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The impact of numerical optimization on modern data
analysis has been quite significant – today, these methods
lie at the heart of most statistical machine learning applica-
tions in domains spanning genomics, finance and medicine.
The expanding scope of these applications (and the com-
plexity of the associated data) has continued to raise the
expectations of various criteria associated with the under-
lying algorithms. Broadly speaking, my research work can
be classified into two AI categories: Optimization in ML
(Opt-ML) and Optimization in CV (Opt-CV). The expand-
ing scope of these applications (and the complexity of the
associated data) has continued to raise the expectations of
various criteria associated with the underlying algorithms. It
is well known that problems in these areas are not only math-
ematically interesting but also motivated by practical con-
siderations that arise in the analysis of real world datasets.
My research contributes to this endeavor by focusing on the
algorithmic and learning issues involved in ML and CV by
borrowing ideas from Statistics and Probability theory. I will
describe two projects in detail for each of the above two
categories (one ongoing and one published for each cate-
gory), and a brief description of a slightly more theoretical
project that I have contributed to in nontrivial ways, during
the course of my PhD at UW Madison. A checkmark ( )
indicates that the project has been peer reviewed and pub-
lished, whereas a ü indicates that the paper is under review.

Experimental Design (ED) is a problem with deep
foundations dating back at least to the early 1900s in
Opt-ML. Here, given the features/covariates xi’s, an ex-
perimenter must conduct an experiment in order to obtain
the value of the dependent (or response) variables yi’s.
The focus of much of the classical work on this topic
is to maximize the amount of information that the full
experiment yields for a given (or least) amount of work.
Although the literature is very mature, not many strategies
are available when these design problems appear in the
context of sparse linear models commonly encountered
in high dimensional machine learning. In this work, we
study this budget constrained design where the underlying
regression model involves a `1-regularized linear function.
More practically, this makes the model interpretable in
the sense that it identifies the important features that are
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used for predictions. While the obvious strategy involves
solving a combinatorial nonlinear optimization prob-
lem, we provided two tractable formulations: the first is
motivated geometrically whereas the second is algebraic in
nature. We show how both these formulations can be solved
efficiently for large datasets. In particular, our algorithms
require one largest eigenvector computation or a rank one
update in addition to the first order oracle (gradient, function
value). As practical application of our algorithms, with the
help of my adviser, I was able to test the formulations on
a large neuroimaging dataset and show that cost savings
in longitudinal studies aimed at clinical trials are possible
(Ravi et al. 2016). Our paper was presented in ICML, 2016.

Fast Filter Flow is a framework that can be used to
model various problems in CV. We proposed an algorithm
to solve the Filter Flow problem (Ravi et al. 2017). To state
the problem, let us suppose that relationships between pairs
of images are modeled using a linear transformation on a
(very) high dimensional space. Then, various constraints
are specifically imposed based on the problem one wishes
to solve, say Optical Flow, Stereo Matching etc.. The
goal is to learn an appropriate relationship that minimizes
reconstruction error while satisfying the catalog of con-
straints. But the computational time involved in solving
Filter Flow makes it infeasible for practical purposes,
for instance, it takes 10 hours to compute optical flow
using standard optimization solvers. I showed that even if
one wishes to impose these set of constraints, the problem is
amenable to powerful convex optimization algorithms that
can exploit multiple processors in a computer. In this paper,
I explored different optimization formulations to make it
efficient and at the same time preserved the theoretical
properties that Filter Flow offers. While the formulation
was proposed earlier in 2013, the authors used generic
all-purpose optimization software which can be extremely
slow on real world examples. Using techniques from convex
optimization, we developed a lock-free algorithm that
can be used to efficiently solve the filter flow problem.
Empirically, we achieved a 20x speed up for optimization
and also provided convergence analysis for our proposed
algorithm. Our paper was presented in CVPR, 2017.

üHow to use constraints in the era of Deep Learning? A
number of results have recently demonstrated the benefits
of incorporating various constraints when training deep
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architectures in vision and machine learning. The advan-
tages range from guarantees for statistical generalization
to better accuracy to compression. But support for general
constraints within widely used libraries remains scarce and
their broader deployment within many applications that can
benefit from them remains under-explored. Part of the rea-
son is that Stochastic gradient descent (SGD), the workhorse
for training deep neural networks, does not natively deal
with constraints with global scope very well. In this paper,
we revisit a classical first order scheme from numerical opti-
mization, Conditional Gradients (CG), that has, thus far had
limited applicability in training deep models. We show via
rigorous analysis how various constraints can be naturally
handled by modifications of this algorithm. We designed an
algorithm that can explicitly constrain the most successful
measure of complexity of neural networks called as the Path
norm. We improved upon the performance of Path norm reg-
ularized networks with no additional effort, using Path norm
constrained networks. We provide convergence guarantees
and show a suite of immediate benefits that are possible —
from training ResNets with fewer layers but better accuracy
simply by substituting in our version of CG to faster train-
ing of GANs with 50% fewer epochs in image inpainting
applications to provably better generalization guarantees
using efficiently implementable forms of recently proposed
regularizers. Our paper has been will be presented at AAAI
2019.

üRobustness in CV. The practicality of problems in CV
has attracted many researchers thereby accelerating the
pace of research. While this pace is shown to be fruitful
in terms of increasing the performance of the end-to-end
framework, recent flurry of papers has shown the fragility of
the algorithms, specifically with respect to random pertur-
bations. We revisited the Blind Deconvolution problem with
a focus on understanding its robustness and convergence
properties. Provable robustness to noise and input pertur-
bation is receiving recent interest in vision, from obtaining
immunity to adversarial attacks to assessing and describing
failure modes of algorithms in mission critical applications.
Further, many blind deconvolution methods based on deep
architectures internally make use of or optimize the basic
formulation. Hence, a clearer understanding of how this
submodule behaves, when it can be solved, and what noise
injection it can tolerate is a first order requirement. We
derived new insights into the theoretical underpinnings of
blind deconvolution. The algorithm that emerges has nice
convergence guarantees and is provably robust in a sense
we formalize in the paper. Interestingly, these technical
results play out very well in practice, where on standard
datasets our algorithm yields results competitive with or
superior to the state of the art. This is ongoing work,
which we are planning to submit to a peer reviewed confer-
ence/journal soon. A preliminary version of our paper can
be found in Arxiv (Ravi, Mehta, and Singh 2018).

üAlgorithmic summarization using Coresets. Smooth-
ness has played a huge role in the success of ML systems
in predictive analysis especially in large scale settings.
In fact, there is a common belief that if an algorithm A1

that outperforms A2 in the smooth setting is expected

to behave similarly for simple ML problems even in the
nonsmooth setting. The Frank-Wolfe (FW) Method is a
classical optimization algorithm that has been extensively
applied for smooth problems in Machine Learning. But
many problems in these areas are naturally expressed
as a non-smooth (often convex) optimization model, for
example, Hinge loss SVM, Multiway Graph cuts to name
a few. In this work, the goal was to evaluate whether
FW type methods can be derived for such non-smooth
problems in Vision and Machine Learning. I showed that
by bringing together both the classical ε−subdifferential
and approximate subdifferential idea introduced in a 1990s
work by (White 1993), we can define FW type algorithm for
such problems. Using this construction, we were also able
to analyze the sparsity of the solution at a given iteration
which turns out to be intricately related to a concept that
is well studied for over a decade in the Computational
Geometry literature called as a “coreset”. Intuitively, a
coreset is a subset of the original dataset which behaves
like the entire dataset, that is, any statistic computed
using a coreset will be provably close to the quantity if
computed using the entire dataset. Hence in some cases,
the algorithm provides solutions to these problems in time
complexity bounds that are “independent” of the size of the
input problem. We then provide analysis to various prob-

lems in ML to demonstrate the applications of the proposed
algorithm, see our paper (Ravi, Collins, and Singh 2017).
We are currently revising the paper for publication in
Informs Journal of Optimization.

Future Plans: I believe that the optimization techniques
that I have used over the years for developing both practical
and theoretical understanding of ML and CV problems can
be applied to many more open problems. Designing more
efficient algorithms for many problems is an active line of
research especially in the large scale setting. Having said
that, recent set of results in the ML community also sug-
gest that the term “efficiency” requires some rethinking in
mission critical real world applications. In particular, other
properties such as stability, fairness, privacy etc. are becom-
ing increasingly important like never before. I am really ex-
cited about these aspects of research in ML/CV and their
interplay with practical constraints.
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