
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Learning Representations in
Model-Free Hierarchical Reinforcement Learning

Jacob Rafati,∗ David C. Noelle
Electrical Engineering and Computer Science

Computational Cognitive Neuroscience Laboratory
University of California, Merced. 5200 North Lake Road, Merced, CA 95343. USA.

Abstract

Common approaches to Reinforcement Learning (RL) are se-
riously challenged by large-scale applications involving huge
state spaces and sparse delayed reward feedback. Hierarchical
Reinforcement Learning (HRL) methods attempt to address
this scalability issue by learning action selection policies at
multiple levels of temporal abstraction. Abstraction can be
had by identifying a relatively small set of states that are
likely to be useful as subgoals, in concert with the learning of
corresponding skill policies to achieve those subgoals. Many
approaches to subgoal discovery in HRL depend on the anal-
ysis of a model of the environment, but the need to learn such
a model introduces its own problems of scale. Once subgoals
are identified, skills may be learned through intrinsic motiva-
tion, introducing an internal reward signal marking subgoal
attainment. We present a novel model-free method for sub-
goal discovery using incremental unsupervised learning over
a small memory of the most recent experiences of the agent.
When combined with an intrinsic motivation learning mech-
anism, this method learns subgoals and skills together, based
on experiences in the environment. Thus, we offer an orig-
inal approach to HRL that does not require the acquisition
of a model of the environment, suitable for large-scale appli-
cations. We demonstrate the efficiency of our method on a
variant of the rooms environment.

1 Background
The Reinforcement Learning (RL) problem involves learn-
ing behaviors through interaction with an environment (Sut-
ton and Barto 2017). At any given time step, the agent re-
ceives a representation of the environment’s state, s ∈ S ,
where S is the set of all possible states, and, on that basis,
the agent selects an action, a ∈ A, where A is the set of all
available actions. One time step later, as a consequence of
the agent’s action, the agent receives information from the
environment, consisting of a reward, r ∈ R, and also the
resulting new state of the agent. Each cycle of interaction
is called a transition experience, e = (s, a, r, s′). At each
time step, the agent implements a mapping from states to
possible actions, π : S → A, called its policy. The goal of
the RL agent is to find an optimal policy that maximizes the
expected value of the return, G (e.g., the cumulative sum
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of future rewards). Temporal Difference (TD) learning is a
class of model-free RL methods that attempt to learn a policy
without learning a model of the environment. It is often use-
ful to define a value function, qπ : S × A → R, to estimate
the expected value of return when taking a given action in a
given state and then following the policy π. When the state
space is large, it is common to use a function approxima-
tor, Q(s, a;w), to estimate the value function, qπ . Artificial
neural networks are often used as such function approxima-
tors. Q-learning is a TD algorithm that attempts to find the
optimal value function, characterized by parameters, w, by
minimizing a loss function, L(w), which is defined as the
expectation of squared TD error over a recent transition ex-
perience memory, D:

L(w) , Ee∼D
[(
r + γmax

a′
Q(s′, a′;w)−Q(s, a;w)

)2]
.

2 Representations in Model-Free HRL
Problem statement
The reinforcement learning problem suffers from serious
scaling issues. Hierarchical Reinforcement Learning (HRL)
is an important computational approach intended to tackle
problems of scale by learning to operate over different levels
of temporal abstraction (Sutton, Precup, and Singh 1999).

One of the common approaches to temporal abstraction
is to identify a set of useful states as subgoals. One major
open problem in HRL is automatic subgoal discovery. Ex-
isting methods for subgoal discovery require a model of the
environment, such as the state transition probability model
and knowledge of the reward function (Şimşek, Wolfe, and
Barto 2005). Learning a model of the environment is a diffi-
cult problem, however, particularly for large-scale tasks.

In comparison, model-free HRL does not require learning
a model of the environment. Still, producing accurate value
function approximators generally involves learning good in-
ternal representations of states. In our previous work, we
have studied methods for learning such internal representa-
tions during model-free reinforcement learning (Rafati and
Noelle 2015; 2017). We now seek to address major open
problems in the integration of internal representation learn-
ing, automatic subgoal discovery, and intrinsic motivation
learning, all within the model-free HRL framework.
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Figure 1: (a) Information flow in the unified model-free HRL framework. (b) Reward over an episode, with anomalous points
corresponding to the key (r = +10) and the car (r = +40). (c) The rooms task with a key and a car. (d) The results of the
unsupervised subgoal discovery algorithm, with anomalies marked in with black Xs and centroids with colored ones.

General Method
Inspired by Kulkarni et al. (2016), we use two levels of
hierarchy for learning the representations for value func-
tion approximation. The meta-controller observes the state,
s, from the environment and chooses a subgoal, g. Sub-
goal selection is made from a set of discovered subgoals,
G, augmented with a set of random states to support explo-
ration. The choice is made based on a meta-value function,
Q(s, g;w), with the subgoal exhibiting the highest predicted
value generally being selected. TD Learning is used to shape
the meta-value function approximator parameters, w, based
on reward. The controller receives an input tuple (s, g), and
it selects actions based on a policy derived from its value
function, Q̃(s, g, a; w̃). TD Learning is used to learn each
subtask corresponding to a subgoal, with learning driven by
intrinsic reward delivered when the specified subgoal is at-
tained, shaping the value function approximator parameters,
w̃. Value function approximators are generally implemented
as multi-layer artificial neural networks augmented to en-
courage the learning of sparse internal representations of
states (Rafati and Noelle 2017). The transition experience
(s, g, a, r, s′) is stored in the experience memory, D. The
subgoal discovery mechanism exploits the underlying struc-
ture in the experience memory using unsupervised anomaly
detection, as well as clustering of similar experiences, in or-
der to add candidate subgoals to the discovered set, G. The
information flow between the major components of our pro-
posed model-free HRL framework is depicted in Figure 1(a).

3 Experiment: Rooms Task
We evaluated our unsupervised subgoal discovery method,
along with intrinsic motivation learning, on a variant of the
rooms task, shown in Figure 1(c). The agent is rewarded if
it navigates in this grid environment to a key object in one
of the rooms and then moves to a car object in some other
room. The controller learns to navigate from any location s
to any other location g through intrinsic motivation learning,
following a policy derived from Q̃(s, g, a; w̃). An iterative
supervised anomaly detection algorithm detects experience
outliers, largely from the stream of rewards. (See Figure
1(b).) An iterative version ofK-means clustering over expe-
riences identifies abstracted states. The centroids of clusters

form candidate subgoals, with the transitions between ab-
stracted states capturing doorways, as shown in Figure 1(d).

4 Contributions
We propose and implement a novel model-free method for
subgoal discovery using incremental unsupervised learning
over a small memory of the most recent experiences of the
agent. When combined with an intrinsic motivation learn-
ing mechanism, this method learns subgoals and skills to-
gether, based on experiences in the environment. Thus, we
offer an original approach to HRL that does not require
the acquisition of a model of the environment, suitable for
large-scale applications. For more details about the algo-
rithm, implementations, and experiments on large-scale RL
problems, such as portions of the difficult Atari 2600 game
Montezuma’s Revenge, see (Rafati and Noelle 2018).
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