
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

An Imperfect Algorithm for Coalition Structure Generation

Narayan Changder, Samir Aknine, Animesh Dutta
Department of Computer Science and Engineering, NIT Durgapur, India, narayan.changder@gmail.com

LIRIS laboratory Claude Bernard University, Lyon 1, France, samir.aknine@univ-lyon1.fr
Department of Computer Science and Engineering, NIT Durgapur, India,animeshnit@gmail.com

Abstract

Optimal Coalition Structure Generation (CSG) is a signifi-
cant research problem that remains difficult to solve. Given n
agents, the ODP-IP algorithm (Michalak et al. 2016) achieves
the current lowest worst-case time complexity of O(3n). We
devise an Imperfect Dynamic Programming (ImDP) algo-
rithm for CSG with runtime O(n2n). Imperfect algorithm
means that there are some contrived inputs for which the al-
gorithm fails to give the optimal result. Experimental results
confirmed that ImDP algorithm performance is better for sev-
eral data distribution, and for some it improves dramatically
ODP-IP. For example, given 27 agents, with ImDP for agent-
based uniform distribution time gain is 91% (i.e. 49 minutes).

The optimal CSG problem formulation
Coalition formation can be applied to many real-world prob-
lems such as task allocation, airport slot allocation, and so-
cial network analysis. Approaches to solve the CSG prob-
lem range from mixed-integer programming to branch and
bound techniques (Michalak et al. 2016) through dynamic
programming (Yun Yeh 1986). ODP-IP (Michalak et al.
2016) algorithm is the fastest exact algorithm for the CSG
to date in practice. In this paper, we propose a new im-
perfect algorithm called ImDP. Imperfect algorithms can be
useful if they do not fail too often. Given a set of n agents
A = {a1, a2, . . . , an}, a coalition Ci is a non-empty subset
ofA. A coalition structure (CS) overA is a partitioning ofA
into a set of disjoint coalitions {C1, C2, . . . , Ck}, where k ∈
{1, . . . , n} is called size of the coalition structure i.e. k =
|CS|. In other words, {C1, C2, . . . , Ck} satisfies the following
constraints:1) Ci, Cj 6= ∅ , i, j ∈ {1, 2, . . . , k}. 2) Ci ∩ Cj =

∅, for all i 6= j. and 3)
k⋃

i=1

Ci = A. The value of any coali-

tion structure CS is defined by v(CS) =
∑
Ci∈CS v(Ci). The

optimal solution of CSG is an optimal coalition structure
CS∗ ∈ ΠA. The set of all coalition structures over A is de-
noted as ΠA. Thus, CS∗ = arg maxCS∈ΠAv(CS).

Imperfect algorithm
The ImDP algorithm we propose produces two tables, the
partition table Pt and the optimal value table Vt. Pt(C) stores

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Size Coalition
(C)

v(C) Splitting Optimal par-
tition Pt

Optimal
value Vt

{1} 24 Vt({1}) = 24 {1} 24

1 {2} 35 Vt({2}) = 35 {2} 35

{3} 20 Vt({3}) = 20 {3} 20

{1,2} 47 v({1, 2}) = 47, Vt({1}) + Vt({2}) = 59 {1}{2} 59

{1,3} 43 ({1, 3}) = 43, Vt({1}) + Vt({3}) = 44 {1}{3} 44

2 {2,3} 52 v({2, 3}) = 52, Vt({2}) + Vt({3}) = 55 {2}{3} 55

{1,2,3} 78 v({1, 2, 3}) = 78, Vt({1}) + Vt({2, 3}) = 79 {1}{2, 3} 79

Vt({2}) + Vt({1, 3}) = 79, Vt({3}) + Vt({1, 2}) = 79

Figure 1: Working principle of ImDP algorithm computing
Pt and Vt for three agents A = {1, 2, 3}.

one optimal partition of each coalition C. There can be more
than one optimal partition of a coalition C, Pt(C) stores any
one of them. Vt(C) stores the optimal value of a coalition C.
Let C′′ =

{
C′|C′ ⊂ C and 0 ≤ |C′| ≤ |C|2

}
, table Vt for each

coalition C is constructed as follows:

Vt(C) =
{
v(C) if |C| = 1

arg maxC′∈C′′{Vt(C′) + Vt(C \ C′)} otherwise

To evaluate the coalitions, ImDP starts by evaluating all
possible splits of every possible coalition of size 2, and then
ImDP gradually increases the size by unit 1 till the size be-
comes dn2 e and completes tables Pt and Vt for each eval-
uated coalition C. Our main aim is to reduce the workload
to solve a coalition of size x using the partial enumeration.
To evaluate a coalition of size x using partial enumeration,
ImDP algorithm uses two new merge functions: Merge1

and Merge2. To show how merge functions work, we fo-
cus on the evaluation of a single coalition. The following
notation will be used to represent a coalition and its parti-
tions. For instance, the coalition {1, 2, 3} will be evaluated
as the partition {{1}{2, 3}} or {{2}{1, 3}} or {{3}{1, 2}}
or {1, 2, 3}.Then ImDP stores in the Pt table the partition
with the maximum value and in the Vt table this maximum
value. More formally, any coalition can be stored in the par-
tition table with any of its different possible partitions (into
two halves or as the coalition itself). We will call each half a
component. For example in {{1}{2, 3}}, we denote {1} and
{2, 3} as two different components of the coalition {1, 2, 3}.
In the following, we will detail each of ImDP merge func-

9923

as

u1

u2

Merge

(a) {as ∪ u2}{u1}

as

u1

u2

Merge

(b) {as ∪ u1}{u2}

Figure 2: Merge1 function operates on the coalition {as ∪
C \ as}. Here Merge1 is applied between the coalitions as
and {C \ as}. It is assumed that the coalition {C \ as} is
stored in the partition table Pt as {{u1}{u2}}. In the left
part, Merge1 is applied between the coalitions {as} and
{u2}, it results with a new partition {{as ∪ u2}{u1}} of
coalition {as ∪ C \ as}. In the right part, Merge1 is applied
between the coalitions {as} and {u1}, it results with another
new partition {{as ∪ u1}{u2}} of coalition {as ∪ C \ as}.

y1 y2

x1 x2

Merge

(a) {{x1 ∪ y1}{x2}{y2}}

y1 y2

x1 x2Merge

(b) {{x1 ∪ y2}{x2}{y1}}

y1 y2

x1 x2
Merge

(c) {{x2 ∪ y1}{x1}{y2}}

y1 y2

x1 x2

Merge

(d) {{x2 ∪ y2}{x1}{y1}}

Figure 3: Merge2 function is applied between two coali-
tions X and Y of size dn2 e and n − dn2 e. Each figure shows
how a new coalition structure is formed by using Merge2

function. In figure a) component {x1} of the coalition X is
merged with component {y1} of the coalition Y , resulting a
coalition structure {{x1 ∪ y1}{x2}{y2}}, and so on.

tions. We use Merge1 function to evaluate each coalition
of size 2, 3, . . . , dn2 e. For any coalition C, Merge1 picks a
single agent as and creates all the partitions of the coali-
tion C as {{as}{C \ as}}. For each as ∈ C, Merge1 is
applied between {as} and {C \ as}. The figure 2 shows
the detailed operation of Merge1 function. The principle
of Merge2 function is shown in Figure 3. Merge2 func-
tion is used between two disjoint coalitions of size dn2 e and
n − dn2 e. After Merge2 is applied, ImDP calculates high-
est valued coalition structure using the Pt table in a bot-
tom up fashion. In our example (c.f. Figure 1), ImDP sets
CS∗ = Pt(A) = Pt({1, 2, 3}) and finds that it is beneficial
to split it into the coalitions {1} and {2, 3}. In the same way,
by looking at Pt({2, 3}), ImDP finds that it is also benefi-
cial to split {2, 3} into the coalitions {2} and {3}. Now, the
optimal CS is {{1}{2}{3}} with a value of 79.

Experimental evaluation
We empirically evaluated the ImDP algorithm and bench-
marked it against ODP-IP. We compared the performances
of both algorithms given different numbers of agents (5 to
27). As can be seen, ImDP is faster for the distributions
shown in table 1. ImDP algorithm finds optimal coalition

Time measured in seconds
Distribution ODP-IP ImDP Difference

time (t1) time (t2) t1 − t2
Agent-based uniform 3224.8075 293.0295 2931.778
Agent-based normal 2696.692 283.88 2412.812
Chi-square 1078.2885 277.5145 800.774
Geometric 441.038 238.922 202.116
NDCS 500.1605 245.4155 254.745
Raleigh 628.897 242.6665 386.2305
F-distribution 588.918 244.1565 344.7615
Laplace 396.9215 252.4695 144.452

Table 1: Time difference between ODP-IP and ImDP in sec-
onds for 27 agents.

structure when one of the optimal partitions is actually con-
sidered by Merge1 and Merge2 functions. If none of these
partitions is considered by ImDP, then it fails to give the op-
timal result. However, ImDP will still give a sub-optimal so-
lution. As ImDP is an imperfect algorithm, we need to know
if ImDP does not produce optimal CS , then what is the dif-
ference between ODP-IP generated optimal CS and ImDP
generated CS . ImDP algorithm fails only for few datasets
but the failure rate is very low. For example, we found that
for geometric, laplace, F- distribution failure rates are re-
spectively 1.7%, 3.34%, and 2.12%. We also found that, in
the case of failure, (ImDP generated CS value)/(Optimal CS
value) is always greater than .90 and most ratios are .99.

Computational efficiency of ImDP: ImDP evaluates all
coalitions of size 1, . . . dn2 e, i.e. it performs the follow-
ing steps.

(
n
1

)
∗ 1 +

(
n
2

)
∗ 2,+ . . . ,+

(
n
dn/2e

)
∗ (dn/2e) =∑(dn2 e)

k=1

(
n
k

)
∗ k. Using the identity

(
n
k

)
= n

k

(
n−1
k−1

)
(assume

n is even), we get,
∑n

2

k=1

(
n
k

)
∗ k =

∑n
2

k=1 k
n
k

(
n−1
k−1

)
=

n
∑n

2−1
j=0

(
n−1
j

)
. The bound for above series is O(n2n). So,

the total time complexity is O(n2n) + O(2n) + O(2n) =
O(n2n). As a conclusion, we can notice that the results al-
ready obtained for ImDP will be very beneficial for future
work since the improvement already obtained on ODP-IP is
of the order of 91% for some distributions.

Acknowledgments
The research presented in this article is funded by “Visves-
varaya PhD Scheme for Electronics & IT”, grant no: PhD-
MLA/4(29)/2015-16. Samir Aknine was supported by Univ.
Lyon 1.

References
Michalak, T.; Rahwan, T.; Elkind, E.; Wooldridge, M.; and
Jennings, N. R. 2016. A hybrid exact algorithm for complete
set partitioning. Artificial Intelligence 230:14–50.
Yun Yeh, D. 1986. A dynamic programming approach to the
complete set partitioning problem. BIT Numerical Mathe-
matics 26(4):467–474.

9924

