an instance on DR, CDR, Average CD phase
length, GLR, FDC, FDOC and FDMC.

CDR and Average CD Phase Length The left plot of Fig.
1 shows the Decision Rates (DR), CD phase Rate (CDR) and
average CD phase length (in log scale) for instances in Test
Set 1, where the instances are sorted by average CD phase
length. We observe that the average CD phase length is short
for most instances, but still consists of multiple decisions
(blue). Furthermore, irrespective of their average CD phase
length, for all-most all instances CD phases (orange) occur
at a high rate given the decision rates (yellow).

The histogram on the right side of Fig. 1 shows the distri-
bution of average length of CD phases. This average ranges
from 2.09 to 1402.30. 263 instances have a very short length
(at most 3). The distribution is heavy-tailed, with 69 in-
stances of average length greater than 25 (rightmost bin).

Overall, the data indicates that for gLCM on Test Set
1, conflict depressions occur frequently and often last over
multiple decisions (high average CD phase length).

1429

Figure 1: CD plots for Test Set 1 with gLCM

Table 1: Average PR for CD and CB Phases
1: Type 2: #Inst

3: Propagation Rate
3.1 CD Phase 3.2 CB Phase

SAT 177 153.43 1560.40

UNSAT 195 404.40 3445.40

Unsolved 378 173.18 1718.51

Combined 750 229.51 2136.73

Propagation Depression Amid a CD Phase During a CD
phase, VSIDS scores are not a good predictor of a variable’s
future performance, since branching decisions fail to pro-
duce any conflict and perform only truth value propagations.
Are there any differences in the pattern of unit propagations
between CD and CB phases?

We define the Propagation Rate (PR) as the number of
propagations per decision. Table 1 compares the average
PR values for Test Set 1 over the decisions in CD and CB
phases. On average, PR values during a CD phase are almost
10 times lower than CB phases. Clearly, this result demon-
strates that during a CD phase, VSIDS branching decisions
go through propagation depression as well.

Conflict Bursts in gLCM

How long are the CB phases compared to CD phases? For
the Test Set 1 instances, average value of CB and CD length
are 1.67 and 20.63, respectively. Thus, on average, shorter
CB phases are followed by much longer CD phases.

Bursts of Conflict Generation Table 2 shows the aver-
age values of GLR, FDC, FDOC and FDMC for Test Set
1. Column 3 shows the average GLR values for all three
types of problems to be close to 0.5. In contrast, the average
FDC values in column 4 are much lower, averaging 0.2507
over all instances. Therefore, on average, about 75% of all
the decisions do not produce any conflict and only 25% of
all the decisions produce at least one conflict. Further, the
majority of the conflict producing decisions produce more

Table 2: Average values of GLR, FDC, FDOC and FDMC
1: Type 2: #Inst 3: GLR 4. FDC 5: FDOC 6: FDMC

SAT 177 0.4644 0.2394 0.0980 0.1414
UNSAT 195 0.5070 0.2492 0.0927 0.1565
Unsolved 378 0.5099 0.2568 0.0992 0.1576
Combined 750 0.4984 0.2507 0.0972 0.1535

than 1 conflict. This is evident in the average FDMC value
(0.1535), which is 61% of the total conflict producing deci-
sions (0.2507).

As a summary, we have the following conclusions.
• The typical search behavior contains shorter CB phases,

which is followed by longer CD phases, where the search
does not find any conflicts.
• During a CD phase, the search goes through propagation

depression as well.
• The shorter CB phases are conflict intense, i.e., within a

few decisions, many conflicts are generated.

Exploration Guided VSIDS

Is it possible to correct the course of the search in a CD phase
by identifying promising variables that are currently under-
ranked by VSIDS? In this work, we address this question by
formulating a solver framework, called expSAT , which per-
forms random explorations that probe into the future search
space. The goal is to discover branching variables that are
likely to lead to conflicts from which clauses are learned.

Given a CDCL SAT solver, expSAT modifies it as follows:
• Before each branching decision, if a substantial CD phase

is detected, then with probability pexp, expSAT performs
an exploration episode, consisting of a fixed number nW
of random walks. Each walk consists of a limited number
of random steps. Each such step consists of the uniform
random selection of an unassigned step variable, followed
by unit propagation (UP). A walk terminates either when
a conflict occurs during UP, or after a fixed number lW of
random steps have been taken. After each walk, the search
state is restored and the next walk begins. Fig. 2 illustrates
an exploration episode with 3 walks and a maximum of 3
random steps per walk.
• An exploration score is computed for each step variable.
• In the CDCL search, branching variables are chosen that

maximize the expVSIDS heuristic, which combines the
VSIDS activity score of a variable and its exploration
score. Ties are broken randomly.
• All other elements, such as unit propagation, conflict anal-

ysis, restarts, and backjumping, remain the same as in the
underlying CDCL SAT solver.

Algorithm Details

Input and Parameters Given a SAT formula F , let
uV ars(F) and assign(F) be the set of currently unas-
signed variables in F and the current partial assignment,
respectively. The input to expSAT consists of F and four
exploration parameters nW, lW, pexp, ω, where 1 ≤ nW ,
lW ≤ uV ars(F), 0 < pexp, ω ≤ 1. All these parame-
ters are explained above, except ω, which we explain below.
When a random walk ends in a conflict after a series of ran-
dom steps, some combination of the assigned variables has
caused the conflict. In expSAT , we assign the most credit to
the most recently assigned variable, and exponentially decay
the credit for the variables assigned earlier in the walk, by a
factor of ω per decision step. This approach is patterned on

1430

Figure 2: The 20 adjacent cells denote 20 consecutive de-
cisions starting from the dth decision, with d > 0, where
a green cell denotes a decision with conflicts and a black
cell denotes a decision without conflicts. Say that amid a
CD phase, just before taking the (d+ 9)th decision, expSAT
performs an exploration episode via 3 random walks each
limited to 3 steps. The second walk ends after 2 steps, due
to a conflict. A triplet (v, i, j) represents that the variable v
is randomly chosen at the jth step of the ith walk.

reward decay in reinforcement learning (Sutton and Barto
1998).

Exploration, Random Walks and Steps An exploration
episode performs nW walks, each containing a maximum
of lW random steps. Each such step consists of two parts:

• Choose a step variable v ∈ uVars(F) uniformly at ran-
dom, and assign a boolean value to v using a standard
CDCL polarity heuristic.
• Run unit propagation (UP) after the assignment of v. Any

conflict ends the walk immediately.

Algorithm 1 for expSAT is based on standard CDCL ex-
cept lines 3-7. Line 3 checks whether an exploration episode
should take place - it is triggered with probability pexp
within a substantial CD phase. Line 5 starts an exploration
episode, and line 7 selects a branching variable with maxi-
mum expVSIDS score.

Detection of Substantial CD Phases The overhead of ex-
ploration must be balanced against its benefits. We perform
exploration episodes with probability pexp, by tracking the
ratio R = #decisions without conflicts

#decisions with conflicts of the search so far.
R + 1 is the average number of decisions taken until one
generates a conflict. A CD phase is said to be substantial if
the current number of consecutive decisions without conflict
since the last conflict generating decision is at least R.

Exploration Episodes (EEs) and Scores In an EE, the
exploration score of a decision variable v, denoted exp-
Score(v), is the average of the walk scores, ws(v), of all ran-
dom walks within the same episode in which v was one of
the randomly chosen decision variables. The value of ws(v)
is computed as:

• ws(v) = 0, if (i) the walk ended without a conflict, or (ii)
the walk ended with a conflict and lbd(c), the LBD score
of the clause c derived from the current conflict, is greater
than avgLBD, the average LBD of learned clauses by the

Algorithm 1: Exploration Based CDCL Solver : expSAT
Input: A CNF SAT formula: F

Exploration Parameters: nW, lW, pexp , ω
Output: Satisfiability of F

1 Preprocess F and return result if it is solved;
2 while true do
3 explore ←substantial CDPhase() AND

random()> pexp ;
4 if explore then
5 explorationEpisode(nW, lW, pexp , ω);
6 end
7 decideBranchingVariable();
8 while true do
9 Perform Unit Propagation;

10 Break, if no new deductions are made;
11 Return SAT, if no more unassigned variables;
12 If a conflict is found, perform conflict analysis;
13 Obtain a learned clause cl and a backtrack

level blevel;
14 Return UNSAT, if the blevel is 0;
15 Perform non-chronological backtracking to

blevel;
16 Assign the asserting literal from the learned

clause cl
17 end

18 end

search (i.e., the quality of the derived clasue c is below the
search average).

• Otherwise, ws(v) = ωd

lbd(c) , with decay factor ω, and d ≥
0 the decision distance between variable v and the conflict
which ended the current walk: If v was assigned at some
step j during the current walk, and the conflict occurred
after step j′ ≥ j, then d = j′ − j. The values of ws and
expScore are always in the interval [0, 1).

Example: Using the three random walks of Fig. 1, we show
how to compute ws and expScore of variables. Only the
second walk produces a conflict. Let c be the derived clause
from this conflict, with lbd(c) = m < avgLBD.

The walk and exploration scores for all variables partici-
pating in the first and third random walk are 0. As lbd(c) <
avgLBD, the variables x and y which participate in the
second walk receive non-zero walk and exploration scores:
ws(y) = ω0

m = 1
m and ws(x) = ω1

m . Since y only appears in
this walk, but x appears in two walks, the exploration scores
of y and x are, respectively, 1

m and (ω
m)/2.

Decide Branching Variable The branching variable is
chosen by maximizing the combined VSIDS + exploration
score as shown in Algorithm 2. To make both scores compa-
rable, following VSIDS, the exploration score is scaled by
the factor gz .

1431

Algorithm 2: Decide the Branching Variable
Input: None

1 foreach v ∈ uV ars(F) do
2 expScore(v)← computeExpEpisodeScore(v);
3 combinedScore(v)←

VSIDS (v) + gz ∗ expScore(v);
4 end
5 v∗ ← argmaxv∈uV ars(F) combinedScore(v);
6 assign(F)← assign(F) ∪makeAssignment(v∗)

Experiments

We implemented expSAT in four systems gLCM, MplCOM-
SPS, MplCM and MplCBT, and call the resulting solvers
eGLCM, eMplCOMSPS, eMplCM and eMplCBT, respec-
tively. While gLCM uses only VSIDS, MplCOMSPS and
MplCM apply a combination of two heuristics, LRB and
VSIDS. In addition, MplCBT also employs a third heuris-
tic called Dist (Xiao et al. 2017). Based on the activation of
these heuristics, a run in Maple (Mpl) based systems is di-
vided into two phases: phase 1, which lasts for the first 2500
seconds of a run and uses a combination of these heuris-
tics, and phase 2, which starts after 2500 seconds and uses
VSIDS exclusively. For the Maple based systems, we apply
the expSAT approach only to phase 2.

We compare the performance of these systems on Test
Sets 1 and 2. To set the values of the exploration parame-
ters, we performed a small scale grid search with eGLCM:
we took one instance at random out of each benchmark
from SAT-2018, which gave a subset of 23 instances. We
run eGLCM on this subset for small parameters ranges,
lW and nW in [4,5,6] and pexp in [0.01,0.02,0.03]. From
this grid search, we chose our default parameter setting
(mW,mS, pexp)=(5, 5, 0.02). We set the value of the expo-
nential decay parameter ω to 0.9 based on intuition. These
are the values used in the experiments.

Comparison on Test Set 1 Table 3 (S: SAT, U: UNSAT)
shows results for Test Set 1 for four expSAT extensions
and their baseline solvers. Overall, each expSAT extension
solves more instances and has lower (better) PAR-2 score
than its respective baseline.

For each of the Maple based system, for a given instance,
runs with a baseline and its expSAT extension are identical
in phase 1. For these systems, only instances solved in phase
2 show the impact of the expSAT approach. For each Maple
based expSAT solver, all the additional instances are solved
in phase 2.

The best performing system eMplCOMSPS solves 16
more instances than its baseline. eMplCBT solves 9 more
instances than its baseline MplCBT. eMplCM solves only
1 more instance than its baseline MplCM. eGLCM solves
7 more instances than its baseline gLCM, where most of
the improvements comes from solving 8 additional SAT in-
stances in the SAT-2018 benchmarks.

Fig. 3 compares the solving speed of eGLCM (blue line),
eMplCOMSPS (red line), eMplCM (yellow line) and eM-
plCBT (purple line) against their baselines. This figure plots

Table 3: Comparison between solvers on Test Set 1

System
2017 2018 Combined

S U S+U S U S+U S+U PAR

gLCM 82 98 180 95 97 192 372 4133
eGLCM 84 95 179 103 97 200 379 4068

MplCOMSPS 104 98 202 116 94 210 412 3701
eMplCOMSPS 106 101 207 125 96 221 428 3442

MplCM 103 111 214 128 100 228 442 3456
eMplCM 104 111 215 128 100 228 443 3445

MplCBT 97 110 207 133 102 235 442 3498
eMplCBT 98 113 211 138 102 240 451 3400

Figure 3: Solve time comparison for Test Set 1

the difference in the number of instances solved as a func-
tion of time. At phase 1, there is no difference for the Maple
based expSAT solvers and their baselines. eMplCOMSPS
(red line) dominates over its baseline for all of phase 2. eM-
plCBT (purple line) and eMplCM (yellow line) also solve
instances at a faster speed than their baseline for most time
points. eGLCM (blue line) performs slightly worse than
gLCM at the earlier time points, but beats the baseline for
the remaining time points.

Comparison on Test Set 2 For SAT-2018, 17 SATCoin
instances were submitted. For the experimental results re-
ported in Table 3, we observe that compared to the baselines
gLCM (solves 1) and MplCOMSPS (solves 2), their expSAT
extensions, eGLCM (solves 5) and eMplCOMSPS (solves
6), show strong performance gains over these 17 instances6.
We further evaluate the expSAT solvers on this benchmark
by generating 52 hard instances (Test Set 2), which are dif-
ferent from the 17 instances submitted for SAT-2018.

Table 4 compares our expSAT extensions with their re-
spective baselines for Test Set 2. The best performing exp-
SAT extensions, eMplCM and eMplCOMSPS, solve 10 and
13 instances respectively, beating their baselines by each
solving 9 additional instances. Compared to their baselines,
eGLCM and eMplCBT solve 5 and 2 additional instances,
respectively. Fig. 4 shows the solve time comparison for the
8 solvers for Test Set 2. Here, all of our expSAT solvers solve
the problems at higher speed than their baselines at most of
the time points.

For this experiment, each of our extended solvers shows
strong performance gains over its baseline. To put this exper-

6Compared to their baselines, eMplCM and eMplCBT solve
equal number of instances over these 17 instances.

1432

Table 4: Results for Test Set 2
System SAT UNSAT Total

gLCM 3 4 7
eGLCM 4 8 12

MplCOMSPS 2 2 4
eMplCOMSPS 6 7 13

MplCM 0 1 1
eMplCM 6 4 10

MplCBT 21 20 41
eMplCBT 23 20 43

Figure 4: Solve time comparison for Test Set 2

iment into perspective, we ran experiment with CryptoMin-
iSAT57, which is known to be a strong system for solving
cryptographic benchmarks. This system solves 41 instances
with average solve time 8907.47 secs, while our best per-
forming expSAT solver eMplCBT solves 43, with average
solve time of 2518.90 secs.

Analysis of the Experimental Results

For analysis of the results presented in the previous section,
we use experimental data from gLCM and eGLCM, where
expVSIDS is active for the whole time of a given run.

Given a set of instances, we define two subsets below.

• exp+: Instances solved by eGLCM but not by gLCM, or
gLCM takes longer time to solve than eGLCM.

• exp−: Instances solved by gLCM but not by eGLCM, or
eGLCM takes longer time to solve than gLCM.

GLR and Average LBD Score: In (Liang et al. 2017), it
is shown that on average, a more efficient CDCL branching
heuristic leads to higher GLR value and lower average LBD
(aLBD) score of the learned clauses. We analyze GLR and
aLBD scores. The top two rows of Table 5 show the average
GLR values for exp− and exp+ for Test Set 1 with gLCM
and eGLCM.

• For exp−, where the baseline gLCM is more efficient,
gLCM has lower average GLR score. However, gLCM
learns higher quality clauses (lower aLBD), on average.

• For exp+, where eGLCM is more efficient, eGLCM gen-
erates conflicts at the same rate as the baseline. However,
it learns higher quality clauses (lower aLBD), on average.

Our results on Test Set 1 are largely consistent with the
observation from (Liang et al. 2017).

7https://www.msoos.org/cryptominisat5/

Table 5: Comparison of average GLR and average aLBD
Instance Set System

exp− exp+

#inst avg. GLR avg. aLBD # avg. GLR avg. aLBD
Test Set 1
(2017+ 2018)

gLCM 156 0.47 15.08 245 0.49 15.88
eGLCM 0.49 15.79 0.49 14.78

Test Set 2
(SATCoin)

gLCM 6 0.61 25.46 11 0.34 35.81
eGLCM 0.30 33.55 0.37 32.29

Table 6: Comparison of average CD Phase length
Instance Set System

exp− exp+

#inst avg. CDLen # avg. CDLen
Test Set 1
(2017+ 2018)

gLCM 156 30.27 245 8.60
eGLCM 29.97 8.26

Test Set 2
(SATCoin)

gLCM 6 4.96 11 8.27
eGLCM 9.38 7.73

The experimental data from Test Set 2 are strongly consis-
tent with the observation of (Liang et al. 2017). The bottom
two rows of Table 5 show that in each case, the better system
has higher average GLR and lower average aLBD.
Reduction of Average CD Phase Length: Table 6 shows
that for both test sets, exploration in eGLCM reduces the
average CD phase length for both exp− and exp+ in most
of the cases. Thus exploration helps a solver to escape from
the pathological state of conflict depression.
Exploration Statistics: What is the cost and benefit of per-
forming exploration? On average, for the instances from Test
Set 1, eGLCM incurs 92.53 seconds of overhead to perform
exploration, which is about 3.94% of its average running
time of 2346.12 seconds. With random exploration amid
substantial CD phases, on average, eGLCM finds about 2
conflicts per 100 random steps.
Derived Clauses from Exploration: In expSAT , we do not
learn the clauses that are derived from conflicts discovered
during exploration. This is based on the following intuition.
Whenever a CDCL search learns a clause c, c is immediately
used by propagating the asserting literal (first UIP), which is
hosted by c. However, in case of exploration, when a clause
c is derived, such propagations do not immediately follow.
Thus the utility of c is uncertain. We ran an experiment with
eGLCM for Test Set 1, where we saved the learned clauses
that are derived during exploration. The result is slightly
worse than the result for eGLCM reported in Table 3.

Exploration Parameter Adaptation

A parameter setting that is effective for one instance may not
be effective for another. Based on this intuition, we devel-
oped an algorithm named paramAdapt to dynamically con-
trol when to trigger exploration episodes, and how much ex-
ploration to perform in an exploration episode.

paramAdapt The three exploration parameters nW , lW ,
and pexp are adapted between CDCL restarts based on
the search behavior. A parameter setting is a triple Σ =
(nW, lW, pexp), which is updated at the beginning of each
restart by paramAdapt by comparing the exploration per-
formance of the two most recent search periods, the pe-
riod between the latest two restarts and the period before
it. The search in expSAT starts with a default value of Σ.
paramAdapt keeps track of the following statistics about all

1433

Table 7: Parameter values for the adaptive-expSAT Solvers
Description Parameters Value

Weights (w1, w2, w3) (40, 10, 3)
Range for nW [lnW , unW] [1, 20]
Range for lW [llW , ulW] [1, 10]
Range for pexp [lpexp , upexp] [0.02, 0.6]
Step size for parameters (snW , slW , spexp

) (1, 1, 0.01)
Exponential Decay Factor ω 0.9

Table 8: Comparison between adaptive expSAT solvers and
non-adaptive expSAT solvers with Test Set 1

System
2017 2018 Combined

S U S+U S U S+U S+U PAR

eGLCM 84 95 179 103 97 200 379 4068
eGLCMad 85 94 179 105 96 201 380 4036

eMplCOMSPS 106 101 207 125 96 221 428 3442

eMplCOMSPSad 99 99 198 123 96 219 417 3665
eMplCM 104 111 215 128 100 228 443 3445
eMplCMad 107 108 215 130 100 230 445 3435

eMplCBT 98 113 211 138 102 240 451 3400

eMplCBTad 99 111 210 135 102 237 447 3410

exploration steps within a period: the number of random
steps rSteps, the number of conflicts c, the number of glue-
clauses gc, the mean LBD value, lbd, of the learned clauses.

With fixed weights w1 > w2 > w3, an exploration per-
formance metric (EPM) is defined as w1×gc+w2×c

rSteps +w3∗ 1
lbd .

This performance metric rewards finding glue clauses (most
important), finding any conflict (very important), and learn-
ing clauses with low LBD score (important).

At each restart, the algorithm computes a new EPM σnew

and compares (the comparison starts after the second restart)
it with the prior one σold, and update the parameter setting
Σold just to get a new setting Σnew.
• If σnew < σold, the performance of exploration is worse

than before. First, Σnew is set to the old Σold, then we
perform an increment: Randomly select a parameter p ∈
Σ and increase its value by a predefined stepsize.

• If σnew = σold, we only perform the increment, no reset.
• If σnew > σold, then exploration is working better than

before. We do not change Σold in this case.
The values of a parameter are bounded by a range. When-

ever a value leaves its range, it is reset to its default value.

Experiments We repeat the same experiments for Test
Sets 1 and 2 with four expSAT extensions with paramAdapt
implemented on each of them. We denote by expΨad the
adaptive version of non-adaptive expSAT solver expΨ.

We set the default values of parameters Σ to (5, 5, 0.02).
The values of the other parameters are given in Table 7.

Table 8 shows the performance comparison between the
non-adaptive and adaptive expSAT solvers. For Test Set 1,
the overall performance of the non-adaptive versions is bet-
ter: eMplCOMSPS and eMplCBT solve 11 and 4 more prob-
lems compared to their adaptive versions. eGLCMad solves
1 more instance than eGLCM. eMplCMad solves 2 more
instances than its baseline.

For Test Set 2, the performance of most of the adap-
tive expSAT solvers are significantly better than their

Table 9: Additional comparison with Test Set 2
System SAT UNSAT Total

eGLCM 4 8 12
eGLCMad 13 8 21

eMplCOMSPS 6 7 13
eMplCOMSPSad 14 15 29

eMplCM 6 4 10
eMplCMad 14 9 23

eMplCBT 23 20 43
eMplCBTad 22 21 43

Table 10: A small scale performance analysis
System Overh. e GLR e aLBD CDLen

eMplCOMSPS 48.51s 0.0193 15.25 20.08

eMplCOMSPSad 198.2s 0.0179 15.78 20.77

respective non-adaptive versions, as shown in Table 9.
eMplCOMSPSad and eMplCMad solve 16 and 13 more
problems than eMplCOMSPS and eMplCM, respectively.
eGLCMad solves 9 more instances than eGLCM. Both
eMplCBTad and eMplCBT solve an equal number of prob-
lems.

Analysis Table 10 shows a small scale analysis with eM-
plCOMSPS and eMplCOMSPSad, for which we observed
the largest performance gap for Test Set 1. Compared to
eMplCOMSPSad, on average eMplCOMSPS has signifi-
cantly lower overhead incurred in exploration, exploration
finds conflicts at a faster rate, from which lower LBD
clauses are derived. Compared to eMplCOMSPSad, the av-
erage CD phase length for eMplCOMSPS is lower. These
data explain the better performance of eMplCOMSPS over
eMplCOMSPSad for Test Set 1.

Related Work

Randomized exploration in SAT is used in local search
methods such as GSAT (Selman, Levesque, and Mitchell
1992) and WalkSAT (Selman, Kautz, and Cohen 1993). The
Satz algorithm (Li and Anbulagan 1997) heuristically se-
lects a variable x, then performs two separate unit propa-
gations with x and (¬x) respectively, in order to evaluate the
potential of x. Modern CDCL SAT solvers include explo-
ration components such as a small amount of random vari-
able selection (Eén and Sörensson 2003). UCTSAT (Previti
et al. 2011) employs Monte Carlo Tree Search (MCTS) to
build a SAT search tree. Exploration can make a search pro-
cess more robust by allowing an escape from early mistakes
caused by inaccurate heuristics (Xie et al. 2014). Exam-
ples of recently popular exploration methods in search are
MCTS (Browne et al. 2012) and the random walk techniques
used in classical planning (Nakhost and Müller 2009). These
techniques motivated our work on random exploration in
CDCL SAT.
SATHYS (Audemard et al. 2010) employs both a CDCL

SAT solver and a local search SAT solver. The latter helps
the CDCL solver by identifying the most promising literal
assignment to branch on, and the CDCL search process

1434

guides the local search process to flee from local minima.
The Conflict History Based (CHB) (Liang et al. 2016a) and
Learning Rate Based (LRB) (Liang et al. 2016b) heuristics
model variable selection as a Multi-Armed Bandit (MAB)
problem, which is solved using the Exponential Recency
Weighted Average (ERWA) algorithm. Both of these heuris-
tics compute rewards from the conflict history of unassigned
variables, in order to rank them. In contrast, we modify the
VSIDS rank of variables based on the quality of conflicts
generated by random exploration of the future states. Com-
pared to the look-ahead based heuristic that maximize the
GLR score (Liang et al. 2017), we perform nondeterministic
exploration of the search space with a small subset of unas-
signed variables per random walk, and prioritize variables
that generate high-quality conflicts. As overhead is disre-
garded in their work, there is no direct basis for comparison.

Future Work

The ineffectiveness of VSIDS in conflict depressions can be
addressed by performing exploration. Interesting research
avenues to explore further include:
1. Integrate expSAT to LRB and CHB based systems
2. Study exploration as in expSAT to guide polarity selection,
e.g., by extending the phase-saving heuristic.
3. Develop machine learning methods to predict the onset of
a long CD phase.
4. Better understand the relationship between properties of
CD phases such as length and the performance of a solver.
5. Identify characteristics of SAT domains which influence
the effectiveness of exploration.

Acknowledgements
We thank the anonymous reviewers for their valuable advice.
This research is supported by Natural Sciences and Engi-
neering Research Council of Canada PGS Doctoral (NSERC
PGS-D) award, President’s Doctoral Prize of Distinction
(PDPD), Alberta Innovates Graduate Student Scholarship
(AIGSS), and NSERC discovery grant.

References
Audemard, G., and Simon, L. 2009. Predicting learnt clauses qual-
ity in modern SAT solvers. In Proceedings of IJCAI 2009, 399–
404.
Audemard, G.; Lagniez, J.; Mazure, B.; and Sais, L. 2010. Boost-
ing local search thanks to CDCL. In Proceedings of LPAR-10, 474–
488.
Biere, A.; Heule, M.; van Maaren, H.; and Walsh, T. 2009.
Handbook of Satisfiability: Volume 185 Frontiers in Artificial In-
telligence and Applications. Amsterdam, The Netherlands, The
Netherlands: IOS Press.
Browne, C.; Powley, E. J.; Whitehouse, D.; Lucas, S. M.; Cowling,
P. I.; Rohlfshagen, P.; Tavener, S.; Liebana, D. P.; Samothrakis, S.;
and Colton, S. 2012. A survey of Monte Carlo Tree Search meth-
ods. IEEE Trans. Comput. Intellig. and AI in Games 4(1):1–43.
Eén, N., and Sörensson, N. 2003. An extensible SAT solver. In
Proceedings of SAT 2003. Selected Revised Papers, 502–518.
Gupta, A.; Ganai, M. K.; and Wang, C. 2006. SAT-based verifi-
cation methods and applications in hardware verification. In Pro-
ceedings of SFM 2006, 108–143.

Li, C. M., and Anbulagan. 1997. Look-ahead versus look-back for
satisfiability problems. In Proceedings of CP 1997, 341–355.
Liang, J. H.; Ganesh, V.; Poupart, P.; and Czarnecki, K. 2016a.
Exponential recency weighted average branching heuristic for SAT
solvers. In Proceedings of AAAI 2016, 3434–3440.
Liang, J. H.; Ganesh, V.; Poupart, P.; and Czarnecki, K. 2016b.
Learning rate based branching heuristic for SAT solvers. In Pro-
ceedings of SAT 2016, 123–140.
Liang, J. H.; K., H. G. V.; Poupart, P.; Czarnecki, K.; and Ganesh,
V. 2017. An empirical study of branching heuristics through the
lens of global learning rate. In Gaspers, S., and Walsh, T., eds.,
Proceedings of SAT 2017, 119–135.
Luo, M.; Li, C.-M.; Xiao, F.; Manyá, F.; and Lu, Z. 2017. An effec-
tive learnt clause minimization approach for CDCL SAT solvers. In
Proceedings of IJCAI 2017, 703–711.
Manthey, N., and Heusser, J. 2018. SATcoin - Bitcoin mining via
SAT. In Proceedings of SAT Competition 2018, 67–68.
Massacci, F., and Marraro, L. 2000. Logical cryptanalysis as a SAT
problem. J. Autom. Reasoning 24(1/2):165–203.
Moskewicz, M. W.; Madigan, C. F.; Zhao, Y.; Zhang, L.; and Ma-
lik, S. 2001. Chaff: Engineering an efficient SAT solver. In Pro-
ceedings of DAC 2001, 530–535.
Nakhost, H., and Müller, M. 2009. Monte-Carlo exploration for
deterministic planning. In Proceedings of IJCAI 2009, 1766–1771.
Previti, A.; Ramanujan, R.; Schaerf, M.; and Selman, B. 2011.
Monte-Carlo style UCT search for boolean satisfiability. In Pro-
ceedings of AI*IA 2011, 177–188.
Rintanen, J. 2012. Engineering efficient planners with SAT. In
Proceedings of ECAI 2012, 684–689.
Selman, B.; Kautz, H. A.; and Cohen, B. 1993. Local search strate-
gies for satisfiability testing. In Cliques, Coloring, and Satisfiabil-
ity, Proceedings of a DIMACS Workshop 1993, 521–532.
Selman, B.; Levesque, H. J.; and Mitchell, D. G. 1992. A new
method for solving hard satisfiability problems. In Proceedings of
the AAAI 1992, 440–446.
Sutton, R. S., and Barto, A. G. 1998. Introduction to Reinforcement
Learning. Cambridge, MA, USA: MIT Press, 1st edition.
Xiao, F.; Luo, M.; Li, C.-M.; Manyá, F.; and Lu, Z.
2017. MapleLRB LCM, Maple LCM, Maple LCM Dist,
MapleLRB LCMoccRestart and Glucose3.0+width in sat compe-
tition 2017. In Proceedings of SAT Competition 2017, 22–23.
Xie, F.; Müller, M.; Holte, R.; and Imai, T. 2014. Type-based
exploration with multiple search queues for satisficing planning.
In Proceedings of AAAI 2014, 2395–2402.

1435

