
The Thirty-First AAAI Conference on Innovative Applications of Artificial Intelligence (IAAI-19)

Early-Stopping of Scattering Pattern Observation with Bayesian Modeling
Akinori Asahara, Hidekazu Morita

Hitachi Ltd.
Tokyo, 100-8280, Japan

Chiharu Mitsumata
National Institute for Materials Science

Tsukuba, 305-0047, Japan

Kanta Ono
High Energy Accelerator Research Organization

Tsukuba, 305-0801, Japan

Masao Yano, Tetsuya Shoji
Toyota Motor Corporation
Toyota, 471-8572, Japan

Abstract

This paper describes a new machine-learning application
to speed up Small-angle neutron scattering (SANS) exper-
iments, and its method based on probabilistic modeling.
SANS is one of the scattering experiments to observe mi-
crostructures of materials; in it, two-dimensional patterns on
a plane (SANS pattern) are obtained as measurements. It
takes a long time to obtain accurate experimental results be-
cause the SANS pattern is a histogram of detected neutrons.
For shortening the measurement time, we propose an early-
stopping method based on Gaussian mixture modeling with a
prior generated from B-spline regression results. An experi-
ment using actual SANS data was carried out to examine the
accuracy of the method. It was confirmed that the accuracy
with the proposed method converged 4 minutes after starting
the experiment (normal SANS takes about 20 minutes).

Introduction
Materials informatics (MI) is a field in which information
technology is used to accelerate materials science research.
Especially data mining techniques will be used to easily find
very small features of measurement data. As a such appli-
cation, we propose an approach to shorten the time for ex-
periments by making predictions based on machine learn-
ing. Imagine an experiment that usually takes 10 minutes,
where half of the results are obtained in 5 minutes. If the
full results of the experiment can be predicted with the data
obtained in 5 minutes, the experiment can be finished imme-
diately; namely, the experiment can be made twice as fast.
Moreover, if the prediction requires only 1 minute, it will
be ten times faster. Generally speaking, measurements on
materials requires a special facility and cost a lot – if it is
based on high-energy physics, the cost is comparable with
hundreds of millions of dollars. Accordingly, such precious
experiment time have to be efficiently used.

This study focuses on small-angle neutron scattering
(SANS) experiments(Higgins and Benoı̂t 1994). SANS is a
scattering experiment that is a popular method for observing
the microstructures of materials. There are similar various
scattering experiments such as x-ray scattering, ion-beam
scattering, etc. Their difference lies just in the particles to
be scattered. The solution for the problem in SANS can be
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Figure 1: SANS Experiment

expected to apply for these experiments also. Thus the prob-
lem is crucial enough to be solved.

We accordingly propose a method to predict a SANS pat-
tern in a short time. The method is based on the Gaussian
mixture model (GMM). The GMM can be fitted to the SANS
pattern through the variational Bayesian (VB) approach. In
particular, our method can estimate the accuracy of the pre-
diction, and thereby, the SANS experiment can be stopped
once the prediction is deemed accurate enough. If it stops be-
fore convergence of the SANS pattern, the experiment will
be faster.

Problem Setting
Overview of SANS
Figure 1 shows an illustration of the experimental instru-
ments. A neutron beam incident upon sample interacts with
the microstructures therein. The directions of the neutrons
thus are changed due to the interactions. The angle θ be-
tween a straight beam and the changed direction of the scat-
tered beam depends on the interaction.

The neutrons detectors are arranged on a plane. When the
distanceL between the sample and the plane is large enough,
the coordinate values on the plane x = (x, y) are approxi-
mately in proportion to L sin θ ' Lθ. The probability den-
sity function (PDF) P (x) of neutron detection corresponds
to the probability P (θ) that neutron goes in the direction of
θ, which is related to the microscopic structures.

Hence, P (x) is crucial for understanding the microstruc-
ture of the material. When n detection events denoted as
{x1,x2, · · · ,xn} are obtained, the “true” PDF P (x) is to
be estimated from the event data. Note that the event coor-
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dinates are discrete, depending on the density of the detec-
tors. Therefore, the event data are usually handled as event
counts in a certain time duration t for each detector (de-
noted as {vi,j(t)}, where (i, j) is discretized x), as shown
by the “SANS pattern” in the figure. Furthermore, {vi,j(t)}
is considered to be a histogram. Hence, vi,j(t)/

∑
vi,j(t)

will converge to the true probability Pi,j that is derived by
taking the integral of P (x) over the cell (i, j). Accordingly,
the true PDF P (x) is estimated from the histogram {vi,j}
after a sufficiently long time.

Fast SANS with Prediction
The prediction-based early-stopping for SANS (hereafter,
called fast SANS) is proposed in this paper. For the early-
stopping, the SANS pattern {vi,j(t)} is periodically posted
to a computer to predict Pi,j = limt→∞ vi,j(t)/

∑
vi,j(t)

with {vi,j(t)} and tests whether the prediction result has
converged. If it has converged, the computer sends a ter-
mination signal to the experimental instrument. Otherwise,
the computer waits for the next SANS pattern. Note that the
prediction and convergence test have to be fast to terminate
the experiment earlier. If it takes more time than the con-
ventional SANS, the fast SANS cannot be said to be not
fast. For example, if the conventional SANS takes 20 min-
utes, the time for the process should be less than 20 minutes.
Even if the time for the process is 10 minutes, there is just
one chance to send the termination signal.

According to the discussion, the problem to be solved
is that of predicting the true PDF obtained as Pi,j =
limt→∞ vi,j(t)/

∑
vi,j(t) under the following constraints.

1. Only {vi,j(τ)} where t > τ are available for the predic-
tion

2. The convergence of the PDF can be evaluated
3. The processing time to obtain the PDF should be short
4. The PDF formula may be smooth, but must be general
In this paper, probabilistic modeling is discussed as an ap-
proach to solve the problem.

Related Works
Scientific data is one of the targets of study in the data en-
gineering field. Compressed sensing(Donoho 2006)(Bour-
guignon, Carfantan, and Böhm 2007)is a popular technology
for reconstruction by sparse modeling of a few data. Com-
pressed sensing assumes that the signal sources are sparsly
distributed. Under the constraint of sparsity, a compressed
sensing model can be accurately estimated without many
sensing data. In such case, we can reduce the sensing data
without loss of accuracy. Here, compressed sensing has been
used to accelerate the measurements(Lustig et al. 2008). On
the other hand, while smoothness is suitable for fast SANS,
sparsity might be unsuitable for it.

The goal of the prediction is also similar to those of image
reconstruction and restoration methods. A popular method
for image restoration is the random Markov filed(Zhang
1993). It might be applied to the SANS pattern, though the
result is not likely to be so accurate because the restoration
is developed for visually improving the images.

Kernel density estimation (KDE)(Silverman 1986)(Si-
monoff 1996) is also a well-known method to estimate a
smooth distribution for point-like events. In KDE, every ob-
served point is inferred to have a probability around it. The
effect is determined by the “kernel function”, of which the
parameter is the distance from the observed point xn. The
PDF P (x) is formed as the sum of the contributions as fol-
lows.

P (x) =
1

hN

N∑
n

K(
|x− xn|

h
), (1)

where xn is the nth observed point, h is a bandwidth pa-
rameter to indicate the effective area of a point, and N is the
number of points. A Gaussian function N (x|xn, hI) is of-
ten used as the kernel function for generality, where I is the
unit matrix and xn is the nth observation.

A criterion to determine termination of the experiment is
required for fast SANS. To evaluate the convergence of the
PDF, a simple criterion is how much the PDF was changed.
For KDE, the difference between the latest PDF and the pre-
vious one should be calculated as the criterion. The criterion
CKDE(t) at time t is derived as follows.

CKDE(t) =

∫
|P ({x1, · · ·xt})− P ({x1, · · ·xt−1})|dx.

(2)
A disadvantage of this criterion is the timing for detecting
convergence. Namely, the criterion can detect convergence
only after the PDF has converged. For a fast SANS experi-
ment, the detection of the convergence should be simultane-
ous with convergence. Convergence of the parameter might
be used as a criterion for GMM modeling, instead of a PDF.
However, in this case as well, convergence is detected after
convergence.

GMM-based prediction
Bayesian Early-stopping
In this study, Bayesian estimation approach is taken to obtain
a criterion for the convergence of the PDF. In the Bayesian
approach, the parameters of the PDF, denoted as {η}, are
also probabilistic, in addition to observations {x}. The PDF
of the parameters {η} when {xn} are given is denoted
as P ({η}|{xn}) hereafter. The basic idea of the proposed
method is that the variance of P ({η}|{xn}) is used as the
criterion of experiment termination because the PDF indi-
cates the uncertainty of {η}.

Two requirements, i.e., high accuracy and short pro-
cessing time, should be satisfied for a fast SANS ex-
periment. Both accuracy and processing time depend on
the prior setting. If a prior similar to the P ({η}|{xt}) is
used, P ({η}|{xt}) is considered to converge earlier. In the
proposed method, P (x) is roughly estimated before the
Bayesian estimation, and the prior is constructed along the
roughly estimated P (x).

Variational Bayesian Estimation for GMM
The proposed method is based on variational Bayesian (VB)
estimation(Waterhouse, MacKay, and Robinson 1996)(At-
tias 1999). VB estimation is frequently used to estimate
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P ({η}|{xn}). VB estimation approximately assumes that
the prior of the GMM parameters is independent from the
distribution of the latent parameters. Under this assumption,
the PDF estimation is separated into two steps: estimation
of the latent parameter and improvement of the PDF of the
parameters. The whole process is called the Bayesian EM
algorithm(Bishop 2006).

The PDF of the GMM for fast SANS is as follows.

P (x|{πk}, {µk}, {Λk}) =
∑
k

πkN (x|Λk, µk), (3)

where x is a point on the detection plane,N (x|Λk, µk) is the
k-th two-dimensional Gaussian function with a correlation
matrix denoted by Λk and an average denoted by µk. πk is
the mixing ratio of the kth component. The priors for the
parameters {πk}, {µk}, and {Λk} are set

P ({πk}, {µk}, {Λk} |W0, ν0, β0)

= Dir({πk}|α0)
∏
k

N (µk|(β0Λk)−1,m0)W(Λk|W0, ν0).

α0,W0, ν0, and β0 are the given parameters of the prior
(called hyper-parameters). W(W, ν) is the function called
the Wishart distribution with the deviation W and degrees
of freedom ν. Dir({π}|α) is the Dirichlet distribution with
parameter α.

For the Bayesian estimation, a posterior with new obser-
vations {xn} is calculated. If the prior mentioned above is
used, the formula of the posterior is the same as that of the
prior. That is to say, the hyper-parameters α0, β0,m0,W0

are revised through Bayesian estimation.

αk = α0 +Nk, βk = β0 +Nk, (4)

mk =
1

βk
(β0m0 +Nkx̄k) , νk = ν0 +Nk, (5)

W−1
k = W−1

0 + SkNk +
Nkβ0

Nk + β0
(m0 − x̄k)(m0 − x̄k)T , (6)

where Nk, xk, and Sk are respectively calculated as

Nk =
∑
n

rn,k, x̄k =
1

Nk

∑
n

rn,kxn, (7)

Sk =
∑
n

rn,k(xn − x̄k)(xn − x̄k)T. (8)

rn,k, which is called ”responsibility”, is calculated as

rn,k =
ρn,k∑
n ρn,k

, (9)

ρn,k ≡ π̃k|Λ̃k|
1
2 e

[
− βk2 −

1
2 (xn−mk)TWk(xn−mk)

]
, (10)

ln π̃k ≡ lnψ(αk)− lnψ(
∑
k

αk), (11)

ln |Λ̃k| ≡ lnψ(
νk
2

) + lnψ(
νk − 1

2
) + ln 4|Wk|, (12)

where ψ(·) is a digamma function. The responsibility rn,k
indicates the contribution to each component labeled by
k. The calculation of the responsibility requires the hyper-
parameters; however, the hyper-parameter estimation also

Relative 
frequency

X

Figure 2: PDF distribution

requires the responsibility. So, the above-described pro-
cesses are iterated to optimize the hyper-parameters. After
iterating the calculation, the optimized hyper-parameters are
obtained.

The probability distribution is estimated with marginal-
ization of every hidden parameter,

P (x) =

∫ ∑
z

P (x|µk,Λk)P (z = zk|{πk})

× Pk(µk,Λk|mk, βk,Wk, νk)P ({πk}|{αk})dπdΛdµ.
(13)

The integration can be carried out as follows.

P (x) =

∑
k α̂kSt(x|m̂k, L(βk, νk,Wk), ν̂k − 1)∑

k′ α̂k′
, (14)

where

L(β̂k, ν̂k, Ŵk) ≡ (ν̂k − 1)β̂k

1 + β̂k
Ŵk. (15)

Criteria for Terminating the Experiment
In the Bayesian approach, the PDF of the parameters is esti-
mated and predicted SANS pattern is derived with marginal-
ization of it, as shown above. The relation between probabil-
ity and the observations of the SANS pattern is illustrated in
Fig. 2. If the observations shown as a histogram are input,
the PDF of the parameters is determined. Various PDFs of
new observations can be estimated depending on the PDF
of the parameters. Through merginalization, the average of
such PDFs is calculated for predicting x (drawn as the solid
line). That is, the expectation value of P (x) shown in for-
mula (13) is written as

P (x) = EπΛµ

(∑
z

P (x|µk,Λk)P (z = zk|{πk})

)
(16)

where EπΛµ is the expectation value over πΛµ. However,
the other PDFs such as those indicated by the dashed line
and the dotted line in the figure are possible estimates. The
variance of the probability, therefore, is considered to be a
criterion for predicting convergence.

The variance of the probability is similarly calculated as
E(P (x)2)−E(P (x))2. The first term is written as a sum of
components Fi,j .

E(P (x)2) =
∑
i,j

∫
P (x|µi,Λi)P (x|µj ,Λj)P (z = zi|{πi})

× P (z = zj |{πj})dπdΛdµ ≡
∑
i,j

Fi,j . (17)
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The integrations in Fi,j are categorized into two types.
When the two indices are the same, as in Fk,k, we have

Fk,k =
αk(αk + 1)∑
i αi

∑
j(αj + 1)

×

1

4π
|W | 12 (ν − 1)St(x|m̂k, L(

1

2
β̂k, ν̂k + 1, 2Ŵk), νk).

(18)

If the two indices are different, we have

Fij =
αiαj∑

l,m αl(αm + 1)

St(x|m̂i, Li, ν̂k − 1)St(x|m̂j , Lj , ν̂j − 1). (19)

Moreover, E(P (x))2 is similarly described as a sum of
components.

E(P (x))2 =
∑
i,j

α̂iα̂j

(
∑
α̂k)2

St(x|m̂i, L(βi, νi,Wi), ν̂i − 1)

×St(x|m̂j , L(βj , νj ,Wj), ν̂j − 1) =
∑
i,j

F̃i,j (20)

The formulas of Fi,j and F̃i,j are very similar. Actually,
if Nk →∞, we have

Fi,j '
αiαj

(
∑
i αi)

2N (x|m̂i, L(βi, ν̂i, Ŵi))

×N (x|m̂j, L(βj , ν̂j , Ŵj)) ' F̃i,j . (21)

Thus, F̃i,j − Fi,j → 0 when Nk is large enough. Because
Nk becomes larger when the data increase, this proves that
the variance will be 0 when t→∞.

B-spline-based Rough Estimation of Priors
As mentioned above, {m0, β0,W0, ν0, α0} are the hyper-
parameters for the GMM. If there are enough observations,
these hyper-parameters are determined optimally. However
for fast SANS, the number of iterations of the VB estima-
tion is limited because the process should finish before the
next SANS patterns arrive. Thus, a rough estimate of the
PDF is used to generate more suitable priors in the proposed
method.

The rough estimation is a regression estimation with
multinomial functions, i.e., B-spline curves(Silverman
1985). A B-spline curve is a combination of multinomial
functions, determined by given parameters that correspond
to points, called control points. Thus, the control points
should be optimized to fit the PDF to the SANS patterns.

The estimated PDF P (x) with B-spline curves is used for
generating the prior for the VB estimation. If the gradient of
the estimated function is higher, more Gaussian functions of
GMM will be required. So in the proposed methods, more
components of the Gaussian prior m0 should be generated
in the area where the gradient is high. Namely m0 is se-
lected randomly with the probability that is in proportion to
the strength of the gradient |∇P (x)|. Even if the number of
components is limited due to processing time, we can select
a prior suitable for the posterior.

Figure 3: SANS pattern after 1 minute

・・・ ・・・

・・・

90 min1 min 2 min 3 min

Test data (90 min)Training data (90 min)

Figure 4: Expeimental data setting

Experiments
Experimental Settings
Experiments using actual SANS data were carried out to ex-
amine the accuracy of the proposed method, that is, GMM
with B-spline-based prior. The data for the experiment were
from an actual SANS experiment lasting 180 minutes (called
the “180min SANS pattern” here). The sample for the exper-
iment was a polycrystalline metallic sample, for which gives
SANS patterns are intense at the center. The SANS pat-
tern consists of 256 × 256 cells with intensity. The 180min
SANS pattern was divided into 180 patterns that included
the observations accumulated in 1 minute. Figure 3 shows
one of these patterns (called a “1min SANS pattern”). By
aggregating x 1-min SANS patterns, we can generate an “x
min SANS pattern” freely. The measurement normally takes
20 minutes to obtain accurate SANS patterns. For the exper-
iments, the 1-min SANS patterns were grouped into two sets
of 90 patterns, as illustrated in Fig 4. The 90 patterns of one
set were aggregated to make a “true” data. The patterns of
the other set were used as inputs to the prediction methods.

The accuracies of KDE and GMM with the VB estimation
(called simply GMM) were evaluated against those of the
proposed method, that is, GMM with B-spline-based prior
(called BSGMM). The logarithmic likelihood, expressed as∑
t lnP (xt), was used as the criterion for accuracy. Hyper-

parameters of the methods have to be determined before the
evaluation. For the VB estimation of GMM, they were set
naive values, that is, m0 = 0, β0 = 1.0, W0 = I , ν0 = 0,
α0 = 0, and the number of mixed components was 50. The
BSGMM estimation was carried out with the same settings
except m0.

The bandwidth parameters h of KDE should be deter-
mined experimentally. As the result of testing h = 2, 4, 6,
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Figure 5: Accuracy in experiment 2

and 8, the accuracy of h = 4 was better than those of h = 6
and 8. The accuracy of h = 2 results were lower than h = 4
before 4 min SANS pattern was input. However, the initial
behavior is crucial for fast SANS because the idea is for the
experiment to finish earlier. Thus, h = 4 was considered
most reasonable for fast SANS.

Generally speaking, the iteration processes for the VB es-
timation should continue until convergence. However pro-
cessing time is limited for the fast SANS. Thus to keep the
processing time sufficient for fast SANS, the number of the
iteration was set to constant. So the number of the iterations
in VB estimation was adjusted to 400 manually to finish the
process in 1 minute. Additionally, KDE was also tuned. If
|x − xn| > 3σ, the kernel function was set to 0. The ef-
fects in such case were quite small, so the calculation can be
omitted to finish the calculation in 1 minute.

The CPU of the computer used in the experiment was Intel
Core i7-3770 3.40 GHz and the RAM was 8GB. The meth-
ods were implemented in Java using JDK 1.8.0 update 144
and multithreading.

Experimental Results
Figure 5 plots the accuracy of the prediction by BSGMM,
GMM and KDE (h = 4). The vertical axis indicates the log-
arithmic likelihood and the horizontal axis is the duration to
obtain SANS pattern. BSGMM and GMM are calculated 10
times with changing the random seeds and the averages are
plotted in the figure. The error bars indicating the standard
errors among them are drawn but they are invisibly small.
The accuracy of BSGMM is highest; that of GMM is sec-
ond; that of KDE is lowest.

For comparison, the accuracy of the conventional method
was evaluated. The relative frequency of the SANS pattern
is used as the probability, where the probability is set to
10−200 at points of which the probability is 0 to avoid in-
finity to avoid∞ due to log 0. The accuracy at 1minute was
-138.5 and that at 10 minutes was -36.1. With the conven-
tional method, it is generally considered that it takes around
20 minutes for convergence. In contrast, the BSGMM and
GMM almost converged at only 4 minutes. This indicates
that GMM and BSGMM can shorten the SANS experiment
duration from 20 minutes to 4 minutes.

Figure 6 plots the average of the processing time for each
method. The process was carried out 10 times and the av-
erages are plotted with the error bar indicating the standard
error. All of the calculation were finished in 60 seconds be-
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cause of the tuning. The calculation time of GMM and BS-
GMM are rising up after 4 minutes, but it keeps around 50
seconds. Thus the processes can be carried out in 1 minute,
which is period of SANS pattern. The result shows that the
GMM and BSGMM are feasible for the fast SANS.

Additionally the criteria of convergence for each method
were evaluated. For KDE, CKDE defined as formula (2) is
sutiable. As the discretized and normalized version of it, the
average difference between the t and t − 1 results were the
criteria. For GMM and BSGMM, formula (20) was the cri-
teria. Figure 7 plots decrease rates of them (difference be-
tween the criteria at t and t − 1 was divided by the criteria
at t = 0). The criteria are basically correlated to the accura-
cies; however according to its criteria, KDE did not converge
until around 8 minutes. In contrast, the GMM criteria were
almost constant after 3 or 4 minutes. Therefore, the crite-
ria are feasible for judging convergence, and the GMM and
BSGMM criteria are the best.

Discussion
Figures 8 show the predicted patterns using 1-min SANS
pattern and the original SANS pattern. The GMM and BS-
GMM results are smoother than the KDE result. This im-
plies that the number of data is too small for KDE to give an
estimate. To obtain smoother results with KDE, the band-
width has to be larger, but a larger bandwidth flattens the
SANS pattern. As shown, GMM and BSGMM are compa-
rably smooth, though BSGMM result is not symmetric. This
asymmetry comes from the asymmetry of the prior.

In SANS experiments, changes in the logarithmic cross
sections along the radius are significant. Hence, the differ-
ential logarithmic cross sections are plotted in Fig. 9. The
horizontal axis is log10 r, where r = |x − 128| and the ver-
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(a) KDE result (b) GMM result (c) BSGMM result

Figure 8: Predicted SANS patterns
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tical axis is the differential of log10 P as follows.

log10 P (xn)− log10 P (x0)

log10 |xn − xc| − log10 |x0 − xc|
, (22)

where xn = (n + 128, 128) and xc = (128, 128). Because
KDE is based on smoothing, the results of KDE tend to be
flat. Thus, the differential values of KDE are nearer to zero
than those of GMM and BSGMM. The truth is actually sim-
ilar to the GMM and BSGMM results.

The truth frequently oscillates at high log10 r. The oscilla-
tion is caused by the inaccuracy of the SANS pattern. KDE
similarly oscillates because the PDF is generated from the
detected events. In contrast, GMM and BSGMM do not os-
cillate unlike KDE. As the result, we can see a peak around
log10 r = 1.3, which implies that there are effects from
the microstructure around the scale. GMM and BSGMM are
hence superior in this aspect.

As discussed above, both GMM and BSGMM are appli-
cable for fast SANS. However remember that BSGMM is
more accurate than GMM as shown Fig. 5. Therefore it is
considered that BSGMM is more appropriate than GMM.

Conclusion and Future work
A GMM with B-spline-based prior for fast SANS exper-
iments was proposed in this paper. An experiment using
actual data confirmed that the GMM-based prediction of
SANS patterns requires only a few minutes worth of SANS
data to predict the results that will be obtained later. The
accuracy converged 4 minutes after starting the experiment;
this compares favorably with the around 20 minutes for con-
ventional SANS experiments. Therefore, we conclude that
the proposed method shortens the SANS experiment to 1/5th
of its usual duration.

SANS is just one of many scattering experiments. That
is, there are many scattering-like experiments in materi-
als science: light scattering (such as X-ray scattering and
laser scattering), beam scattering (such as ion-beam scatter-
ing and electron-beam scattering), and so on. The proposed
method may be applied to such experiments. Not only that,
the problem that spatial distribution of events should be es-
timated fast is common in statistics survey. Modifying it for
those applications will be a future work.
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spec: a new method for fitting multiple sinusoids with irreg-
ularly sampled data. Astronomy & Astrophysics 462(1):379–
387.
Donoho, D. L. 2006. Compressed sensing. IEEE Transac-
tions on information theory 52(4):1289–1306.
Higgins, J. S., and Benoı̂t, H. 1994. Polymers and neutron
scattering. Clarendon press Oxford.
Lustig, M.; Donoho, D. L.; Santos, J. M.; and Pauly, J. M.
2008. Compressed sensing mri. IEEE Signal Processing
Magazine 25(2):72–82.
Silverman, B. W. 1985. Some aspects of the spline smooth-
ing approach to non-parametric regression curve fitting.
Journal of the Royal Statistical Society. Series B (Method-
ological) 1–52.
Silverman, B. W. 1986. Density Estimation for Statistics
and Data Analysis. Chapman and Hall/CRC.
Simonoff, J. S. 1996. Smoothing methods in statistics.
Springer.
Waterhouse, S. R.; MacKay, D.; and Robinson, A. J. 1996.
Bayesian methods for mixtures of experts. In Advances in
neural information processing systems, 351–357.
Zhang, J. 1993. The mean field theory in em procedures for
blind markov random field image restoration. IEEE Trans-
actions on Image Processing 2(1):27–40.

9415


