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Abstract

Lacking in sequence preserving mechanism, existing hetero-
geneous information network (HIN) embedding discards the
essential type sequence information during embedding. We
propose a Type Sequence Preserving HIN Embedding model
(SeqHINE) which expands the HIN embedding to sequence
level. SeqHINE incorporates the type sequence information
via type-aware GRU and preserves representative sequence
information by decay function. Abundant experiments show
that SeqHINE can outperform state-of-the-art even with 50%
less labeled data.

Introduction
Network embedding maps nodes into low-dimensional vec-
tors which can be used as the feature input for various
downstream analyses. Existing approaches mainly focus on
homogeneous networks. Compared with homogeneous net-
works, heterogeneous information networks (HINs), con-
sisting of multi-typed entities and relations, have been
demonstrated as a more efficient way to model real-world
data (Shi et al. 2017). Since the various type information
carries rich semantics, HIN embedding is worthwhile and
challenging.

Abundant intrinsic semantic information was lost in
the existing HIN embedding process, especially type se-
quences. Type sequence, a series of entity types and
relation types, expresses rich semantic relationships be-
tween nodes. For example, the type sequence “Actor actIn−−−→
Movie

belongTo−−−−−−→Genre” indicates the genre of film the ac-
tor starred in. Based on this type sequence, existing
methods (Dong, Chawla, and Swami 2017; Fu, Lee,
and Lei 2017) generate a node set as the context:
LeonardoDiCaprio

Context
=======⇒
Extracting

{Titanic, TheGreatGatsby,

Inception, Sciencefiction, Romantic}. The sequence informa-
tion is lost in the context extracting phase. The better
context is a sequence set: LeonardoDiCaprio

Context
=======⇒
Extracting

{Leonardo
actIn−−−→Titanic

belongTo−−−−−−→Romantic, Leonardo
actIn−−−→
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TheGreatGatsby
belongTo−−−−−−→Romantic, Leonardo actIn−−−→Inception

belongTo−−−−−−→Sciencefiction}. Due to lack of the sequence main-
taining mechanism in the existing methods, the type se-
quence information is not fully exploited. We believe this
partly account for the application accuracy bottleneck of the
existing HIN embedding. It is thus of great need to study
type sequence preserving HIN embedding.

The challenges are two folds: 1) how to preserve: Ex-
isting embedding methods cannot maintain complex type
sequence information, so an effective model is required.
2) which to preserve: The theoretically optimal way is to
retain all the type sequence information in the HIN. As the
length of the sequence increases, the cost grows exponen-
tially. Thus which to preserve is worth exploring.

To preserve type sequences, our model (SeqHINE) is de-
signed as a novel encoder-decoder framework with type-
aware GRU to incorporate the sequence and type informa-
tion. For the second challenge, representativeness of the type
sequence is highly related with the distance to the current
node. Intuitively, the closer the better. We devise a nearest
first policy and further design the decay function for various
hop-count distances to implement it.
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Figure 1: SeqHINE model.

SeqHINE Model
SeqHINE is an encoder-decoder model with type-aware
GRU and decay function to embed HINs into low-
dimensional vectors. SeqHINE, as shown in Figure 1, has
an encoder to map the node vi into an embedding vector and
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a decoder to reconstruct the surrounding type sequence ~cm.
Type-aware GRU learns a hidden state h representing the
embedded node vi by incorporating its type information tx
in the encoder and predicts the current component clm of the
type sequence by leveraging the previous type information
tl−1 in the decoder. Decay function introduces a decay fac-
tor to combine type-aware GRU of each time step to adopt
the nearest first policy. The objective of our model is to find
node representations that are useful to predict surrounding
type sequences.

Type-aware GRU We propose type-aware GRU as a new
type of hidden unit. Type-aware GRU incorporates the type
and sequence information into the hidden state to represent
the type sequence processed so far. As shown in Figure 2, the
current hidden state hl is derived from the node vector xl of
the type sequence component clm and the previous time step
hidden state hl−1, as well as the type vector tl which con-
sists of the node type and edge type. The type information
also affects the update gate and reset gate. We introduce ma-
trices ~Tu, ~Tz and ~T to bias the update gate u, reset gate z and
hidden state computation by the type vector tl.
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Figure 2: Type-aware GRU.

Decay Function We design a nearest first policy that
works as follows: the closer to the current node it is, the
higher priority it has. To adopt this policy, decay function
introduces a decay factor w.r.t. the hop-count distance to re-
duce the weights of the latter part of the sequence. Let α
be a decay factor controlling the rate of decay for different
distances at each time step. By combining the conditional
probability of each time step with the decay function, the
conditional probability of the sequence ~cm is defined as:

p(~cm|vi) =
∏L

l=1
p(clm|cl−1m , ..., c1m,

~h)e
−α(l−1)

(1)

. When l = 1, e−α(l−1) = 1, which do not affect the re-
sults. As the hop-count increases, its impact on the condi-
tional probability of clm drops exponentially.

Experiments
We validate the effectiveness of SeqHINE over state-of-the-
art: two representative network embedding methods, LINE
(Tang et al. 2015) and Node2vec (Grover and Leskovec

2016), and two latest HIN embedding approaches, Meta-
path2vec (Dong, Chawla, and Swami 2017) and HIN2Vec
(Fu, Lee, and Lei 2017), on tasks in two representative real-
world HIN datasets (DBLP and PubMed, shown in Table 1).

Table 1: Statistics of two datasets.
Datasets #(Author) #(Paper) #(Conference) #(Term) |V | |E|
DBLP 767 5,158 798 8,439 15,162 120,573

PubMed 689 754 198 5,972 7,613 28,968

Results Table 2 shows the multi-label classification results
on the DBLP and PubMed datasets. The training ratio varies
from 2% to 80%, which is similar to baselines. Results show
that: 1) SeqHINE performs better than all the baselines. With
only 40% of the labeled nodes, the Micro-F1 performance
outperforms all the baselines when they are given 80% of the
nodes. In other words, SeqHINE can outperform the base-
lines with 50% less labeled data. 2) Given 80% of the la-
beled nodes, the Micro-F1 and Macro-F1 of SeqHINE show
a 9%-17% increase. It means that our performance signifi-
cantly increases for largely labeled data. It is not surprising
because various type sequences encode sequence semantic
insights which are very helpful for HIN embedding espe-
cially in the presence of abundant labels.

Table 2: Results of multi-label classification
Metric Algorithm PubMed DBLP

2% 4% 6% 8% 20% 40% 60% 80%

Micro-F1

LINE 19.91 25.59 29.76 38.59 50.55 58.59 59.64 61.38
Node2vec 30.89 40.30 43.04 47.00 45.20 48.48 51.45 50.86

Metapath2Vec 36.72 40.91 39.93 43.90 55.28 57.51 57.89 61.39
HIN2Vec 29.76 36.92 44.73 49.47 52.51 53.87 54.42 53.82
SeqHINE 38.34 42.73 46.48 50.11 58.41 66.85 70.40 74.52

Macro-F1

LINE 8.93 16.99 18.35 22.85 27.91 36.23 37.40 37.69
Node2vec 11.07 18.48 23.03 26.40 30.42 36.42 38.90 36.13

Metapath2Vec 16.31 20.11 25.57 24.75 22.62 24.75 24.98 28.38
HIN2Vec 11.93 15.38 20.90 22.42 23.85 28.87 27.41 25.34
SeqHINE 16.55 21.79 26.18 26.91 30.58 37.22 39.49 41.11

Conclusion
Our model expands the HIN embedding to sequence level by
capturing type sequence information. Diverse experiments
demonstrate the effectiveness of the type sequence preserv-
ing methodology, especially for largely labeled data.
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