

A Monte Carlo Tree Search Player for Birds of a Feather Solitaire

Christian Roberson, Katarina Sperduto

Florida Southern College
croberson@flsouthern.edu, ksperduto@mocs.flsouthern.edu

Abstract

Artificial intelligence in games serves as an excellent plat-
form for facilitating collaborative research with undergradu-
ates. This paper explores several aspects of a research chal-
lenge proposed for a newly-developed variant of a solitaire
game. We present multiple classes of game states that can
be identified as solvable or unsolvable. We present a heuris-
tic for quickly finding goal states in a game state search tree.
Finally, we introduce a Monte Carlo Tree Search-based
player for the solitaire variant that can win almost any solv-
able starting deal efficiently.

 Introduction

Games are a good way for students to get involved in the

intricacies of scholarly research. Games with perfect in-

formation are especially nice because they allow students

to focus on the rules and strategy of the game without hav-

ing to worry about the inherent uncertainty that comes with

imperfect information (Rosenthal 1981). One such game

that has been developed for research is Birds of a Feather

Solitaire. Much like other variants, this version of solitaire

requires making a series of moves to combine various piles

of cards into a single stack. This game is particularly inter-

esting because while most initial configurations of the

game state are solvable, there are many ways to end up in

an unsolvable state and lose the game. There are also sev-

eral distinct characteristics of game states that could poten-

tially be used to determine if a state is solvable.

 This paper is organized as follows. In the Background

section, we provide an overview of the Birds of a Feather

game and highlight relevant search algorithms including

heuristic search and Monte Carlo Tree Search. In the Game

State Solvability Section, we outline three different charac-

teristics of game states that can be used to identify unsolv-

able states. In the Player section, we describe the structure

of our AI player for Birds of a Feather. The Results section

contains experimental tests and validation for our devel-

Copyright © 2019, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

oped tools. Finally, we provide some conclusions and pos-

sible avenues for future work.

Background

Birds of a Feather Solitaire

Birds of a Feather is a variant of a classic solitaire game

proposed as a research challenge for facilitating research

experiences for undergraduates (Neller 2018). It is played

with a standard 52-card deck, however out of the 52 cards

only 16 will be used. Once shuffled, the player deals 16

cards out face-up in a 4-by-4 grid as shown in Figure 1.

Each card (or bird) can be moved onto other cards in the

grid to form a stack of cards (a flock).

Figure 1: Example initial game state

In this game each position in the grid is considered a stack

of cards, so in the initial layout each stack or flock has a

size of one. In order to move one stack on top of another,

the following conditions must be met: (1) The two stacks

must be located in the same row or column. (2) The top

card of each stack must either have the same suit, same

rank, or adjacent ranks. For this version, aces are consid-

ered to be low and are only adjacent in rank to twos. The

score for a game state is determined by taking the square of

the stack size of each remaining column and adding them

together. For example, if there were a total of three stacks

remaining: one of size 9, one of size 4, and one of size 3,

the final score would be 106 (81 + 16 + 9). The ultimate

goal is to move all 16 cards into a single stack, yielding a

9700

The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-19)

maximum score of 16
2
 or 256. For each initial configura-

tion, or seed, it is highly probable there is a solution, but it

is not guaranteed.

Heuristic Search

A common approach to finding solutions to games is to

create a game tree representing the possible game states

and moves and use a tree search algorithm to locate a goal

state (Paul and Helmert 2016). Classic tree search algo-

rithms, like Depth First Search (DFS), blindly expand

nodes during the search process until either a goal node is

found or all search options are exhausted (Chijindu 2012).

This approach can be time consuming, especially if the

search tree has a high branching factor, is likely to search

many unnecessary nodes, and the solution it produces may

not be the optimal solution. One possible improvement to

an uninformed search is to use a heuristic function to help

guide the order of node expansion. A heuristic function

 , takes a node and returns a non-negative real num-

ber that is an estimate of the cost of the least-cost path

from node to a goal node. The function is an ad-

missible heuristic if is always less than or equal to the

actual cost of a lowest-cost path from node to a goal.

With a well-crafted heuristic it is likely that a solution can

be found with significantly less nodes expanded than an

uninformed search.

Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is a directed search

technique that has gained prominence in recent years and

has been used with success for several types of games such

as Go (Silver et al. 2016) and Kriegspiel (Ciancarini and

Favini 2009). The basic algorithm involves an iterative

construction of a search tree until some computational limit

is achieved. (Browne et al. 2012). There are four steps per-

formed during each iteration of MCTS: selection, expan-

sion, simulation, and backpropagation. Figure 2 shows the

structure of each MCTS phase and the search tree associat-

ed.

Figure 2: Monte Carlo Tree Search Steps1

 The selection phase chooses the next node to expand by

starting at the root node of the tree and recursively select-

ing optimal child nodes until a leaf node is reached. The

1https://commons.wikimedia.org/wiki/File:MCTS_(English)_-
_Updated_2017-11-19.svg

optimal child node is selected to maximize the Upper

Confidence Bound for Trees (UCT), given as:

where ̅ is the average reward for child , is the number

of times the current (parent) node has been visited, the

number of times child has been visited and Cp > 0 is a

constant used to influence the exploration/exploitation bal-

ance. This ensures that the node with the maximum desired

quality is chosen next.

 The simulation phase begins when a node outside of the

stored MCTS tree is selected during the selection process.

The basic strategy for this phase is to make random moves

until a terminal node is reached. In some variations a strat-

egy is applied to determine node selections during the sim-

ulation.

 The expansion phase grows the stored MCTS tree, typi-

cally by one node. A simple approach is to add the first

node of the playout phase to the MCTS tree for each simu-

lation that runs. This ensures the tree grows in areas select-

ed during the selection phase because of their increased

likelihood of being a strong move.

 The backpropagation phase takes the result of the simu-

lation phase and updates nodes along the selected path in

the MCTS tree. A common approach is to simply record

and track the average reward value by examining the ratio

of games won to games played. A discounting factor may

sometimes be applied to nodes as the result is propagated.

 MCTS is used a lot for game algorithms for a few key

reasons (Chaslot et al. 2008): it requires no tactical

knowledge of the game, it has the ability to focus on more

interesting nodes, and it is very easily adaptable. MCTS

has been adapted for other variations of solitaire (Yan et al.

2005), but has not yet been applied to Birds of a Feather.

Game State Solvability

One focus of our research was to understand what makes a

particular game state either solvable or unsolvable. We

have identified several classes of states that classify as

solvable or unsolvable.

Stranded States

A game state is considered stranded if it contains one or

more stranded cards. A stranded card is a card that is the

only card in both its row and its column, as long as there is

more than one card remaining. A card in this state will

never have another move available to it since cards can

only be moved in their respective rows or columns. In Fig-

ure 3 the Jack of Spades is stranded because there are no

cards in the same row or column to move to.

9701

Figure 3: State with a stranded card

 To determine if a card is stranded, we first create an un-

directed graph of all the theoretical moves possible in the

current game state. A theoretical move is defined as any

move that respects the position rules of the game while

ignoring any rules about the value of the cards. In this case

any two cards that occupy the same row or column would

be a valid theoretical move. We then analyze the theoreti-

cal graph to see if there is more than one component. If

there is, there are stranded cards and that game state is con-

sidered unsolvable.

Separated Flock States

In certain deals of Birds of a Feather, it is possible to end

up with cards that cannot be moved onto other cards be-

cause they do not meet the suit or rank requirements of a

legal move with any other cards in the grid. A move that is

a legal move with respect to rank and suit, but without the

same row or column constraint for the two cards is called a

relaxed move. A single card with no relaxed moves is re-

ferred to as an odd bird. It is also possible to end up with

multiple cards that are connected to each other, but none of

the cards in this subgroup can be connected to the remain-

ing cards. This is referred to as a separated flock. Odds

birds are separated flocks of size one. In Figure 4, the Ace

of Diamonds and the Seven of Diamonds are a separated

flock because no other cards have relaxed moves (Dia-

monds, Twos, Sixes, or Eights) that connect to either of

them. In this case it is impossible to combine those cards

with the remaining cards in this state.

Figure 4: State with a separated flock

 To determine if a state contains a separated flock, we

create a graph of the relaxed moves in the current state. If

the relaxed graph contains more than one component, there

is a separated flock in the state and it is considered unsolv-

able.

Lynchpin Cards

Another interesting group of states are related to cards that

occupy critical positions on the board, referred to as lynch-

pin cards. A lynchpin card is any card in a game state that

if moved would lead to at least one card being stranded.

For example, in Figure 5 moving the Jack of Spades means

cards in the column cannot be moved into other rows any-

more and cards in the row can’t be moved to another col-

umn. Any move that moves a lynchpin card is unsolvable.

 If there are multiple lynchpin cards whose only relaxed

move is to move to another lynchpin card, that state is con-

sidered unsolvable. It is also possible to find a lynchpin in

an impossible structure. If a lynchpin is connected to two

or more cards that have a relaxed graph degree of one, it is

impossible to move all of those cards onto the lynchpin.

Given that a lynchpin cannot be moved, if any one of the

multiple connected cards is moved to cover the lynchpin,

the remaining cards would lose that connection in the

graph and would therefore have a relaxed move degree of

zero. These cases are also considered unsolvable as well.

Figure 5: State with a lynchpin

A Birds of a Feather AI Player

Another focus of our research was to develop an effective

player for Birds of a Feather. Given a game state, we first

applied a simple two-step lookahead to the game tree to see

if any goal states were present. If so, we would select the

first child node that moved toward an identified goal state.

To identify goal states, we developed a solvability checker

to run each candidate state through for evaluation. If the

lookahead was unable to find a goal state, we would then

determine our move by applying a variation of Monte Car-

lo Tree Search.

Solvability Checker

Our solvability checker function accepts Birds of a Feather

game states as input and classifies them into one of three

9702

categories: solvable, unsolvable, or unknown. The bulk of

the solvability checker’s work for identifying unsolvable

cases comes from analyzing and determining if a game

state meets one of the discovered classes of unsolvable

states. Any state that is identified as containing stranded

cards, separated flocks, or unsolvable lynchpin cards is

returned as unsolvable. Any two-card case that does not

fall into these categories is solvable.

 We also discovered several identifiable subgroups for

three-card, four-card, and five-card cases that can be used

to identify solvable or unsolvable states. Each of these

subgroups was coded into the checker to identify additional

states. The specifics of these configurations are not includ-

ed in this paper.

Monte Carlo Tree Search

For states in which a goal node is not found using the two-

step lookahead, we apply a variation on classic Monte Car-

lo Tree Search to determine which move to play.

 During the selection phase, our algorithm explicitly re-

quires each child of a node to be explored at least once

before moving to exploiting the best score when choosing

the next node to process. This change helps to ensure all

nodes are at least sampled during the MCTS process. We

also leverage the solvability checker during the selection

phase. If a node is classified as solvable, we select that

node automatically regardless of UCT score.

 For the expansion phase, whenever a new node is ex-

plored, all of the children of that node are generated and

added to the MCTS tree. This is primarily a limitation of

the codebase we used for the project. One of the new chil-

dren would then be selected at random for the simulation

phase.

 We also developed a pruning technique to apply to the

MCTS tree as it is developed. Each node is pre-processed

through the solvability checker before it is added to the

MCTS tree. If the node is classified as unsolvable, it is

thrown away and not added to the tree. If it is either solva-

ble or unknown it is expanded normally. This ensures that

iterations in the algorithm are not wasted on known un-

solvable nodes in the tree.

 In the traditional simulation phase, moves are selected at

random from the available child nodes of the current state

during simulation of the game. We instead choose to select

moves during the simulation phase using a heuristic for

evaluating potential moves.

Player Heuristic

To better select moves that would lead us to winning

states, we developed a heuristic for evaluating and ranking

potential moves for consideration. While many factors

were considered, ultimately two factors provided the most

influence on the quality of a game state: the current score

of the game state and the number of legal moves in the

game state. Our heuristic is represented by the following

formula:

where represents the game state to examine, [] repre-

sents the stack of cards at position in the grid of cards, the

 function determine the size of a stack of cards, and

 represent the weights of both factors, the summation

represents the score of state and represents the

number of legal moves in state . For our heuristic, higher

values are considered more valuable states.

Results

In this section we present findings for the various aspects

of our Birds of a Feather Solitaire research. First, we ana-

lyze our heuristic for its efficiency. Next, we provide de-

tails of our solvability checker’s coverage of known test

data. Finally, we show how our player, which uses both the

heuristic and solvability checker, performs against a varie-

ty of possible starting seeds of the game.

Heuristic

To tune our heuristic, we applied a heuristic search algo-

rithm to the search tree for the first 10,000 seeds of the

dataset. The weight parameter for the state’s score was

fixed to 1.0 and the weight for the number of legal moves

was tuned to find the combination that optimized for the

lowest average number of nodes expanded across the test

seeds.

Moves Weight Nodes Exp.

1.0 387.43

1.5 197.80

2.0 117.84

2.5 102.85

3.0 128.68

3.5 185.96

Table 1: Heuristic Evaluation

The optimal value for weighting the legal moves factor
was 2.5, where we averaged just under 103 nodes expand-
ed per seed. In many cases the number of nodes expanded
was well under the average, with several more difficult
cases driving the average up. Our heuristic performs much
better than a traditional depth-first search approach, with
DFS averaging 5,274.23 nodes expanded per seed on the
same dataset. For states early in the game with many stacks
and a low score, the driving factor in node selection for
expansion is the number of legal moves. For late-game

9703

nodes, the score is significantly more important for node
selection than the number of legal moves. Our heuristic
captures this dynamic.

Solvability

Included in the research challenge was a dataset for 10,000
different initial game states. While not every possible state
for each game was included, the set focused on interesting
states. An interesting state is defined as a state that in-
cludes both solvable and unsolvable children. Each provid-
ed state was classified as solvable or unsolvable. To vali-
date the different classes of game states identified in our
research, we ran every state in the provided dataset against
our solvability checker to determine its effectiveness.

State Class # of States % of Unsolvable

Stranded Cards 95,405 14.50%

Separated Flock 147,330 22.39%

Lynchpin Issues 192,339 29.24%

Combined Total 249,534 37.93%

Total Unsolvable 657,888 100.00%

Table 2: Unsolvable state analysis

 Table 2 provides a breakdown of unsolvable states from
the provided dataset. For each class of states, both the total
number of states identified by our solvability checker and
what percentage of the overall number of unsolvable states
this represents are listed. It is worth nothing that the com-
bined total of all these states represents a smaller total that
the sum of the individual classes. This is because there are
some states that are represented in multiple classes. Overall
our solvability checker was able to correctly identify al-
most 40% of the unsolvable states with no false positives.

Player

To test our player, we played games against a variety of
seeds. For each experimental run, the player runs 40 games
against each of the 10,000 seeds. Each seed is first checked
to determine if it is solvable. Any unsolvable seeds are
then skipped. For the test dataset there were 24 unsolvable
seeds, leaving 399,040 games played per run of the system.

Iterations Player Win %

100 44.26%

200 77.20%

300 94.55%

400 96.78%

500 98.09%

1000 99.41%

2000 99.75%

4000 99.85%

8000 99.88%

Table 3: Player win rates

Table 3 provides the overall win rates for the player

against our dataset. The player was run several times with

different limits on the number of iterations for Monte Carlo

Tree Search simulation. It is notable that our player very

quickly improves its win rate to almost 95% by 300 itera-

tions per turn. After that, it is a slow but steady increase

towards 100%. As a limit test we ran our player for 8,000

iterations per turn and only lost 480 games, resulting in a

99.88% win rate.

Conclusions and Future Work

There are several conclusions that can be drawn from our

work on Birds of a Feather Solitaire. First, using a heuristic

search for analyzing the search tree of a given starting seed

of the game provides significant improvement in terms of

number of nodes expanded for solution search. In our ex-

periments we found that a heuristic using the state score

and the number of possible legal moves as factors provided

the best results.

 Second, there are several characteristics of a game state

that can be used to determine whether it is solvable or not.

For our research we focused on unsolvable states and iden-

tified three classes of states that cannot be solved: states

with stranded cards, states with separated flocks (a subset

of cards that can only be moved onto each other), and

lynchpin cards (critical cards that cannot be moved without

stranding other cards) that are put into impossible situa-

tions to resolve legally. By developing these characteristics

into a solvability checker that can evaluate states, it is easi-

er to develop an effective player for this game.

 Finally, we present a strategy for developing an AI play-

er capable of winning most starting arrangements of Birds

of a Feather. Combining simple lookahead, Monte Carlo

Tree Search, and contextual search tree pruning using

solvability data, our player is able to achieve win rates in

the mid-90% range using only a few hundred iterations in

Monte Carlo Tree Search simulation.

 There are some areas open for future expansion of our

work, especially in the area of determining solvability of a

state. One area of interest is the examination of difficult

starting configurations of Birds of a Feather. While our

player was able to successfully solve almost every solvable

state in the dataset, there were some states that our player

was not particularly effective at. We would like to investi-

gate these cases further to understand why these pose such

a challenge and look for improvements to be made to our

player. In addition, our solvability work focused mostly on

determining unsolvable cases. There is potential to deter-

mine characteristics that make a solution solvable, which

would expand the number of states that could be correctly

identified by our solvability checker.

9704

References

Browne, C. B.; Powley, E.; Whitehouse, D.; Lucas, S. M.; Cowl-
ing, P. I.; Rohlfshagen, P.; Tavener, S.; Perez, D.; Samothrakis,
S.; and Colton, S. 2012. A Survey of Monte Carlo Tree Search
Methods. IEEE Transactions on Computational Intelligence and
AI in Games 4(1): 1-43.

Chaslot, G.; Bakkes, S.; Szita, I.; and Spronck, P. 2008. Monte-
Carlo Tree Search: A New Framework for Game AI. In Proceed-
ings of the Fourth AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, 216-217. Palo Alto, Calif.:
AAAI Press.

Chijindu, E. V. 2012. Search in Artificial Intelligence Problem
Solving. African Journal of Computing & ICT 5(5): 37-42.

Ciancarini, P., and Favini, G. P. 2009. Monte Carlo Tree Search
Techniques in the Game of Kriegspiel. In Proceedings of the
Twenty-First International Joint Conferences on Artificial Intelli-
gence, 474-479. Menlo Park, Calif.: International Joint Confer-
ences on Artificial Intelligence, Inc.

Neller, T. W. 2016. AI Education: Birds of a Feather. AI Matters
2(4): 7-8.

Paul, G., and Helmert, M. 2016. Optimal Solitaire Game Solu-
tions Using A* Search and Deadlock Analysis. In Proceedings of
the Ninth Annual Symposium on Combinatorial Search, 135-136.
Palo Alto, Calif.: AAAI Press.

Rosenthal, R. W. 1981. Games of Perfect Information, Predatory
Pricing and the Chain-Store Paradox. Journal of Economic Theo-
ry 25(1): 92-100.

Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.; Van
Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Pan-
neershelvam, V.; Lanctot, M.; and Dieleman, S. 2016. Mastering
the Game of Go with Deep Neural Networks and Tree Search.
Nature 529: 484-489.

Yan, X.; Diaconis, P.; Rusmevichientong, P.; and Roy, B. V.
2005. Solitaire: Man Versus Machine. In Proceedings of the
Eighteenth Advances in Neural Information Processing Systems,
1553-1560. Cambridge, Mass.: MIT Press.

9705

