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Abstract
We showcase a model to generate a soundscape from a cam-
era stream in real time. The approach relies on a training
video with an associated meaningful audio track; a granu-
lar synthesizer generates a novel sound by randomly sam-
pling and mixing audio data from such video, favoring times-
tamps whose frame is similar to the current camera frame;
the semantic similarity between frames is computed by a pre-
trained neural network. The demo is interactive: a user points
a mobile phone to different objects and hears how the gener-
ated sound changes.

Introduction
Our goal is to generate an audible texture (i.e., an immersive
sound with a temporally uniform character, sometimes de-
fined soundscape) using a video-only stream as input (e.g.,
from a webcam). The resulting audio should not necessar-
ily be realistic or plausible for the given input, but instead
it should evoke, in the listener, a similar scenario as the one
visible in the input frames. Potential applications include:
artistic performances; sonification of museum exhibitions;
generation of relaxing soundscapes during travelling; assis-
tance to visually impaired people.

Several deep learning approaches generate sounds from
images. They differ for the audio representation used:
from cochleagrams to generate sounds of materials hit or
scratched with a stick (Owens et al. 2016), to raw wave-
forms to generate very realistic sounds associated with more
general actions (Zhou et al. 2017).

We present a simpler and faster approach that combines
deep learning for image analysis with more traditional au-
dio synthesizers; in particular, we integrate two components:
1) a pre-trained deep convolutional neural networks for ex-
tracting high-level semantic features from video frames; 2)
a granular audio synthesizer to procedurally generate coher-
ent, continuous, non-looping soundscapes.

The approach relies on a dataset of aligned video and au-
dio tracks, which are used as source data; in particular, for
each input frame, the granular synthesizer is reprogrammed
in order to generate a signal reminiscent of the audio cor-
responding to the dataset frames that are semantically most
similar to the input frame.
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We propose an interactive demo in which the user points a
camera to various objects in the environment (people, com-
puters, cellphones, fans) or pictures (from printed postcards
or screens) and hears how the generated sound changes in
real time. The demo also visualizes the internal state of the
system and the audio generation process, and serves as a
captivating illustration of the inner workings of the neural
network and the granular synthesis techniques.

Granular Synthesis
A granular synthesizer (Roads 1988) produces a continuous
soundscape by randomly overlaying many short sound sam-
ples (granules) with a length between 1 and 100 ms; each
granule is too short to be perceived as an individual entity,
but long enough to meaningfully contribute to the resulting
sound (microsounds (Roads 2004)). Granules are sampled at
random times from a source audio and played with soft at-
tack and release transients, in order to better blend them in
the overall texture. In our demo, we use a granule length in
the range between 50 and 100 ms, and we start the playback
of new granules at approximately 100 Hz (so that about 5
to 10 granules are overlayed at any given time): at these set-
tings, the character of the resulting sound is pleasant and
reminds the character of the audio from which the granules
are sampled from, without the source being recognizable.
To affect the sound character, we manipulate in real time the
probability distribution from which the synthesizer samples
the starting points of the granules to be played next.

Model
We consider a pre-built reference dataset consisting of a
long video track with a corresponding audio track (green
track in Figure 1a). The basic assumption is that the au-
dio playing at a given time is somewhat associated to the
corresponding frames, which is the case for many YouTube
videos, but not for all, which often feature voice-overs or
background music unrelated to the video track; for this rea-
son, our reference dataset is composed by a concatenation of
several hand-selected YouTube videos. Let It be the image
frame at time t in the reference videos. We generate audio
with a given character by sampling granules from the refer-
ence audio track according to a probability distribution p(t)
(Figure 1b) updated at runtime as illustrated in Figure 1a.
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(a) Sampling probability update: the current image I (red) is com-
pared to a sub-sample of images from the dataset (green) associ-
ated to an audio trace (top); a CNN computes a lower-dimensional
representation of the images (dots); we update the sampling prob-
ability (bottom red area) according to the distance (black lines) to
the current image: similar images are nearer, therefore their audio
is sampled more often.
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(b) Audio update: the granular synthesizer adds new granules (red)
sampled randomly, from the dataset audio track, according to the
current probability p(t).

Figure 1: Two asynchronous loops update the sampling
probability (a) and the ensemble of granules that compose
the audio (b).

Sampling Probability Update
1. We acquire a new camera image I .
2. We input I in a CNN that has been pre-trained on Im-

ageNet (Deng et al. 2009) to classify images in 1000
classes; we associate the activation of the second-last
layer to a 2048-dimensional representation r(I); such
semantic representation captures high-level concepts in
I but is not specific to the classes the network has been
trained on.

3. We compute the euclidean distance d between r(I) and
r(It) for a sub-samples of frames (e.g., one frame per
second): semantically similar images will be at a lower
distance, e.g., the image of a goose will be nearer to the
image of another bird than to the image of a lion.

4. We monotonically map d(r(I), r(It)) to a probability
p(t), such that low distances map to higher probabilities.

Demo
Implementation The demo is implemented in Python us-
ing open-source libraries and models: a Resnet50 (He et
al. 2016) model trained on ImageNet from Keras (Chollet
and others 2015); and Pyo, a realtime audio synthesis li-
brary (Belanger 2016).

Setup The demo is interactive: the user is free to shoot a
video in a scene containing several objects using the video

Figure 2: A screen-shot of the video demonstrating the sys-
tem. The user captures a video with a mobile phone (orange)
and listen to the generated soundscape.

camera of a provided mobile phone (Figure 2); we analyse
the images as described above and produce an audio feed-
back to the user. We also provide a realtime GUI that gives
an inside look at how the system works: which frames are
nearest to the current images, how does the sampling proba-
bility looks like, . . . .

Value The demo is captivating as users explore the be-
havior of a system that is only partially predictable: which
objects produce the more realistic sound? what happens
when different objects are in the image? how does my selfie
sound?, . . . .

Moreover, the demo provides direct experience and in-
sight into the inner workings of a CNN for image classifica-
tion, and represents a novel approach to the sonification of
the activations of its inner layers.
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