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Abstract

Compressed sensing magnetic resonance imaging (CS-MRI)
is a technique aimed at accelerating the data acquisition of
MRI. While down-sampling in k-space proportionally re-
duces the data acquisition time, it results in images corrupted
by aliasing artifacts and blur. To reconstruct images from
the down-sampled k-space, recent deep-learning based meth-
ods have shown better performance compared with classical
optimization-based CS-MRI methods. However, they usually
use deep neural networks as a black-box, which directly maps
the corrupted images to the target images from fully-sampled
k-space data. This lack of transparency may impede practical
usage of such methods. In this work, we propose a deep rein-
forcement learning based method to reconstruct the corrupted
images with meaningful pixel-wise operations (e.g. edge en-
hancing filters), so that the reconstruction process is transpar-
ent to users. Specifically, MRI reconstruction is formulated
as Markov Decision Process with discrete actions and con-
tinuous action parameters. We conduct experiments on MIC-
CAI dataset of brain tissues and fastMRI dataset of knee im-
ages. Our proposed method performs favorably against previ-
ous approaches. Our trained model learns to select pixel-wise
operations that correspond to the anatomical structures in the
MR images. This makes the reconstruction process more in-
terpretable, which would be helpful for further medical anal-
ysis.

Introduction

Magnetic Resonance Imaging (MRI) is a non-invasive med-
ical imaging technique that uses magnetic fields and radio
waves to generate images of the organs in the human body.
Compared with other forms of medical imaging, MRI typ-
ically has better resolution related to soft tissues. However,
the data acquisition process of MRI is very time-consuming.
The data is sampled sequentially in k-space (frequency do-
main) and the speed is limited by physical and physiological
constraints (Lustig, Donoho, and Pauly 2007), taking about
15 minutes up to over an hour, while the patients are re-
quired to remain still. The long scan time severely limits the
applicability of MRI.
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To accelerate the data acquisition, compressed-sensing
MRI (CS-MRI) (Lustig et al. 2008) is a practical solution, as
no additional hardware is required. CS-MRI reduces traver-
sals in the k-space. In order to apply the Compressed Sens-
ing technique, several conditions need to be satisfied. The
image should have a sparse representation in a known trans-
form domain, and the aliasing artifacts due to k-space down-
sampling should be incoherent in that transform domain. Al-
though the conditions are not always satisfied for MRI, CS-
MRI still receives much attention in the research field and
exhibits fairly promising results. There are different sam-
pling schemes and patterns in k-space, such as grid spiral, ra-
dial, etc. Cartesian down-sampling scheme (Lustig, Donoho,
and Pauly 2007), which follows Gaussian distribution and
retains the low frequencies, was carefully designed to mimic
the property of pure randomness to make the aliasing as in-
coherent as possible after zero-filling the unsampled posi-
tions in the k-space. The resulted artifacts in image domain,
while not totally incoherent, can be perceived as a mixture
of aliasing, blur and noise.

After obtaining partially sampled k-space data, MRI re-
construction can be performed using software algorithms.
Optimization-based algorithms usually enforces both spar-
sity in the transform domain, which is required by com-
pressed sensing, and data consistency in frequency domain,
which means that the k-space values of the reconstructed
image at the sampled positions do not deviate from the orig-
inally acquired k-space data.

Recent advances of deep learning has greatly improved
the reconstruction precision, measured by NMSE, PSNR,
and SSIM. Most deep-learning based methods (Sun et al.
2016; Schlemper et al. 2017; Yang et al. 2017; Hammernik
et al. 2018; Hyun et al. 2018; Zhu et al. 2018) directly take
the image from the zero-filled k-space or the original k-space
data as the input of the deep neural networks and output the
reconstructed image. These models are often trained end-to-
end and function as black boxes.

Interpreterbility is a challenge for deep-learning based
medical image processing (Razzak, Naz, and Zaib 2018).
Since the primary purpose of MRI reconstruction is to facil-
itate diagnosis by removing aliasing artifacts and recovering
details, it may pose risk if the transformation process of the
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image are hidden by the ”black-box”. For example, consid-
ering that drastic differences of pixel values in the anatomi-
cal structures could become very small that are hard to per-
ceive by human eyes when severely blurred and flattened
by down-sampling, it would be beneficial if users can tell
whether such structures are faithfully recovered.

In this work, we formulate MRI reconstruction as image
processing in a deep reinforcement learning setting, with
discrete actions and continuous action parameters. The cor-
rupted images are processed using fine-grained and under-
standable pixel-wise operations. Hence, the transformation
from the corrupted images to reconstructed ones is transpar-
ent to users. Building on the work of pixelRL (Furuta, Inoue,
and Yamasaki 2019), we assign each pixel of the input im-
age an agent that changes the pixel value. With carefully de-
signed action space and reward function, the agents learn to
take actions (choose operations) to work on the pixel value
in a proper sequence, and some of the actions have learn-
able parameters. Discrete action policy and continuous ac-
tion parameters are learned alternately. In a full episode, the
change of pixels are executed iteratively and the output of
the final step is the reconstructed MR image. In addition, we
also make use of the data consistency in frequency domain
to further boost the performance.

Compared with previous works that used deep neural net-
work as a black-box, our method is transparent in that ev-
ery change made on the pixels is known. Importantly, we
show that the actions taken are distributed according to the
anatomical structures of the tissues, thus interpretable to cer-
tain extent.

Our contributions can be summarized as follows:

• We adapt reinforcement learning techniques and classical
image filters into MRI reconstruction. Our method com-
pares favorably against previous approaches.

• Through meaningful pixel-wise operations, we make the
reconstruction process transparent and more interpretable
to users than previous deep-learning based methods.

Related work

MRI reconstruction

Under CS-MRI, only parts of the data are sampled in k-
space. Suppose the fully sampled k-space ytarget ∈ C

H×W

is a complex-valued matrix with spatial size H×W , then its
corresponding image1 by applying 2D Inverse Fast Fourier
Transform is xtarget = F−1(ytarget). Cartesian sampling
scheme in k-space is equivalent to applying a binary mask S
of the same size to ytarget, and the obtained down-sampled
k-space data is y = S � ytarget, where � denotes element-
wise matrix multiplication. Since the Nyquist criterion is vi-
olated, the corresponding image x = F−1(y) is corrupted
by aliasing artifacts. With under-sampled high frequencies,
the image is also blurry.

In order to recover the image xtarget from x and y, classi-
cal methods exploit sparsity constraints, in various transform

1While the inverse Fourier transform of k-space data is techni-
cally a complex-valued matrix, we take its modulus when referring
to the image. We do not differentiate their notations hereafter.

domains (e.g. total variation (Block, Uecker, and Frahm
2007; Lustig, Donoho, and Pauly 2007; Yang, Zhang, and
Yin 2010), discrete wavelet transform (Qu et al. 2012)), with
geometric information (Qu et al. 2014; Ning et al. 2013),
and with dictionary learning (Ravishankar and Bresler 2010;
Caballero et al. 2014). Due to the abundance of works of
classical methods, please refer to (Jaspan, Fleysher, and Lip-
ton 2015) for a comprehensive review.

In recent years, deep learning has been effectively used
for MRI reconstruction. While some of these works incor-
porated classical formulations (Sun et al. 2016; Yang et al.
2017; Hammernik et al. 2018), most of these methods (Wang
et al. 2016; Schlemper et al. 2017; Yang et al. 2017; Sun et
al. 2018; Lee et al. 2018; Han et al. 2018; Fan et al. 2018;
Hyun et al. 2018; Zhang et al. 2019) can be roughly general-
ized as learning a mapping function from x to xtarget with a
deep neural network, with a few exceptions (Zhu et al. 2018;
Han, Sunwoo, and Ye 2019) involving the mapping of y
and ytarget. A common choice for loss function is the pixel-
wise disparity of x and xtarget, usually represented by mean
square error of the two images (Schlemper et al. 2017;
Hyun et al. 2018). Other loss functions include GAN loss
, perceptual loss (Yang et al. 2017), and frequency domain
loss (Schlemper et al. 2017).

Similar to classical approaches, deep-learning based ap-
proaches also enforces data consistency in frequency do-
main to ensure that the values at the originally sampled
positions in k-space are not distorted by reconstruction.
Data consistency can be integrated as a differentiable layer
(Schlemper et al. 2017; Sun et al. 2018) into the deep neural
network. In this work, we follow (Zhang et al. 2019), where
the sampled entries in k-space for the output of deep neural
network are manually adjusted with respect to the original
measurement.

Image processing by reinforcement learning

Several works adopt reinforcement learning (RL) for image
processing tasks, such as denoising, color enhancement and
exposure adjustment. Compared with conventional CNN-
based approaches that learn image-to-image mapping, one
advantage of the RL-based methods is that the operations
performed on the image are transparent and are often under-
standable, thus providing a clearer view of the process. At
the same time, owing to the exploratory nature of RL, the
RL-based methods have demonstrated better generalization
property (Park et al. 2018; Yu et al. 2018a).

In RL setting, Markov Decision Process (MDP) is used
to depict sequential decision making problems and can be
defined as the tuple < s, a, r, P, λ >. The agent observes
the state s, takes action a based on policy π, transfers to an-
other state according to the transfer probability P . For im-
age processing task, the formulated Markov process is usu-
ally deterministic. The agent receives reward r, and λ is the
discount factor for cumulative reward. The goal of RL is
to maximize the expected cumulative reward. To formulate
the image processing task under the framework of RL, one
needs to define a corresponding MDP for that.

A common choice for state is the image itself or extracted
features related to the task. In order to make the operations
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suitable for the image processing tasks, the design of the
actions and the action space is critical. The action space
can be discrete action space (Sahba and Tizhoosh 2003;
Park et al. 2018; Yu et al. 2018a; Furuta, Inoue, and Ya-
masaki 2019), continuous action space (Yu et al. 2018b)
(individual type of operation), or discrete action space with
continuous parameters (Hu et al. 2018).

For example, (Hu et al. 2018) adopted discrete action
space with continuous parameters for image retouching task.
At every step, the agent selects one action, such as color ad-
justment, white balancing and exposure adjustment, and also
estimates an optimal parameter for that action (e.g. the expo-
sure value) to process the whole image. After a fixed number
of steps, the image would become more appealing.

While most of the works operate on the whole image or
image regions, pixelRL (Furuta, Inoue, and Yamasaki 2019)
used pixel-wise operations, which allows fine-grained ad-
justment for images.

In RL setting, the agent learns to either directly or indi-
rectly maximize the discounted cumulative reward. Reward
function is designed to encourage the agent to make proper
decisions, so that the processed image converges to the de-
sired output. Some previous methods used image pairs to
compute reward, and the gap between the input and tar-
get images are measured. Other methods utilized adversarial
learning and took the output of the discriminator to measure
the quality of the processed images. We follow the former
approach.

Our Method

In this section, we present the details of our algorithm and
how we design each element of MDP for MRI reconstruc-
tion.

Problem formulation

With our MDP modeling, every pixel corresponds to an
agent, which models a multi-agent problem. The state is
simply the input image at each time step. After observing
the state s(t) at time step t, each agent selects one action in
the action set, modifies its pixel value, and then receives a
reward r(t) that measures how much the output pixel value
is improved compared with the previous one. The image is
reconstructed in an iterative way, as the agents collectively
change the image. At t = 0, the state is the image from
zero-filled down-sampled k-space, i.e. s(0) = x. Given the
input image as s(t) at time step t, the output image will be
the next state s(t+1). We fix the total time step T = 3 in
a full episode. After the final time step, the output image is
adjusted by data consistency step, and that is the final output.

Actions

Building on pixelRL, we made several modifications to bet-
ter fit MRI reconstruction task, which include redesigning
the action set and introducing learning of the continuous ac-
tion parameters.

Listed in Table 1, our action set contains 12 actions. Ac-
tion 0 is to keep the pixel value intact. Action 1 to 10 are

Table 1: Actions for MRI reconstruction.
action filter size parameter

0 do nothing - -
1 box filter 5x5 -
2 bilateral filter 5x5 σc = 1.0, σS = 5.0
3 median filter 5x5 -
4 Gaussian filter 5x5 σ = 0.5
5 Laplace filter 3x3 learnable pL
6 Sobel filter (left) 3x3 learnable pS1

7 Sobel filter (right) 3x3 learnable pS2

8 Sobel filter (up) 3x3 learnable pS3

9 Sobel filter (down) 3x3 learnable pS4

10 unsharp masking 5x5 σ = 0.5, learnable pu
11 pixel value -= 3 - -

0 -p 0 -p 0 p p 0 -p -p -2p -p p 2p p

-p 1+4p -p -2p 1 2p 2p 1 -2p 0 1 0 0 1 0

0 -p 0 -p 0 p p 0 -p p 2p p -p -2p -p

Figure 1: From left to right: Laplace filter for contrast en-
hancement, Sober filters for edge enhancement of four sides
(left, right, up, down). Each filter has its own parameter p
which is learned to control the magnitude of enhancement.

classical image filters, and they have clear visual effects and
physical significance.

In particular, box, bilateral, median and Gaussian filters
are different types of smoothing filters. They were the main
operations that were utilized in pixelRL for image denoising.
Although the artifacts resulted from down-sampling k-space
technically are not random noise, we still find these smooth-
ing filters helpful for MRI reconstruction and bigger kernel
size (5x5) yields better visual effect.

Smoothing filters are not enough to deal with blur caused
by down-sampling. Therefore, we make use of some typical
sharpening filters (Action 5 to 10) for detail and edge en-
hancement. In view of the fact that the conventional sharp-
ening filters like Laplace and Sobel filters are used to extract
edges and thus will remove the low frequency component,
we modify these filters at the center location (add the origi-
nal pixel value) so that they do not filter out the mean value
of the local patches. The modified filters are illustrated in
Figure 1. The modified Laplace filter amplifies the contrast
between the pixel on the center and its 4-neighbours, and the
modified Sobel filters can enhance the edges on four sides
(left, right, up, down). Action 10 is unsharp masking, which
subtracts a Gaussian-blurred version of the image from it-
self to produce a sharpened version, and is formulated as
(1+pu)x−puGaussian(x), where x is the image and pu is
the amount of the Gaussian-blurred version to be subtracted.
In our design, the magnitude of detail and edge enhancement
depends on the current state at different time steps. That is,
each of the filters has a flexible parameter to control the mag-
nitude.

In a fully-sampled MRI image, the background originally
has pixel values close to 0, whereas the aliasing effects might
increase some of the pixel values up to about 10. We also
observed that some low-valued pixels of anatomical struc-
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Figure 2: The architecture of our model.

tures, such as brain sulcus, are almost obscured by aliasing
and are challenging to recover using the above-mentioned
filters. Hence we add Action 11 to counter this. Note that Ac-
tion 11 is the only action associated with the absolute pixel
value, which is difficult to learn and should be set manually
according to the data distribution.

Reward

Pixel values of input and target images are used to compute
reward.

At time step t, the pixel2 x changes from x(t) to x(t+1)

after taking action, and then the reward is r(t) = |x(t) −
xtarget| − |x(t+1) − xtarget|. The reward is positive when
the pixel gets closer to its target value, otherwise is zero or
negative.

Intuitively, we are more interested in the output of the
final time step rather than intermediate results. We set the
discount factor γ = 1, so that the discounted cumulative
reward of the full episode is R(0) = Σt=T−1

t=0 γtr(t) =

|x(0)−xtarget|−|x(T )−xtarget|, which is the improvement
regarding the input and desired output (target). Maximizing
the cumulative rewards summed up over the whole image
is analogous to minimizing the L1 error between the final
output image and the target image.

Model

The whole architecture of our model is illustrated in Fig-
ure 2. Our model consists of two modules, discrete policy
module and continuous parameter module. The former out-
puts probability distribution of discrete actions, determining
which action the agent is going to take, while the latter out-
puts the continuous action parameters for the filters.

Considering that both modules take the state as input, we
build these two modules with a shared feature extractor, de-
noted as θf . We alternately update the model for the two
modules using two reinforcement learning algorithms, while
keeping the value branch θv of both modules consistent. The
value branch outputs the value for each pixel’s state. Unlike

2Both pixel value and the whole image can be denoted as x
without causing confusion.

(Hu et al. 2018), our design does not need the operations to
be differentiable for discrete-continuous mixed action learn-
ing.

We make use of fully convolution network (FCN) (Long,
Shelhamer, and Darrell 2015) to represent the modules and
the feature extractor. The spatial resolution of the network
remains constant throughout the layers. Using convolution
layers with dilation, the receptive field for the agent is theo-
retically the whole image.

Discrete policy module In this part, we utilize advantage
actor-critic (A2C) (Sutton and Barto 2018) to train the mod-
ule and to realize end-to-end mapping from image to all pix-
els’ actions. The discrete policy module has a policy branch
θπ and a value branch θv with a shared feature extractor θf .
The policy branch outputs the probabilities of the discrete
actions with softmax operation.

The loss function (for one agent at certain time step) for
the discrete part consists of three terms as follows:

Lπ = − log π(a|s; θπ, θf )(R− V (s; θv, θf )) (1)

Lvalue = ‖R− V (s; θv, θf )‖2 (2)
Lentropy = Σaπ(a|s; θπ, θf ) log π(a|s; θπ, θf ) (3)

The first term corresponds to the policy branch, the gradi-
ent of which represents the estimation for the expectation of
gradient of the trajectory’s negative cumulative reward. The
second term corresponds to the value branch, aiming at min-
imizing temporal-difference error for accurate estimation of
value of the state. The third term is the negative entropy loss,
which helps increase the diversity of output action probabil-
ities and encourages action exploration. Note that we omit
the superscript (t) for convenience and the loss above will
be computed at each time step and summed for the episode.

The total loss is the weighted sum of the three terms

Ldiscrete = Lπ + λ1Lvalue + λ2Lentropy (4)

The loss is averaged for all the agents.
In addition to that, there are two modifications that we

have incorporated into the A2C:
• We add the output of continuous parameters module to the

input of θv since the value of state should also account for
the value of continuous parameters for filters.

• During the training of discrete policy module, we freeze
the parameters of continuous parameters module θp and
update other parameters (θf , θv, θπ) through backpro-
pogation.

Continuous parameters module With global pooling
layer, the output action parameters are shared for all the pix-
els from the same image. In order to restrict the action pa-
rameters in a reasonable range, we use Sigmoid function to
constrain the output of the module to a fixed range of [0,
1], and map it linearly using a predefined scale. For Laplace
and Sobel filters, the scale is set to 0.2, so that the action pa-
rameters never exceed 0.2. The scale is set to 1 for unsharp
masking. Since the FCN is randomly initialized, at the be-
ginning of training, the output of Sigmoid function will be
close to 0.5.
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Target Cartesian Mask Zero-Filled Ours (w/o DC) Ours Error Maps

PSNR=34.73 SSIM=0.88 PSNR=39.36 SSIM=0.98 PSNR=41.96 SSIM=0.99

PSNR=2 . SSIM=0. PSNR=2 SSIM=0.8 PSNR=2 SSIM=0.8

Figure 3: Results of our proposed method. The images in the first and second rows are from MICCAI dataset and fastMRI
dataset respectively. The error maps compute absolute differences between our results with DC (data consistency) and are
multiplied by 10 for better visualization.

Table 2: Comparison of different methods on MICCAI using 1D Cartesian Masks of different sampling ratios.

Method 10% 20% 30% 40% 50%
NMSE PSNR NMSE PSNR NMSE PSNR NMSE PSNR NMSE PSNR

ZF 0.37 28.22 0.21 34.04 0.16 35.61 0.14 37.65 0.10 40.65
PANO 0.22 30.84 0.09 38.54 0.08 39.16 0.05 43.05 0.04 45.44
BM3D 0.20 31.72 0.10 39.40 0.09 39.93 0.07 43.66 0.05 45.89

DAGAN 0.17 33.79 0.09 39.44 0.08 40.20 0.05 44.83 0.04 47.83
Ours (w/o DC) 0.27 30.13 0.12 37.40 0.10 38.90 0.07 41.60 0.05 44.60

Ours 0.25 30.99 0.09 39.52 0.08 41.07 0.05 44.39 0.04 47.86

The algorithm we utilize here is a modified version of
DDPG (Lillicrap et al. 2016). The loss function is

Lcontinuous = −λ3V (s; θp) (5)

Typically, the loss for DDPG algorithm should consist of
Equation 2 and 5, and the parameters (θf , θp, θv) are sup-
posed to be updated during training. However, in the ex-
periment we find that the training of continuous parameters
module can easily interfere with the training of discrete ac-
tion module, which leads to sub-optimal result. Thus, we
only update θp by the loss of Equation 5 to train this mod-
ule.

Data Consistency

The designed reward function only considers data fidelity
in the image domain. To enforce data fidelity in frequency
domain, we take the output of the last time step and replace
the value at the sampled positions with original data in k-
space. Data consistency (DC) step can be formulated as x̂ =
F−1(S � ytarget + (1 − S) � F(x(T ))). We take the real
part of x̂ as the final result.

Experiment

Datasets

We conduct experiments on MICCAI 2013 Grand Challenge
dataset3 of T1-weighted MR images of brain tissues. We
follow (Yang et al. 2017) and include 16095 training im-
ages and 50 test images. Fixed Cartesian masks with dif-
ferent sampling ratios are used to simulate down-sampling
columns in k-space.

We also evaluate our method on the single-coil subset of
fastMRI dataset (Zbontar et al. 2018) of knee images. We
train our model on the training set and report our results on
the first 1000 images of the validation set. The official code4

of fastMRI is used to randomly select sampling trajectory in
k-space.

Implementation details

Data preparation For MICCAI dataset, the brain tissues
are located in the image center with clear background, so
we apply random rotation in the range [−10◦, 10◦], random
scale in the range [0.9, 1.0] and horizontal flipping for data
augmentation. We train one model for one sampling ratio.
For fastMRI dataset, no data augmentation is used. Since

3https://my.vanderbilt.edu/masi/workshops/
4https://github.com/facebookresearch/fastMRI
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Target Ours DAGAN

Figure 4: Comparison of our method and DAGAN. Image
patches of size 40x80 are cropped for visualization.

Table 3: Results on fastMRI using random 40% Mask.
Method NMSE PSNR SSIM

ZF 0.17 28.6 0.83
Unet 0.14 30.4 0.87

Ours (w/o DC) 0.15 29.7 0.86
Ours 0.14 30.3 0.88

the images are of various sizes, we crop the 320x320 center
region and then do the down-sampling. In addition, images
are normalized and rescaled into range [0, 255].

Training We set batch size to 24. Adam and SGD optimiz-
ers are used for the discrete and continuous module respec-
tively. The learning rate is 1× 10−3 initially and will decay
linearly to 5×10−4. The network will firstly conduct warm-
up training in which only discrete policy module is trained.
The whole number of training iterations is 10k and the al-
ternation between two modules happens every 2 iterations.
Empirically, we set the loss weights λ1 = 0.25, λ2 = 0.1,
and λ3 = 0.5. Our code is available5.

Evaluation metrics Normalized mean square error
(NMSE), Peak Signal-to-Noise Ratio (PSNR) and the
Structural Similarity Index (SSIM) (Ledig et al. 2017) are
used for evaluating MRI reconstruction.

Quantitative and qualitative results

Some results of our proposed method are shown in Figure 3.
In Table 2, we list zero-filling (ZF) as the baseline

and several previous best-performing methods evaluated in
(Yang et al. 2017) on MICCAI dataset, namely TV (Lustig,
Donoho, and Pauly 2007), PANO (Qu et al. 2014), BM3D

5https://github.com/wentianli/MRI RL

Sobel filter (left)

Sobel filter (right)

Laplace filter

nsharp ask

pixel subtraction box filter

Figure 5: Example of action distribution on pixels. The tar-
get images are shown in the left column. We color the pixel
if its corresponding agent takes certain action and the action
changes the pixel value. Arrows indicates the regions to be
highlighted. The input images are overlaid for visualization.
Better viewed in color.

(Eksioglu 2016) and DAGAN (Yang et al. 2017). Without
data consistency, our method can already improve the cor-
rupted images by a fairly large margin. With data consis-
tency, our models perform on par with DAGAN, which veri-
fies that data fidelity in both image and frequency domain is
indispensable.

As can be seen in Figure 4, the output images of our
method are slightly smoother than that of DAGAN. It can
be observed in the first two rows that the output of DAGAN
contains a few regions of fluctuating intensity that are origi-
nally flat in the target images.

The results on fastMRI dataset are listed in Table 3.
This dataset is more difficult because the target images
contain noise and differ drastically in intensity range. Af-
ter reconstruction, the errors on the background are still
non-negligible. Nonetheless, our reconstruction method im-
proves the images on all three metrics. We also implemented
Unet (Zbontar et al. 2018) for comparison, which has much
larger capacity than our model. We found that the perfor-
mance of Unet is similar to ours for 40% mask and is inferior
for larger sampling ratios.

Learned action distribution

We display the learned action distribution on pixels in Figure
5. The trained agent is able to select actions in relation to the
anatomical structures of brain tissues. Contrast-enhancing
filters (Laplace filter and unsharp masking) are mainly em-
ployed on image regions corresponding to skull and Cere-
brospinal fluid, where high intensity is to be restored. The
Sobel filters for vertical-line enhancement show up along
the left and right sides of the skull in image. It is notewor-
thy that whether Sobel filter increases or decreases the pixel
value depends on the intensity distribution of its neighboring
pixels. When properly located, Sobel filter can also reduce
artifacts in background. Normally, pixel value subtraction is
the most chosen action, effectively removing aliasing in the
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t=0 t=1 t=2

Figure 6: Distribution of pixel value subtraction taken at dif-
ferent time steps.

Table 4: Ablation study for fixed or learned parameters on
MICCAI using 30% 1D Cartesian Mask.

learned DC NMSE PSNR SSIM
0.11 37.39 97.56

� 0.09 40.12 98.39
� 0.10 38.90 97.88
� � 0.08 41.07 98.69

background and reducing the pixel values at brain sulcus re-
gion of the image. Box filter smooths regions outside the
skull as well as inside the spine.

The action distribution changes at different time steps. An
example is illustrated in Figure 6. As the aliasing in back-
ground is gradually suppressed, the number of subtracted
pixels declines.

The model spontaneously discovered the similarity be-
tween actions belonging to the same group. That is, simi-
lar actions are likely to be taken successively. By counting
the different actions taken by the same agent at two adjacent
timesteps and normalizing the numbers by the frequencies
of the actions, we found that the most probable action pair
is unsharp masking with Laplace filter, followed by bilateral
filter with box filter and median filter with box filter.

Learned action parameters

To show the necessity of learning action parameters, we con-
ducted an ablation study and trained a model with fixed ac-
tion parameters. We simply removed the continuous param-
eters module, reduced the total training iterations (alternate
update was no longer needed), as well as set pL, pS1, pS2,
pS3, pS4 to 0.1 and pu to 0.5. The result is in Table 4.

The learned parameters vary when trained under different
sampling ratios. Averaged on the test images of MACAII
and over the episode, we found that the learned parameters
are mostly above 0.6 for 10% mask, but below 0.5 for 50%
mask. It fits with our expectation that larger magnitude for
contrast and edge enhancement is needed for lower sampling
ratios.

Discussion

The behavior of the agents can potentially be an indicator of
the reliability of the output. When the agent behaves abnor-
mally (e.g. some details emerges in a confusing way after
reconstruction), the result may be rejected by the user. The
behavior can also help speculate whether the input is out of
distribution. This is not achievable with black-box methods.

Our method has several limitations. First, our method can-
not completely remove the aliasing in the background when
the sampling ratio is very low. Second, as the designed op-
erations are all local, the output is restricted. As the alias-
ing appears somewhat structural, it might be helpful to de-
sign operations that consider pixel relations in longer ranges.
Third, our method becomes harder to interpret when the ac-
tion of pixel value subtraction occurs in a disorganized way
on undesirable areas, especially the brain tissue region of
the image. A more proper action set may help alleviate this
issue.

A possible solution addressing all the aforementioned
limitations could be to combine our method with classi-
cal ones. Our model could potentially be used as an image
enhancement module to process the output of the classical
methods.

Conclusion

We proposed a deep reinforcement learning based frame-
work for MRI reconstruction. The actions we designed are
complementary and understandable to users. We mixed A2C
and DDPG algorithms to learn the discrete policy and con-
tinuous action parameters by alternate update, which effec-
tively helped the models adapt to different sampling ratios.
Through experiments, we demonstrated that our method is
competitive compared with previous ones and brings in in-
terpretability. By revealing the reconstruction process, our
method provides know-how to users. In the future, we wish
to further explore know-why and improve the interpretability
for MRI reconstruction.
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