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Abstract

The vast amount of web data enables us to build knowledge
bases with unprecedented quality and coverage. Named En-
tity Disambiguation (NED) is an important task that automat-
ically resolves ambiguous mentions in free text to correct tar-
get entries in the knowledge base. Traditional machine learn-
ing based methods for NED were outperformed and made
obsolete by the state-of-the-art deep learning based models.
However, deep learning models are more complex, requiring
large amount of training data and lengthy training and param-
eter tuning time.
In this paper, we revisit traditional machine learning tech-
niques and propose a light-weight, tuneable and time-efficient
method without using deep learning or deep learning gener-
ated features. We propose novel adaptive features that focus
on extracting discriminative features to better model similar-
ities between candidate entities and the mention’s context.
We learn a local ranking model based on traditional and the
new adaptive features based on the learning-to-rank frame-
work. While arriving at linking decisions individually via the
local model, our method also takes into consideration the
correlation between decisions by running multiple recurrent
global models, which can be deemed as a learned local search
method. Our method attains performances comparable to the
state-of-the-art deep learning-based methods on NED bench-
mark datasets while being significantly faster to train.

1 Introduction

Thanks to the huge amount of data on the Web, we are able
to automatically create knowledge bases with high qual-
ity and coverage, such as YAGO (Suchanek, Kasneci, and
Weikum 2008), and Knowledge Vault (Dong et al. 2014). A
crucial step in building a knowledge base is to deal with the
natural language ambiguity. For example, the same string, or
mention, can refer to different entities in different documents
— New York can be the state in U.S. , or the film directed by
Kabir Khan in 2009, among other possibilities.

The task of eliminating this kind of ambiguity and link-
ing the entity mention in text to its targeted entity entry in
a knowledge base is called Named Entity Disambiguation
(NED), or Entity Linking. It not only enables us to build
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high-quality knowledge bases, but also aids information re-
trieval, information extraction and many other kinds of artifi-
cial intelligence applications such as reasoning and question
answering (Kataria et al. 2011).

NED is a challenging problem due to entity ambiguity and
mention variations. As mentioned before, a mention New
York can refer to a state as well as a film entity. Likewise,
the city New York can be referred to by various mentions
such as New York, New York City, Big Apple or NY.

Traditional machine learning techniques (Hoffart et al.
2011; Lazic et al. 2015; Globerson et al. 2016) were first
employed to solve the NED task. They are based on well-
understood machine learning models (e.g., SVM (Ratinov et
al. 2011)) and can be trained efficiently on commodity com-
puters. Recently, deep learning based methods (Yamada et
al. 2016; Gupta, Singh, and Roth 2017; Ganea and Hofmann
2017; Le and Titov 2018) become the prevalent solution, as
they outperform machine learning based methods. The per-
formance advantages are due to the features learned by pow-
erful deep learning models (e.g., entity embeddings learned
from the entire Wikipedia corpus). Nevertheless, deep learn-
ing also brings about several weaknesses: (1) the models are
large and complex; (2) they require large amount of train-
ing data, hence incurring high model training and parameter
tuning costs even with hardware accelerations (e.g., GPUs).

After comparing these two paradigms, we wonder
whether we can have a traditional machine learning-based
method that enjoys state-of-the-art performances. We an-
swer in the affirmative, and in this paper, we propose a sim-
ple yet highly effective model that does not use deep learn-
ing models or features. As such, our model offers several
unique advantages: it is lightweight both in terms of the
model size and the (re-)training time (even without GPUs),
easy to fine-tune and incorporate existing and new engi-
neered features, and easy to deploy and customize in many
real application scenarios.

Our model consists of a local model and a series of
global models. Given a mention m, the local model uses
a Learning-to-Rank model trained on traditional and novel
adaptive local features to compute the ordered candidate en-
tities. The (first) global model takes into consideration the
ranked lists of other mentions in the same document by com-
puting certain coherence features from top-ranked entities of
the other mentions, and reranks the candidates for mentions
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in query. The reranking of the candidates for every mention
will potentially invalidate the coherence features computed
for some entities. Therefore, we propose to train global mod-
els recurrently: feeding the reranked candidate lists of every
mention obtained from the i-th global model as the input to
the (i + 1)-th global model. Typically only a few recurrent
global models are needed for the final global model to obtain
the best performance. Experimental results over the NED
benchmark datasets show that our method achieves perfor-
mances comparable to those of the state-of-the-art models,
while significantly faster to train.

2 Problem Definition
Denote the query document as Q = [w1, w2, . . . , w|Q|], and
there are α mention spans, {mi }αi=1. We have a collection
of entities E = { ei }ni=1 in the knowledge base, the NED
task is to map each mention mi to the targeted entity ej in
E.

Figure 1 is an illustration of the NED task. The text in blue
box is query document, and the underlined text spans are
mentions that need to be resolved. The mentions are linked
to correct entities stored in the knowledge base (shown in
the ellipse).

Figure 1: An Example of the NED Task

3 Related Work
Entity linking has been widely explored in recent years.
Usually, an entity linking system consists of two compo-
nents: candidate entity generation and referent entity predic-
tion (Shen, Wang, and Han 2015).
Candidate entity generation Most of the work uses a
mention-entity dictionary for generating the candidate en-
tities, and the dictionary is built by utilizing Wikipedia hy-
perlinks (Barrena, Soroa, and Agirre 2015; 2016; He et al.
2013). Hoffart et al. (Hoffart et al. 2011) explored external
information from other knowledge bases for retrieving can-
didate entity, such as utilizing sameAS relation in DBpedia,
and means relation in YAGO. To improve the coverage of
the generated candidate entities list, Han and Zhao (Han and
Zhao 1999) employed the Multi-way entity candidate detec-
tion module to detect possible entities.
Referent entity prediction Ling et al. (Ling, Singh, and
Weld 2015) proposed a modular, unsupervised, end-to-end
entity liking system, VINCULUM, which ranks candidate
entities by sum of feature scores from mention and entity.
Contextual information always conveys important informa-
tion for entity linking, thus Pan et al. (Pan et al. 2015)

adopted the Abstract Meaning Representation (Banarescu et
al. 2013) technique to model the context and utilized Jaccard
similarity measurement to calculate the mention-entity sim-
ilarity. There are also methods (Barrena, Soroa, and Agirre
2016; Yamada et al. 2016; Ganea and Hofmann 2017) that
use word-embeddings to represent the contexts of mention
and candidate entities, and use cosine distance as the simi-
larity measurement.

Some graphical model based methods (Hoffart et al.
2011; Barrena, Soroa, and Agirre 2015; 2016; Nguyen,
Theobald, and Weikum 2016) are also proposed. Hoffart et
al. (Hoffart et al. 2011) constructed a weighted and undi-
rected graph, where mentions and their candidate entities
were represented as nodes. Then an iterative heuristic is used
to remove unpromising edges and finally find the correct
linkings. Barrena et al. (Barrena, Soroa, and Agirre 2015)
proposed a Bayesian network based method, and Barrena et
al. (Barrena, Soroa, and Agirre 2016) extended the previous
work by introducing new evidences to the Bayesian network,
such as distributional similarity and selectional preferences.
Nguyen et al. (Nguyen, Theobald, and Weikum 2016) pre-
sented J-NERD to perform NER and NED jointly by means
of a probabilistic graphical model.

He et al. (He et al. 2013) proposed one of the earliest
deep neural network (DNN) based framework for NED task.
Later, Sun et al. (Sun et al. 2015) introduced a new neural
network approach which simultaneously takes into consider-
ation the mention as well as its context; convolutional neu-
ral network (CNN) (Kalchbrenner, Grefenstette, and Blun-
som 2014) was employed to produce fixed-length vectors
for contexts. One common problem with (He et al. 2013)
and (Sun et al. 2015) is that they only modelled the con-
text information and did not consider the topical coherence
of entities linked to the mentions in the query document.
As a complement, Huang et al. (Huang, Heck, and Ji 2015)
presented a deep semantic relatedness model to model the
topical coherence between entities.

Obtaining the best globally coherent solution is computa-
tionally prohibitive, therefore many approximate inference
techniques are used. Hoffart et al. (Hoffart et al. 2011) used
graph pruning. Cheng and Roth (Cheng and Roth 2013)
adopted integer linear programming. Ratinov et al. (Ratinov
et al. 2011) used ranking SVM. Ganea et al. (Ganea et al.
2016) and Ganea and Hofmann (Ganea and Hofmann 2017)
used Belief Propagation and its variant Loopy Belief Propa-
gation respectively. Globerson et al. (Globerson et al. 2016)
performed a single round of message passing with attention
mechanism. Cao et al. (Cao et al. 2018) applied Graph Con-
volutional Network to integrate global information. Le and
Titov (Le and Titov 2018) extended the work of (Ganea and
Hofmann 2017) by modelling latent relations between tex-
tual mentions. Xue et al. (Xue et al. 2019) proposed random
walk on graph-based neural network model to infer semantic
relations between entities.

4 Overview

We illustrate the architecture of our solution in Figure 2. Our
model consists of a local model (f (0)) and a series of global
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models ({ f (i) }Ti=1), trained using the same ranking model
to be presented in Section 5.2, but with different feature sets.

1. Given each mention in the query document, we search
a candidate entity dictionary using the mention as the
search key, thus obtain a set of k candidate entities that
the mention may be linked to.

2. Then, we construct the local feature vector xl for each
entity and feed them into the local model to convert the set
of candidate entities to a ranked list of candidate entities
with decreasing probabilities of being the correct entities
to be linked to. The local feature vector consists of a set
of novel local adaptive features (detailed in Section 5.3)
and features known to be effective for the NED task.

3. The (first) global model resolves mentions by consider-
ing not only local features of each candidate entity, but
also the impacts of ranked list of candidates (the predic-
tion result of local model) of other mentions in the same
document, i.e., coherence features that capture the related-
ness between current candidate entity and top-ranked en-
tities of the other mentions. This is done via constructing
the global feature vector, xg , by enhancing the local fea-
ture vector xl with (aggregated) coherence features and
training a new reranking model.

4. The reranking of the candidates for every mention will
potentially invalidate the coherence features computed for
some entities. Therefore, we re-train the global model it-
eratively by feeding the reranked candidate lists of every
mention obtained from the i-th global model as the input
to the (i + 1)-th global model, so that the related entity
contexts we use to compute coherence scores will be more
and more accurate and closer to ground truth entities, thus
improving the model accuracy. The iteration terminates
when the performance stops increasing on the validation
set.

Figure 2: System Architecture

5 The Local Model

We first describe the candidate generation method, followed
by the local model, and finally features employed in the local
model.

5.1 Candidate Entity Generation

A candidate entity dictionary is the key data structure to pro-
vide candidate entities for mentions as well as related statis-
tical information useful for the disambiguations. It is usually
provided or constructed from the knowledge base for candi-
date entity generation.

Following previous work, we construct the mapping dic-
tionary using Wikipedia hyperlinks, where the anchor text
is treated as mention, and the targeted Wikipedia page title
is added as a candidate entity of the mention, by crawling
Wikipedia pages including Disambiguation pages and Redi-
rect pages. For example, the anchor text “Washington” can
refer to both the State in United States and the President of
United States. Besides, we also add YAGO (Hoffart et al.
2011) dictionary following (Ganea and Hofmann 2017). In
addition, we also store the Wikipedia page for every entity as
its description document, which will be used later to capture
the similarity with query documents.

We perform exact search in the dictionary using the men-
tion as the key, and return up to k entities as candidate enti-
ties.

5.2 Local Model

At this stage, we cast the task into a ranking problem, and
rank the unordered candidate entities based on the various
local features, including novel adaptive features.

Learning to Rank The following section presents the
ranking model, and the detailed features are described later.

Our ranking model is the standard learning-to-rank model
with the pair-wise loss. Unlike previous models (Ratinov
et al. 2011) that use SVM as the underlying classifier, we
choose to use gradient boosting models (e.g., xgboost),
which consider non-linear models and avoids at least O(n2)
training cost.

The learning-to-rank (L2R) model takes as input l objects
represented by the feature vector {xi }li=1, and ranks them
into an ordered list L̂ = {π(xi) }li=1, such that it minimizes
some loss function between the L̂ and the ground truth list
L.

The model scores objects si = F (xi) and sj = F (xj)
and models the probability that xi should be ranked higher
than xj via a sigmoid function:

Pij
def
= P (ei ≺ ej) =

1

1 + e−β·(si−sj)
(1)

where the hyper-parameter β controls the shape of the sig-
moid function. The final loss is based on cross entropy loss:

L =
∑

(ei,ej)∈I

−Pij
∗ logPij − (1− Pij

∗) log(1− Pij) (2)

where Pij
∗ is the probability of ranking xi before xj in the

ground truth and I contains all pairs of input objects with
different ground truth rankings.

Since we only have the ground truth entity for each men-
tion, to apply the L2R model to our problem, we only gen-
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erate 2 · (k − 1) pairs as I in the following way:
{
Pij

∗ = 1 , if i = 1 ∧ i �= j

Pij
∗ = 0 , if i �= 1 ∧ j = 1

We use the gradient boosting model to learn the scoring
function F .

5.3 Local Features

We introduce features used by the local model.

Prior Feature Two prior features are computed for each
entity. Each candidate in our candidate entity dictionary cor-
responds to a unique Wikipedia page, hence we can exploit
statistics of inter-page links. The first feature, P (e | m), is
the fraction of times entity e is the linked target page for
mention m. This is a highly valuable feature for the disam-
biguation task: using this feature alone achieves a reasonable
performance, which is presented in Section 7. The second
feature, P (e), is the fraction of links where e is the target
page.

Adaptive Features Given the Wikipedia description page
as the entity context and query document as the mention con-
text, previous work computes the TF-IDF summaries of the
two contexts, which are the bag-of-words representation of
top-k tokens weighted by the TF-IDF formula, and then use
the cosine similarity between the two summaries. Note that
the TF-IDF values are calculated based on entire Wikipedia
corpus.

TF-IDF(w, d,D) = TF(w, d) · IDF(w,D) (3)

Here, TF(w, d) measures the number of times termw occurs
in document d, and IDF(w,D) measures the inverse of the
fraction of documents d in corpus D that contains term w.

IDF(w,D) = log
|D|

|{ d | w ∈ d, d ∈ D }| (4)

As such, one shortcoming of the method is that it does not
provide adaptive and discriminating similarity measurement
for a given mention and its k candidate entities. For exam-
ple, the term USAmay appear frequently in the entire corpus,
thus having a relatively low IDF value and a low probability
to enter the summary. However, if only one of the candi-
date entities’ description document contains the term USA,
this term should be a highly discriminative feature and could
aid in distinguishing entities that are linkable from the same
mention but from different countries.

To overcome this problem, we first create the adaptive
corpus of the mention that consists of the description doc-
uments associated with one of the k candidate entities for
the current mention. We then compute two features for
each term w based on this adaptive corpus. The first is
the TF-IDF(w, d,D) scores, where the IDF(w) is computed
based on the adaptive corpus instead of the entire corpus.
The second feature is the distribution of TF(w, d,D) values
in the adaptive corpus. We summarize the distribution using
the entropy, normalized to [0, 1] by log k, and denote it by
Entropy(w).

Let e.D and m.D denote the description document asso-
ciate with entity e and the context association with m re-
spectively, the new adaptive textual similarity between the
mention m and e is computed as:

ψl(m, e) =
∑

w∈m.D∩e.D

λ(w) · TF(w,m.D) · TF(w, e.D)

λ(w) = IDF(w) · (1− Entropy(w))

In the above equation, we combine adaptive features IDF(w)
and Entropy(w) to measure the power of a word w to dis-
criminate all the candidate entities of m. Thus, a word with
high IDF and low Entropy values is assigned with high
weight (i.e., λ(w)). Finally, we compute the weighted inner
product between the term frequency-weight vectors of the
mention context (m.D) and the candidate entity’s descrip-
tion (e.D).

String Similarity Feature To account for possible
spelling variations, we also consider several similarity mea-
sures based on the mention string and entity string, including
EditDistance(m, e), StartWith(m, e), and EndWith(m, e).

Coreference Features It is not uncommon for multiple
mentions in the same document to refer to the same entity,
but each time with a different mention string. For example,
the full name of a person may appear at the beginning of a
news report, but only the last name is used in the rest of the
report when referring to the same person.

To exploit this phenomenon, we first use the off-the-shelf
tool to perform coreference resolution to form a chain of
coreferent mentions. Then we define the following corefer-
ence feature to boost our confidence of selecting candidate e
as the linked result of m.

ψr(m, e) = max
m′∈Chain(m)

{P (e | m′)) } (5)

where Chain(m) is the chain of coreferent mentions.

6 Global Models

In our global model, we need to form global feature vectors
and then use an independent L2R model (i.e., with its own
parameters) to rerank the candidate list for each mention
individually. In the following, we first describe the coher-
ence feature we use, and then introduce the recurrent global
model as another solution to the structured prediction prob-
lem.

6.1 Coherence Features

Coherence features capture the relatedness between targeted
entities of mentions in the query document. An assumption
of the global model is that the targeted (i.e. Ground Truth)
entities of mentions belonging to the same document are cor-
related to some extent.

We consider two types of coherence features, based on
known effective measurements: Normalised Google Dis-
tance (NGD) and Pointwise Mutual Information (PMI)
(Ratinov et al. 2011), both based on the overlap in incom-
ing/outcoming links of the two entities. Given a Wikipedia
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entity collection W , entities e1 and e2 with a set of incom-
ing/outcoming links L1 and L2 respectively, NGD and PMI
are defined as follows:

NGD(ei, e2) =
log(max(|L1|, |L2|))− log(|L1 ∩ L2|)

log(|W |)− log(min(|L1|, |L2|))
(6)

PMI(ei, e2) =
(|L1| ∩ |L2|)/|W |
|L1|/|W ||L2|/|W | (7)

6.2 Recurrent Solution

It is well-known that linking decisions of different mentions
in the same query document affect each other. The best local
decision of a mention m1 may not be the best if one con-
siders the linking decision of m2. A popular approach is to
model this as a structured prediction problem, i.e., to model
P (e1, e2, . . . , eα | m1,m2, . . . ,mα). However, finding op-
timal solution is NP-hard in general due to the exponential
search space. Existing work solves it by one of the follow-
ing approaches: (1) making structure simplifying assump-
tion so that the inference has polynomial time exact solution,
(2) using heuristic local search or amortized search (Ma et
al. 2019), (3) or leaving it to a deep neural network to find
out high-quality global solutions (Xue et al. 2019).

We note that they are all approximation schemes and thus
we propose another heuristic model: we avoid the costly
global inference by recurrently stacking multiple global
models aware of the coherent feature. In the (t + 1)-th re-
currence of our global model, we denote the model used in
the previous round as f (t), which is the t-th global model
(t > 0) or the local model (t = 0) (See Figure 2). We de-
note the j-th entity in the ranked list predicted by f (t) for
mention mi as e(t)i,j . Then the current global solution based
on the last round model is made of the top-ranked entities:
E(t) = [e

(t)
1,1, e

(t)
2,1, . . . , e

(1)
α,1]. With this current global solu-

tion fixed, we then can compute aggregated coherence fea-
ture values for each ei,j and form their global vectors in this
round. The aggregated features measure the coherent values
by taking two input functions (G and r) and returns

G({ r(ei,j , eu,1) }αu=1)

where G is the aggregation function, and we consider both
max and avg, and r is the coherence feature, and we con-
sider both NGD and PMI. Therefore, this forms a coherence
feature vector of length 4, denoted as x

(t+1)
c . We concate-

nate it with the local feature vector to form the global feature
vector:

x(t+1)
g = [xl;x

(t+1)
c ]

Now we can learn a new learning-to-rank model that takes
x
(t+1)
g as the input and produces a potentially different rank-

ing for the k candidate entities. This newly learned model is
the (t+1)-th global model. We keep on building such recur-
rent global models until its performance on the validation
dataset starts to drop.

Our recurrent solution can be viewed as a kind of local
search, as we evolve from one global solution E(t) to another

E(t+1) iteratively. Yet it has important differences from ex-
isting heuristic-based local search (e.g., (Ma et al. 2019)) in:
(1) the transition strategy: We learn the transition strategy
that directly optimizes for the matching of ground truth, as
compared with a blindly random transition or via a learned
strategy optimized for some alternative goals. We also only
require a small number of transitions instead of potentially
many transitions in traditional local search-based method.
(2) the dynamic nature of the feature vectors: The feature
vectors used in our method are dynamic (i.e., the x

(t)
c part).

7 Experiment

In this section, we evaluate the performance of our proposed
model on the most popular benchmark datasets for NED,
and compare it with several previous state-of-the-art NED
systems. 1

7.1 Experiment Setting

Dataset We validate our models on six popular benchmark
datasets for NED task used by previous works. The statistics
are shown in Table 1.

• AIDA-CoNLL (Hoffart et al. 2011), a manually annotated
benchmark dataset for NED task. It contains the news cor-
pus from Reuters. The dataset is further split into training
(AIDA-train), validation (AIDA-A), and test sets (AIDA-
B).

• MSNBC (MSB), AQUAINT (AQU) and ACE2004 (ACE)
are three datasets for Wikification, and are cleaned and
updated by (Guo and Barbosa 2018).

• CWEB and WIKI are automatically extracted from
ClueWeb and Wikipedia corpora by (Guo and Barbosa
2018; Gabrilovich, Ringgaard, and Subramanya 2013).

Table 1: Statistics of NED Datasets
Dataset # Mention #Doc # Mention per doc

AIDA-train 18, 541 946 19.5
AIDA-A(valid) 4, 791 216 22.1
AIDA-B(test) 4, 485 231 19.4
MSB 656 20 32.8
AQU 727 50 14.5
ACE 257 36 7.1
CWEB 11, 154 320 34.8
WIKI 6, 821 320 21.3

Competitive Models We name our model, RMA, and com-
pare it with the following methods:2

Machine Learning based:

• (Hoffart et al. 2011; Ganea et al. 2016; Guo and Barbosa
2018) proposed graphical models with the combination of
lexical and statistical features.
1Our code is released at https://github.com/tjumyk/RMA
2Note that we did not compare with recent work (Xue et al.

2019), as the mention numbers in their work do not agree with
those reported in other work/datasets, which may affect evaluation
scores significantly.
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• (Lazic et al. 2015) proposed a probabilistic selective con-
text model to deal with noisy and irrelevant contexts.

• (Chisholm and Hachey 2015) suggested to mine informa-
tion from web links to help with NED.
Deep Learning based:

• (Huang, Heck, and Ji 2015) used deep neural network to
measure entity semantic relatedness for topical coherence
modeling.

• (Francis-Landau, Durrett, and Klein 2016) adopted con-
volutional neural network to model the semantic similar-
ity between mention and entity context.

• (Globerson et al. 2016) introduced a coherence model
with multi-focal attention mechanism.

• (Yamada et al. 2016) designed an embedding model
specifically for NED task.

• (Ganea and Hofmann 2017; Le and Titov 2018) adopted
deep learning model that combines entity embeddings and
contextual attention mechanism.

• (Kolitsas, Ganea, and Hofmann 2018) proposed neural
entity linking model using word embeddings.

Evaluation Metrics
We use the in-KB accuracy and Micro-F1 score (averaged

across mention) as the evaluation metrics.
Note that an important factor to the performance of the

model is the knowledge base used to generate candidate en-
tities. Given a mention m, there are three cases:
1. m does not generate any candidate entities against the

knowledge base.
2. m generates candidate entities, but they do not include

the ground truth entity.
3. m generates candidate entities, and they contain the

group truth entity.
The first two cases definitely leads to errors and hence will
adversely impact the recall.

Recall = Accuracy =
correct linked

total mentions

Precision =
correct linked

processed mentions

F1 =
2 ∗ Precision ∗ Recall
Precision + Recall

In the above formula, ‘total mentions’ corresponds to the
number of mentions reported in Table 1, and ‘processed
mentions’ corresponds to the total mentions excluding m in
case 1.
Training Details and Hyper Parameters Following previ-
ous work, we train our model on AIDA-train set, tune hy-
perparameters on AIDA-A set, and test on AIDA-B set (in-
domain test) and other datasets (out-domain test). In can-
didate entity generation, we select top-50 candidate enti-
ties from the dictionary according to the entity prior. We
adopt XGBoosting with rank:pairwise objective, and set the
n estimators to 4900, and max depth to 6 according to
the parameter tuning on AIDA-A set, and the iteration num-
ber T for global model is 4.

7.2 Overall Results

Table 2 shows the in-KB accuracy of our model compared
with previous works on AIDA-B test set. The numbers for
other methods are obtained from the original papers.

It can be seen that our model performs much better than
previous (traditional) machine learning based methods (Hof-
fart et al. 2011; Chisholm and Hachey 2015; Ganea et al.
2016; Guo and Barbosa 2018) and is comparable with the
state-of-the-art deep learning based (Yamada et al. 2016;
Ganea and Hofmann 2017; Le and Titov 2018) models. Note
that the numbers for (Huang, Heck, and Ji 2015), (Kolitsas,
Ganea, and Hofmann 2018) and (Le and Titov 2018) are
Micro-F1 scores reported in their work, which are usually
higher than in-KB accuracy under current problem setting
(referring to the evaluation metrics in Section 7.1).

Table 2: In-KB Accuracy on AIDA-B (In-domain Test)
Category Methods AIDA-B

Deep Learning (Huang, Heck, and Ji 2015) †86.6
(Francis-Landau, Durrett, and Klein 2016) 86.9
(Globerson et al. 2016) 91.0
(Yamada et al. 2016) 91.5
(Ganea and Hofmann 2017) 92.2
(Kolitsas, Ganea, and Hofmann 2018) †82.4
(Le and Titov 2018) †93.1

Machine Learning (Hoffart et al. 2011) 78.0
(Lazic et al. 2015) 86.4
(Chisholm and Hachey 2015) 88.7
(Ganea et al. 2016) 87.6
(Guo and Barbosa 2018) 89.0
RMA 91.5

Note: The number after † is the reported Micro-F1, as Ac-
curacy was not reported in the paper.

Table 3: Micro F1 on Other Datasets (Out-domain Test)
Model MSB AQU ACE CWEB WIKI

(Hoffart et al. 2011) 79.0 56.0 80.0 58.6 63.0
(Han, Sun, and Zhao 2011) 88.0 79.0 73.0 61.0 78.0
(Ratinov et al. 2011) 75.0 83.0 82.0 56.2 67.2
(Cheng and Roth 2013) 90.0 88.0 87.0 67.5 73.4
(Ganea and Hofmann 2017) 93.7 88.5 88.5 77.9 77.5
(Guo and Barbosa 2018) 92.0 87.0 88.0 77.0 84.5
(Le and Titov 2018) 93.9 88.3 89.9 77.5 78.0

RMA 93.2 88.3 89.3 79.3 82.2

Notes: The best ones are shown in bold, and the 2nd best in
italic.

Table 4: In-KB Accuracy on AIDA-B (Ablation Test)
Models AIDA-B

Final recurrent global model 91.5
Initial global model 89.8
Initial global model w/o adaptive features 87.5
Local model w/o coherence features 85.7
Prior 68.2

Table 3 shows the Micro-F1 scores for cross-domain test.
The numbers in first 4 rows are obtained from (Guo and Bar-
bosa 2018), and the rest is from original papers respectively.

It can be seen that on each dataset, the performance of
our model is either the best or very close to the best scores

334



Table 5: Example of Distinctive Context Words Selected by Local Adaptive Features
Mention Gold Entity P (e|m) of Gold Entity Prior Rank in Candidates Distinctive Context Words Selected by Local Adaptive Features

Australia Australia Davis Cup team 0.002 12 Davis Cup, Mark Philippoussis, Roche, win
Bally Bally Shoe 0.092 4 shoe, Pairs, factory
Fox Liam Fox 0.006 15 Secretary, government, Foreign,the House of Commons, State, minister

Table 6: Example of Self-Correction Ability of Recurrent Global Model
Mention Leipzig Munich Hamburg

Gold Entity Leipzig/Halle Airport Munich Airport Hamburg Airport
Prediction of local model Leipzig Munich Hamburg Airport
Prediction of initial global model Leipzig Munich Airport Hamburg Airport
Prediction of iterated global model LeipzigLeipzig/Halle Airport Munich Airport Hamburg Airport

among all the previous models, which demonstrates the su-
perior performance and generalisation ability of our model.

7.3 Ablation Test

Table 4 shows the ablation study of our proposed model on
AIDA-B test set. The results show that iteration improves
1.7% of accuracy over the initial global model. The novel
designed local features altogether improve 17.5% of accu-
racy over the model with prior only, and the local adaptive
features improve the performance by 2.3% with the presence
of coherence features. These numbers confirm the effective-
ness of our recurrent model and carefully designed statistical
local features.

7.4 Training Efficiency

Compared with the recent deep learning based models, the
obvious advantages of our model are efficient training and
testing, and easy adaptation to incorporate new features.

Our model takes 10 minutes for training a local model or
15 minutes for training a global model on AIDA-train with
a 10-core 3.3GHz CPU, which compares favourably with
SOTA deep neural based methods, e.g. (Le and Titov 2018)
takes 1.5 hours to train on the same dataset with a single Ti-
tan X GPU and (Ganea and Hofmann 2017) needs 16 hours
in the same setting. In addition, our testing on AIDA-B only
takes 3 seconds.

7.5 Qualitative Analysis

Table 5 shows some examples of hard cases (where the men-
tion prior of gold entity is low) that can be correctly resolved
by our local model, together with the context words assigned
with high weights according to the local corpus adaptive fea-
tures. It can be seen that our local adaptive features can ac-
tually help to find highly distinctive words that are useful in
identifying target entities.

Table 6 shows an example query that contains several air-
port mentions. In our local model, only one of them (Ham-
burg) is predicted correctly. With incorporation of global co-
herence features, another mention (i.e. Munich) is predicted
correctly in our global model, and with the correction of
disambiguation context using the initial global model re-
sults, the coherence feature of gold entity for the previous
wrongly linked mention (Leipzig) is enhanced, and thus cor-
rectly linked by the newly re-trained global model.

7.6 Error Analysis

The errors in our model can be categorized into the follow-
ing types. (1) The gold entity is inaccurate due to human
error in manually annotated datasets or noisy data in auto-
matically extracted datasets, while our model may have a
more meaningful prediction. (2) The gold entity does not
exist in the candidate entity list produced by the dictionary
(3) The gold entity is in the candidate entity list but its prior
is out of the top-50 and thus discarded by our model. As
shown in Table 7, we have far more mentions with extremely
low prior on the gold entity than (Ganea and Hofmann
2017). (4) The source information, i.e. the context words
for the local model and the coherent entities for the global
model, is insufficient or misleading and thus hurts the perfor-
mance. For example, in a document about the FIS Freestyle
Skiing World Cup, the mention ‘World Cup’ is resolved
as ‘FIS Alpine Ski World Cup’ due to the lack of context
and coherence information. In another document, the men-
tion ‘AMERICAN’ is resolved as ‘American football’ since
many names of football teams appear around the mention
and promote the rank of ‘American football’ among other
candidates, while the gold entity is ‘United States’ instead.

Table 7: Accuracy on AIDA-B Splitted by Mention Prior of
the Gold Entity in Cases where the Gold Entity Exists in the
Candidate List

P (e|m) of Gold Entity Mentions Accuracy

≤ 0.01 368 57.34%
0.01 - 0.03 309 80.58%
0.03 - 0.10 278 75.18%
0.10 - 0.30 372 94.09%
> 0.30 3148 97.94%

8 Conclusion and Future Work

In this paper, we present a recurrent global model for NED.
The solution is based on learning to rank with boosted tree
model and manually engineered features, including novel
features that identify highly distinctive terms that help im-
prove disambiguation accuracy in an adaptive manner. Ex-
periments on benchmark NED datasets suggest that our
model outperforms or is comparable with the previous state-
of-the-art work.

In our future work, we will investigate how to further im-
prove the performance of the proposed method by incorpo-
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rating additional features learned using some independent
deep learning models (notably, the entity and type embed-
dings).
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