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Abstract

In this paper, we analyze Birds of a Feather (BoaF), a solitaire
game played with 16 cards. While the large majority of deals
are solvable, the set of unsolvable deals share certain charac-
teristics that can be determined from the adjacency matrix of
the corresponding “compatibility graph”. We create a binary
decision tree based on just three variables to predict whether a
given deal is solvable. Our predictive model, tested on 30,000
random deals, correctly classifies over 99.9% of our data.

Introduction

In the 2019 EAAI Undergraduate Research Challenge, par-
ticipants were invited to analyze Birds of a Feather (BoaF),
a perfect-information one-player card game (Neller 2016).
Like other open solitaire games, the 16 cards in each BoaF
game are dealt face-up. Thus, each initial configuration can
be classified as either solvable or unsolvable.

The 15-puzzle is a famous open solitaire game, consist-
ing of fifteen tiles numbered 1 to 15 randomly arranged in a
4 x 4 frame, with one tile missing. The object of the game is
to use the empty space to slide the tiles, and create a config-
uration where the fifteen tiles are placed in order. A simple
parity argument (Johnson and Story 1879) shows that half
of the starting positions are unsolvable. Knowing the set of
solvable starting positions allows game designers to avoid
presenting users with an impossible puzzle.

Conversely, FreeCell is an open solitaire card game where
52 cards are dealt randomly, without any consideration of
whether a given deal is solvable. Although nearly every
FreeCell deal is solvable, one out of every 78,000 deals is
not (Keller 2018). Despite much effort, no Microsoft Free-
Cell player could solve the complete set of 32,000 deals, and
it was only through an extensive crowdsourcing effort that it
was shown that one of the deals is indeed unsolvable.

In this paper, we analyze the recently invented BoaF game
and describe our efforts of creating a model to quickly and
accurately predict whether a deal is solvable. After present-
ing the rules of the game, we describe our three-variable bi-
nary decision tree model, show that our model makes the
correct classification in over 99.9% of random deals in our
testing set, and conclude with ideas for future research.
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Rules of the Game
BoaF is played with a standard 52-card deck, with 4 suits
(C, H, S, D) and 13 ranks of each suit (from A to K). Below
is an example of an initial configuration, where 4 rows of 4
cards are dealt face-up, representing 16 one-card “stacks”.

8C | 8H | 8S | 7S
6H | JH | 5H | 9H
5C | 7C | KS | 4S
2D | TS | QS | 3D

Any stack of cards can be picked up and placed on top of
another stack in the same row or column, as long as the top
card of each stack is either the same suit or their ranks differ
by at most one. For example, 8C can be placed on top of 7S.

For any deal, a game is solvable if and only if there exists a
sequence of 15 moves that creates a single stack of 16 cards.
Our deal above is solvable, as one possible 15-move solution
is 3D-2D 4S-7S 5C-8C 4S-5C 4S-3D QS-KS 8S-QS 4S-TS
7C-8H 6H-JH 9H-5H 8S-9H 7C-6H 8S-7C 4S-8S. This re-
sults in a single stack with 4S as the top card.

Given a deal, define its compatibility graph G as follows:
each of the 16 cards is a vertex, and two vertices are adjacent
if and only if their suits match or their ranks differ by at most
one. By definition, the 15-move solution to any deal must be
a spanning tree of its compatibility graph G, as we see from
the dark edges of the compatibility graph below.




Predictive Model

For any BoaF deal, we can create its compatibility graph G.
We define the following three variables.

1. nwy(G), the number of pairs (¢, j) with1 <4 < j < 16
for which there is no walk of length 1 from ¢ to j in G.

nwsy(G), the number of pairs (¢,7) with 1 < i < j < 16
for which there is no walk of length 2 from 7 to j in G.

st(@), the number of spanning trees in G.

Let A be the 16 x 16 adjacency matrix of graph G, where
A; ; = 1if vertices ¢ and j are adjacent, and A; ; = 0 oth-
erwise. By definition, nw; (G) is the number of zeros above
the upper diagonal of A and nwsy(G) is the number of zeros
above the upper diagonal of A2. Given the adjacency matrix
A, we can apply Kirchhoff’s Matrix-Tree Theorem (Harris,
Hirst, and Mossinghoff 2008) to calculate st(G).

If nwy(G) and nwy(G) are large, then there are fewer
connections between cards, implying fewer possible moves.
In this light, we surmise that large values of nw;(G) and
nws(G) are indicators for a deal’s unsolvability.

If G is not connected, then a spanning tree cannot exist,
thus ensuring that any sequence of moves will result in a
minimum of two leftover stacks. Thus, st(G) = 0 is a suffi-
cient condition for a deal to be unsolvable. (But as we’ll see,
st(G) = 0 is not a necessary condition for unsolvability.)

We create our predictive model on 100,000 random 4 x 4
deals, representing seeds 1 to 100,000 of the open-source
FreeCell shuffler (Mol 2018). The first 70,000 deals repre-
sent the training set and the final 30,000 deals represent the
testing set. For each of these deals, we apply an independent
codebase (Neller 2018) that uses a depth-first search algo-
rithm to determine whether the deal is unsolvable.

In the training set, just 143 of the 70,000 deals are unsolv-
able, with 135 having st(G) = 0 and 8 having st(G) > 0.
Of the 8 unsolvable deals with a connected compatibility
graph G, the values of nw; (G) range from 76 to 82 and the
values of nws(G) range from 37 to 56. These numbers are
significantly higher than the averages of these values for our
training set: 71.7 for nw, (G) and 10.7 for nwy(G).

Our predictive model is a binary decision tree, where each
split maximizes the information gain of the training set. The
resulting model can be expressed as a six-line program.

if st (G)
else:
if nw2 (G)<74:
else:
if nwl (G)>75:
else: return

return "UNSOLVABLE"

return "SOLVABLE"
return "UNSOLVABLE"
"SOLVABLE"

On the 70,000 deal training set, this model correctly clas-
sifies 143 out of the 143 unsolvable deals and 69767 out of
the 69857 solvable deals, for an overall accuracy of 99.87%.

Applying this model to the 30,000 deal testing set, we dis-
cover that this decision tree correctly classifies 47 out of the
47 unsolvable deals and 29925 out of the 29953 solvable
deals, for an overall accuracy of 99.91%. On this testing set,
our “unsolvability prediction algorithm” has a precision of

47f28 = 62.7% and a recall of ﬁ = 100%.
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Conclusion

Our predictive model can be viewed as a sieve that quickly
identifies deals that may be unsolvable, so that a BoaF-
playing app only outputs deals that have a solution. High
recall is more important than high precision, since it is bet-
ter to incorrectly classify deals as unsolvable (and miss out
on a few deals) than incorrectly classify deals as solvable
(and give the player an impossible deal).

Unlike the 15-game tiling puzzle, there does not exist a
simple test for unsolvability, especially as it is NP-complete
to determine whether an arbitrary N x N BoaF deal is solv-
able (Hoshino and Notarangelo 2019).

Though our model’s recall rate is excellent, it is not per-
fect. To illustrate, consider the following deal where the 16
cards form a mutually orthogonal Latin square of order 4.

2C | 4S | 6H | 8D
6D | 8H | 2S | 4C
8S | 6C | 4D | 2H
4H | 2D | 8C | 6S

Since no pair of cards in the same row or column can
be matched, this deal is unsolvable. However, our algorithm
makes an incorrect classification as st(G) > 0 (because the
graph is connected) and nw2(G) = 0 (because there are two
different walks of length 2 between each pair of vertices).

There are several directions for future research. First, we
can test our model on more data, especially as the 10°
compatibility graphs we analyzed are just a fraction of the
(3%) ~ 10'3 possible combinations. Also, we can analyze
which edges in the compatibility graph also match by posi-
tion, i.e., share the same row or column. To do this, we need
to consider a stackability graph. Finally, we’d like to add
more variables beyond the three considered in this paper.

The student author has created a repository of all the
Python code used in this paper. The code can be found at
https://github.com/Starfunk/birds-of-a-feather.
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