
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Automatic Bayesian Density Analysis
Antonio Vergari

antonio.vergari@tue.mpg.de
MPI-IS, Tuebingen, Germany

Alejandro Molina
molina@cs.tu-darmstadt.de

TU Darmstadt, Germany

Robert Peharz
rp587@cam.ac.uk

University of Cambridge, UK

Zoubin Ghahramani
zoubin@cam.ac.uk

University of Cambridge, UK
Uber AI Labs, USA

Kristian Kersting
kersting@cs.tu-darmstadt.de

TU Darmstadt, Germany

Isabel Valera
isabel.valera@tue.mpg.de

MPI-IS, Tuebingen, Germany

Abstract

Making sense of a dataset in an automatic and unsupervised
fashion is a challenging problem in statistics and AI. Classical
approaches for exploratory data analysis are usually not flexi-
ble enough to deal with the uncertainty inherent to real-world
data: they are often restricted to fixed latent interaction models
and homogeneous likelihoods; they are sensitive to missing,
corrupt and anomalous data; moreover, their expressiveness
generally comes at the price of intractable inference. As a re-
sult, supervision from statisticians is usually needed to find the
right model for the data. However, since domain experts are
not necessarily also experts in statistics, we propose Automatic
Bayesian Density Analysis (ABDA) to make exploratory data
analysis accessible at large. Specifically, ABDA allows for
automatic and efficient missing value estimation, statistical
data type and likelihood discovery, anomaly detection and
dependency structure mining, on top of providing accurate
density estimation. Extensive empirical evidence shows that
ABDA is a suitable tool for automatic exploratory analysis of
mixed continuous and discrete tabular data.

Introduction
“Making sense” of a dataset—a task often referred to as data
understanding or exploratory data analysis—is a fundamen-
tal step that precedes and guides a classical machine learning
(ML) pipeline. Without domain experts’ background knowl-
edge, a dataset might remain nothing but a list of numbers
and arbitrary symbols. On the other hand, without statisti-
cians’ supervision, processing the data and extracting useful
models from it might go beyond the ability of domain experts
who might not be experts in ML or statistics. Therefore, in
times of abundant data, but an insufficient number of statisti-
cians, methods which can “understand” and “make sense” of
a dataset with minimal or no supervision are in high demand.

The idea of machine-assisted data analysis has been pio-
neered by The Automatic Statistician project (Duvenaud et al.
2013; Lloyd et al. 2014) which proposed to automate model
selection for regression and classification tasks via composi-
tional kernel search. Analogously, but with a clear focus on
performance optimization, AutoML frameworks (Guyon et
al. 2016) automate the choice of supervised ML models for a
task-dependent loss. In contrast, we address model selection

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

for a fully unsupervised task, with the aim of assisting domain
experts in exploratory data analysis, providing them with a
probabilistic framework to perform efficient inference and
gain useful insights from the data in an automatic way.

In principle, a suitable unsupervised learning approach
to find out what is in the data is density estimation (DE).
In order to perform DE on data in a tabular format, a prac-
titioner would first try to heuristically infer the statistical
types of the data features, e.g., real, positive, numerical and
nominal data types (Valera, Pradier, and Ghahramani 2017;
Valera and Ghahramani 2017). Based on this, she would need
to make assumptions about their distribution, i.e., selecting
a parametric likelihood model suitable for each marginal,
e.g., Gaussian for real, Gamma for positive, Poisson for nu-
merical and Categorical for nominal data. Then, she could
start investigating the global interactions among them, i.e.,
determining the statistical dependencies across features. In
this process, she would also likely need to deal with miss-
ing values and reason whether the data may be corrupted or
contain anomalies.

Unfortunately, classical approaches to DE, even if ubiq-
uitous in ML applications, are still far from delivering auto-
matic tools suitable for performing all these steps on real-
world data. First, general-purpose density estimators usually
assume the statistical data types and the likelihood models to
be known a priori and homogeneous across random variables
(RVs) or mixture model components (Valera and Ghahramani
2017). Indeed, the standard approach is still to generally treat
all continuous data as (mixtures of) Gaussian RVs and dis-
crete data as categorical variables. Second, they either assume
“shallow” dependency structures that might be too simplistic
to capture real-world statistical dependencies or use “deeper”
latent structures which cannot be easily learned. As a result,
they lack enough flexibility to deal with fine grain statistical
dependencies, and to be robust to corrupt data and outliers,
especially when a maximum likelihood learning approach is
used.

A Bayesian treatment of DE, on the other hand, often strug-
gles to scale up to high-dimensional data and approximate
inference routines are needed (Ghahramani and Beal 2000).
CrossCat (Mansinghka et al. 2016) shows a clear example of
this trade-off. Even though CrossCat models sub-populations
in the data with context-specific latent variables, this latent
structure is limited to a two-layer hierarchy, and even so

5207

(a) (b) (c) (d)

P1 : 5.9 ≤ X
1
< 10.0 ∧

1.0 ≤ X
4
< 2.01

(supp(P1) = 0.25)

P2 : (0.0 ≤ X
1
< 3.5 ∨

−2.0 ≤ X
1
< 2.0) ∧

0.1 ≤ X
4
< 3.0

(supp(P2) = 0.49)

(e)

Figure 1: Automatic exploratory analysis with ABDA on a tabular dataset comprising samples from mixed continuous and
discrete features X = {X1, . . . , X5}, potentially containing missing values (denoted as “?”) (1a). The latent dependency
structure inferred by ABDA induces a hierarchical partition over samples and features (i.e., a hierarchical co-clustering) given a
learned Sum-Product Network (SPN) structure (1b). Statistical data types and likelihood models are discovered by estimating
each feature distribution as a mixture model over a dictionary of suitable and interpretable parametric model, e.g., Gaussian for
real data, Gamma, Exponential distributions for positive data in (1c-1d). ABDA can efficiently impute missing entries as the
most probable values given a partition in 1b by SPN inference routines. Anomalous entries (denoted as “!” in 1b-1c), on the
other hand, are presented to the user as low likelihood samples that are relegated to micro-clusters (e.g., x3) or to the distribution
tails (e.g., x4

7 and x5
7). Moreover, ABDA allows to automatically discover complex dependency patterns, e.g. conjunctions of

confidence intervals, by exploiting the correlations over the induced hierarchical co-clustering (1e).

inference routines have to be approximated for efficiency.
Moreover, it is still limited to fixed and homogeneous statisti-
cal data types and therefore, likelihood models.

The latent variable matrix factorization model (ISLV) in-
troduced in (Valera and Ghahramani 2017) is the first attempt
to overcome this limitation by modeling uncertainty over the
statistical data types of the features. However, like CrossCat,
it can only perform inference natively in the transductive case,
i.e., to data available during training. While ISLV allows one
to infer the data type of a feature, this approach still uses a
single ad-hoc likelihood function for each data type.

Recently, Mixed Sum-Product Networks (MSPNs)
(Molina et al. 2018) have been proposed as deep models
for heterogeneous data able to perform tractable inference
also in the inductive scenario, i.e., on completely unobserved
test data. Indeed, MSPNs can exploit context specific inde-
pendencies to learn latent variable hierarchies that are deeper
than CrossCat. However, MSPNs assume piecewise-linear
approximations as likelihood models for both continuous and
discrete RVs, which are not as interpretable as parametric
distributions and also require continuous RVs to undergo
a delicate discretization process. As a result, MSPNs are
highly prone to overfitting, and learning them via maximum
likelihood results into a lack of robustness.

In this paper, we leverage the above models’ advantages
while addressing their shortcomings by proposing Automatic
Bayesian Density Analysis (ABDA). Specifically, ABDA re-
lies on sum-product networks (SPNs) to capture statistical
dependencies in the data at different granularity through a
hierarchical co-clustering. This rich latent structure is learned
in an adaptive way, which automates the selection of adequate
likelihood models for each data partition, and thus extends
ISLV uncertainty modeling over statistical types. As a result,
ABDA goes beyond standard density estimation approaches,

qualifying as the first approach to fully automate exploratory
analysis for heterogeneous tabular data at large.

As illustrated in Fig. 1, ABDA allows for:

i) inference for both the statistical data types and (paramet-
ric) likelihood models;

ii) robust estimation of missing values;

iii) detection of corrupt or anomalous data;

iv) automatic discovery of the statistical dependencies and
local correlation structures in the data.

ABDA relies on Bayesian inference through Gibbs sam-
pling, allowing us to robustly measure uncertainties at per-
forming all the above tasks. In our extensive experimental
evaluation, we demonstrate that ABDA effectively assists
domain experts in both transductive and inductive settings.
Supplementary material and a reference implementation of
ABDA are available at github.com/probabilistic-learning/
abda.

Sum-Product Networks (SPNs)
As SPNs provide the hierarchical latent backbone of ABDA,
we will now briefly review them. Please refer to (Peharz et al.
2017) for more details.

Representation. An SPN S over a random vector X =
{X1, . . . , XD} is a probabilistic model defined via a directed
acyclic graph. Each leaf node L represents a probability dis-
tribution function over a single RV X ∈ X, also called its
scope. Inner nodes represent either weighted sums (S) or
products (P). For inner nodes, the scope is defined as the
union of the scopes of its children. The set of children of a
node N is denoted by ch(N).

A sum node S encodes a mixture model SS(x) =∑
N∈ch(S) ωS,NSN(x) over sub-SPNs rooted at its children

5208

ch(S). We require that the all children of a sum node share
the same variable scope—this condition is referred to as
completeness (Poon and Domingos 2011). The weights of a
sum S are drawn from the standard simplex (i.e., ωS,N ≥ 0,∑

N∈ch(S) ωS,N = 1) and denoted as ΩS. A product node P

defines a factorization SP(x) =
∏

N∈ch(P) SN(x) over its
children distributions defined over disjoint scopes—this con-
dition is referred to as decomposability (Poon and Domin-
gos 2011). The parameters of S are the set of sum weights
Ω = {ΩS}S∈S and the set of all leaf distribution parameters
{HL}L∈S .

Complete and decomposable SPNs are highly expres-
sive deep models and have been successfully employed in
several ML domains (Peharz et al. 2015; Molina, Natara-
jan, and Kersting 2017; Pronobis, Riccio, and Rao 2017;
Vergari, Di Mauro, and Esposito 2018) to capture highly
complex dependencies in real-world data. Moreover, they
also allow to exactly evaluate complete evidence, marginal
and conditional probabilities in linear time w.r.t. their repre-
sentation size (Darwiche 2003).

Latent variable representation. Since each sum node
defines a mixture over its children, one may associate a cat-
egorical latent variable (LV) ZS to each sum S indicating a
component. This results in a hierarchical model over the set
of all LVs Z = {ZS}S∈S . Specifically, an assignment to Z se-
lects an induced tree in S (Zhao, Poupart, and Gordon 2016;
Peharz et al. 2017; Vergari et al. 2018), i.e., a tree path T
starting from the root and comprising exactly one child for
each visited sum node and all child branches for each visited
product node (in green in Fig. 2b). It follows from complete-
ness and decomposability that T selects a subset of D leaves,
in a one-to-one correspondence with X. When conditioned
on a particular T , the SPN distribution factorizes as

∏
d L

d
jd ,

where Ldk is the kth leaf for the dth RV, and j = {j1, . . . , jD}
are the indices of the leaves selected by T . The overall SPN
distribution can be written as a mixture of such factorized
distributions, running over all possible induced trees (Zhao,
Poupart, and Gordon 2016). We will use this hierarchical LV
structure to develop an efficient Gibbs sampling scheme to
perform Bayesian inference for ABDA.

SPN learning. Existing SPN learning works focus on
learning the SPN parameters given a structure (Gens and
Domingos 2012; Trapp et al. 2017; Zhao, Poupart, and Gor-
don 2016) or jointly learn both the structure and the param-
eters (Dennis and Ventura 2012; 2015; Peharz, Geiger, and
Pernkopf 2013). A particular prominent approach is Learn-
SPN (Gens and Domingos 2013; Vergari, Di Mauro, and
Esposito 2015), which recursively partitions a data matrix us-
ing hierarchical co-clustering. In particular, LearnSPN alter-
nates between partitioning features into independent groups,
inducing a product node, and clustering the data instances,
inducing a sum node. As the base step, univariate likelihood
models for single features are induced.

ABDA resorts to the SPN learning technique employed by
MSPNs (Molina et al. 2018), as it is the only available ap-
proach to build an SPN structure in a likelihood-agnostic way,
therefore being suitable for our heterogeneous setting. It per-
forms a partitioning over mixed continuous and discrete data

by exploiting a randomized approximation of the Hirschfeld-
Gebelein-Rényi Maximum Correlation Coefficient (RDC)
(Lopez-Paz, Hennig, and Schölkopf 2013). ABDA employs
it to automatically select an initial, global LV structure, which
is provided to its Bayesian inference routines.

Automatic Bayesian Density Analysis
For a general discussion, we extend X to a whole data matrix
containing N samples (rows) and D features (columns). RVs
which are local to a row (column) receive now a sub-script n
(super-script d).

Our proposed Automatic Bayesian Density Analysis
(ABDA) model can be thought as being organized in two
levels: a global level, capturing dependencies and correla-
tions among the features, and a level which is local w.r.t. each
feature, consisting of dictionaries of likelihood models for
that feature. This model is illustrated Fig. 2, via its graphical
model representation, and corresponding SPN representa-
tions. In this hierarchy, the global level captures context spe-
cific dependencies via recursive data partitioning, leveraging
the LV structure of an SPN. The local level represents context-
specific uncertainties about the variable types, conditioned
on the global context.

In contrast to classical works on DE, where typically fixed
likelihood models are used as mixture components, e.g., see
(Poon and Domingos 2011; Vergari, Di Mauro, and Espos-
ito 2015)), ABDA assumes a heterogeneous mixture model
combining several likelihood models from a user-provided
likelihood dictionary. This dictionary may contain likelihood
models for diverse types of discrete (e.g. Poisson, Geomet-
ric, Categorical,. . .) and continuous (e.g., Gaussian, Gamma,
Exponential,. . .) data. It can be built in a generous auto-
matic way, incorporating arbitrary rich collections of domain-
agnostic likelihood functions. Alternatively, its construction
can be limited to a sensible subset of likelihood models re-
flecting domain knowledge, e.g. a Gompertz and Weibull
distributions might be suitable for demographics data.

In what follows, assume that for each feature d we have
readily selected a dictionary {pd�}�∈Ld of likelihood mod-
els, indexed by some set Ld. We next describe the process
generating X, also depicted in Fig. 2a, in detail.

Generative model. The global level of ABDA contains
latent vectors Zn for each sample xn, associated with the
SPN sum nodes (see previous section). Each LV ZS

n in Zn is
drawn according to the sum-weights ΩS ∈ Ω, which are asso-
ciated a Dirichlet prior, parameterized with hyper-parameters
γ: ZS

n ∼ Cat(ΩS), ΩS ∼ Dir(γ).
As previously discussed, an assignment of Zn determines

an induced tree through the SPN, selecting a set of indices
jn = (j1n, . . . , j

D
n), such that the joint distribution of xn =

(x1
n, . . . , x

D
n) factorizes as

p(xn | jn,η) =
∏D

d=1
Ldjdn(x

d
n |ηd

jdn
), (1)

where Ldj is the jth leaf for feature d and ηd
j = {ηd

j,�}�∈Ld

is the set of parameters belonging to the likelihood mod-
els associated to it. More precisely, the jth leaf distribution
Ldj is modeled as a mixture over the likelihood dictionaries

5209

sdjn

ηd
j�λd

�

xd
n

Zn Ω γ

a

a
wd

j α

� ∈ Ld

n = 1 . . . N

j ∈ jn

d = 1 . . . D

(a) Graphical model

× ×

S1

× ×× ×

L(1)

1

S2

L(1)

2

S3

L(2)

3 L(3)

4 L(2)

5 L(3)

6

(b) SPN

ΩS1

ZS1
n

ZS2
n ZS3

nL(1)

1 L(1)

2

ΩS3 ΩS2

L(3)

4 L(2)

5L(2)

3 L(3)

6

(c) LV interpretation

× ×

N Γ

× ×

N Γ

T d
N T d

Γ

wd
jN wd

jΓ wd
kN wd

kΓ

L
(d)
j L

(d)
k

(d) Type-augmented SPN

Figure 2: (a) Plate representation of ABDA, showing the global LV (pink) and local (orange) levels. (b) The SPN representation
with likelihood-modeling leaves L

(d)
j over features d=1,2,3 selected by an induced tree (green), (c) and its corresponding

hierarchy over LVs Z. (d) A global mixture model over Gaussian (N) and Gamma (Γ) likelihoods interpreted as sub-SPNs
sharing global auxiliary LVs T d across the local likelihood mixture models for feature d.

provided by the user, i.e.,

Ldj (x
d
n |ηd

j) =
∑

�∈Ld
wd

j,� p
d
� (x

d
n |ηd

j,�). (2)

Note that the likelihood models pd� are shared among all
leaves with the same scope d, but each leaf has its private
parameter ηd

j,� for it. Moreover, each ηd
j,� is also equipped

with a suitable prior distribution parameterized with hyper-
parameters λd

� . For a discussion on the selection of suitable
prior distributions, refer to Appendix B in the supplementary
material.

The likelihood mixture coefficients wd
j,� are drawn from

a Dirichlet distribution with hyper-parameters α, i.e., wd
j ∼

Dir(α). For each entry xd
n, the likelihood model is selected

by an additional categorical LV sdj,n ∼ Cat(wd
j). Finally, the

observation entry xd
n is sampled from the selected likelihood

model: xd
n ∼ pd

sdj,n
.

Algorithm 1 Gibbs sampling inference in ABDA

Require: N ×D data matrix X, SPN S, Z = {Zn}, s = {sdj,n},
Ω = {ΩS}, w = {wd

j }, η = {ηd
j,�}, max iters I , burn-in B

1: D ← ∅
2: Initialize Z, s,Ω,w,η
3: for i = 1, . . . , I do
4: for n = 1, . . . , N do
5: Sample Zn, s··,n |X,Ω,η
6: for d ∈ {1 . . . D} do
7: for j ∈ {j : Ld

j ∈ S} do
8: Sample wd

j |Z, s
9: for � ∈ Ld do

10: Sample ηd
j,� |X,Z, s

11: Sample Ω |Z
12: if i > B then
13: D ← D ∪ {Z, s,Ω,w,η}

Output: D

Bayesian Inference
The hierarchical LV structure of SPNs allows ABDA to per-
form Bayesian inference via a simple and effective Gibbs
sampling scheme. To initialize the global structure, we use
the likelihood-agnostic SPN structure learning algorithm pro-
posed for MSPNs (Molina et al. 2018). Specifically, we apply
the RDC to split samples and features while extending it to
deal with missing data (see supplementary for details). The lo-
cal level in ABDA is constructed by equipping each leaf node
in S with the dictionaries of likelihood models as described
above. Additionally, one can introduce global type-RVs, re-
sponsible for selecting a specific likelihood model (or data
type) for each feature d (see Fig. 2d and further explanations
below).

Furthermore note that, in contrast to MSPNs, ABDA is not
constrained to the LV structure provided by structure learning.
Indeed, inference in ABDA accounts for uncertainty also on
the underlying latent structure. As a consequence, a wrongly
overparameterized LV structure provided to ABDA can still
be turned into a simpler one by our algorithm by using a
sparse prior on the SPN weights (see Appendix H).

To perform inference, we draw samples D from the pos-
terior distribution p(Z, s,Ω,w,η |X) via Gibbs sampling,
where Z is the set of the SPN’s LVs, s is the set of all lo-
cal LVs selecting the likelihood models, Ω is the set of all
sum-weights, w are the distributions of s, and η is the set
collecting all parameters of all likelihood models. Next, we
describe each routine involved to sample from the condition-
als for each of these RVs in turn. Algorithm 1 summarizes the
full Gibbs sampling scheme. A Rao-Blackwellised version
to improve mixing is discussed in Appendix A.

Sampling LVs Z. Given the hierarchical LV structure of S ,
it is easy to produce a sample for Zn by ancestral sampling,
i.e. by sampling an induced tree Tn. To this end we condition
on a sample xn, and current Ω, η and w. Starting from the
root of S, for each sum node S we encounter, we sample a
child branch c from

p(ZS
n = c | ,xn,Ω,η,w) ∝ ωS,c Sc(xn |Ω,η,w). (3)

Note that we are effectively conditioning on the states of

5210

the ancestors of S. Moreover, we have marginalized out all
Z below S and all s, which just amounts to evaluating Sc

bottom-up, for given parameters Ω, η, and w (Poon and
Domingos 2011). Sampling a tree Tn does in general not
reach all sum nodes. Since these sum nodes are “detached”
from the data, we need to sample their LVs from the prior
(Peharz et al. 2017).

Sampling likelihood model assignments s. Similarly as
for LVs Zn, we sample sdj,n from the posterior distribution
p(sdj,n = � |w, j,η) ∝ wd

j,� p
d
� (x

d
n |η) if j = jdn.

Sampling leaf parameters η. Sampling Zn gives rise to
the leaf indices jn, which assign samples to leaves. Within
leaves, s further assign samples to likelihood models. For
parameters ηd

j,� let Xd
j,� = {xd

n | ∀n : jdn = j∧sdj,n = �}, i.e.,
the samples in the dth column of X which have been assigned
to the �th model in leaf Ldj . Then, ηd

j,� is updated according
to ηd

j,� ∼
∏

x∈Xd
j,�

pd� (x |ηd
j,�) p(η

d
j,� |λd

�). When the likeli-

hood models pd� are equipped with conjugate priors, these up-
dates are straightforward. Moreover, also for non-conjugate
priors they can easily be approximated using numerical meth-
ods, since we are dealing with single-dimensional problems.

Sampling weights Ω and w. For each sum node
S we sample its associated weights from the posterior
p(ΩS | {Zn}Nn=1), which is a Dirichlet distribution with pa-
rameters γ +

∑N
n=1 1{(S, c) ∈ Tn}. Similarly, we can sam-

ple the likelihood weights wd
j from a Dirichlet distribution

with parameters α+ [
∑N

n=1 1{jdn = j ∧ sdj,n = �}]�∈Ld .

Automating Exploratory Data Analysis
In this section, we discuss how inference in ABDA can be
exploited to perform common exploratory data analysis tasks
in an automatic way. For all inference tasks (e.g., computing
log p(xn)), one can either condition on the model parameters,
e.g., by using the maximum likelihood parameters within
posterior samples D, or perform a Monte Carlo estimate over
D. While the former allows for efficient computations, the
latter allows for quantifying the model uncertainty. We refer
to Appendixes E-G in the supplementary for more details.

Missing value imputation. Given a sample xn =
(xo

n,x
m
n) comprising observed xo

n and missing xm
n values,

ABDA can efficiently impute the latter as the most proba-
ble explanation x̃m

n = argmaxxm
n
S(xm

n |xo
n) via efficient

approximate SPN routines (Peharz et al. 2017).
Anomaly detection. ABDA is robust to outliers and cor-

rupted values since, during inference, it will tend to assign
anomalous samples into low-weighted mixture components,
i.e., sub-networks of the underlying SPN or leaf likelihood
models. Outliers will tend to be either grouped into anoma-
lous micro-clusters (Chandola, Banerjee, and Kumar 2009)
or assigned to the tails of a likelihood model. Therefore,
log p(xn) can be used as a strong signal to indicate xn is an
outlier (in the transductive case) or a novelty (in the inductive
case) (Goldstein and Uchida 2016).

Data type and likelihood discovery. ABDA automati-
cally estimates local uncertainty over likelihood models and
statistical types by inferring the dictionary coefficients wd

j,�

for a leaf Ldj . However, we can extend ABDA to reason about
data type also on a global level by explicitly introducing a
type variable T d for feature d. This type variable might either
represent a parametric type, e.g., Gaussian or Gamma, or a
data type, e.g., real-valued or positive-real-valued, in a simi-
lar way to ISLV (Valera and Ghahramani 2017). To this end,
we introduce state-indicators for each type variable T d, and
connect them into each likelihood model in leaf Ldj , as shown
in Fig. 2d. In this example, we introduced the state-indicators
T d
N and T d

Γ to represent a global type T d which distinguishes
between Gaussian and Gamma distribution. Note that this
technique is akin to the augmentation of SPNs (Peharz et
al. 2017), i.e., explicitly introducing the LVs for sum nodes.
Here, however, the introduced {T d}Dd=1 have an explicit in-
tended semantic as global data type variables. Crucially, after
introducing {T d}Dd=1, the underlying SPN is still complete
and decomposable, i.e., we can easily perform inference over
them. In particular, we can estimate the posterior probability
for a feature d to have a particular type as:

p(T d |X) ≈ 1

|D|
∑

{Ω,w,η}∈D
S(T d |Ω,w,η). (4)

The marginal terms S(T d |Ω,w,η) are easily obtained via
SPN inference – we simply need to set all leaves and all
indicators for {T d′}d′ �=d equal to 1 (Poon and Domingos
2011).

Dependency pattern mining. ABDA is able to retrieve
global dependencies, e.g., by computing pairwise hybrid mu-
tual information, in a similar way to MSPNs (Molina et al.
2018). Additionally, ABDA can provide users local patterns
in the form of dependencies within a data partition XN ⊆ X
associated with any node N in S. In particular, let XN con-
tain all entries xd

n such that d is in the scope of N and n
such that Zn yield an induced tree from the SPN’s root to
N. Then, for each leaf Ldj and likelihood model � ∈ Ld one
can extract a pattern of the form P : πd

l ≤ Xd < πd
h, where

[πd
l , π

d
h) is an interval in the domain of Xd. The pattern can

be deemed as present, when its probability exceeds a user-
defined threshold θ: pLd

j
(P) ≥ θ. A conjunction of patterns

PN = P1∧. . .∧P|sc(N)| represents the correlation among fea-
tures in XN, and its relevance can be quantified as pS(PN).
This technique relates to the notion of support in associa-
tion rule mining (Agrawal and Srikant 1994), whose binary
patterns are here generalized to also support continuous and
(non-binary) discrete RVs.

Experimental Evaluation
We empirically evaluate ABDA on synthetic and real-world
datasets both as a density estimator and as a tool to perform
several exploratory data analysis tasks. Specifically, we in-
vestigate the following questions:
(Q1) How does ABDA estimate likelihoods and statistical

data types when a ground truth is available?
(Q2) How accurately does ABDA perform density estima-

tion and imputation over unseen real-world data?
(Q3) How robust is ABDA w.r.t. anomalous data?

5211

(a) (b) (c) (d)

Figure 3: (a) Mean test log-likelihood on synthetic data w.r.t. the ground truth. (b) Distributions of the mean cosine similarity
between true and retrieved uncertainty weights over likelihood models (top) and statistical types (bottom). (c) Confusion matrices
for the most likely likelihood model resp. statistical type. (d) ABDA separates outliers (pink ‘O’) from inliers (green ‘I’) via
hierarchical partitioning on Shuttle data, see Appendix F. Best viewed in colors.

(Q4) How can ABDA be exploited to unsupervisedly extract
dependency patterns?

Experimental setting. We implemented ABDA by lever-
aging the SPFlow library1. In all experiments, we use a sym-
metric Dirichlet prior with γ = 10 for sum weights Ω and a
sparse symmetric prior with α = 0.1 for the leaf likelihood
weights wd

j . We consider the following likelihoods for con-
tinuous data: Gaussian distributions (N) for REAL-valued
data; Gammas (Γ) and exponential (Exp) for POSitive real-
valued data; and, for discrete data, we consider Poisson (Poi)
and Geometric (Geo) distributions for NUMerical data, and
Categorical (Cat) for NOMinal data, while a Bernoulli for Bi-
nary data. For details on the prior distributions employed, for
the likelihood parameters and their hyper-parameters, please
refer to the Appendix.

(Q1) Likelihood and statistical type uncertainty. We
use synthetic data in order to have control over the ground-
truth distribution of the data. To this end, we generate
90 synthetic datasets with different combinations of like-
lihood models and dependency structures with different
numbers of samples N ∈ {2000, 5000, 10000} and num-
bers of features D ∈ {4, 8, 16}. For each possible com-
bination of values, we create ten independent datasets of
N samples (reserving 20% of them for testing), yield-
ing 90 data partitionings randomly built by mimicking
the SPN learning process of (Gens and Domingos 2013;
Vergari, Di Mauro, and Esposito 2015). The leaf distribu-
tions have been randomly drawn from the aforementioned
likelihood dictionaries. We then perform density estimation
with ABDA on these datasets. See Appendix C for details on
ABDA inference and the data generation process.

Fig. 3 summarizes our results. In Fig. 3a we see that
ABDA’s likelihood matches the true model closely in all
settings, indicating that ABDA is an accurate density esti-
mator. Additionally, as shown in Fig. 3b, ABDA is able to
capture the uncertainty over data types, as it achieves high
average cosine similarity between the ground truth type dis-
tribution and the inferred posterior over data type p(T d |X)

1https://github.com/SPFlow/SPFlow

Figure 4: Data exploration and dependency discovery with
ABDA on the Wine quality dataset. ABDA identifies the two
modalities in the data induced by red and white wines, and
extracts the following patterns: 5.8 ≤ FixAcid < 8.1∧0.2 ≤
CitAcid < 0.5 for the white wine and 7.1 ≤ FixAcid <
12.0 ∧ 0.0 ≤ CitAcid < 0.3 (θ = 0.9) for the red one.

(see Eq. (4)), both for i) likelihood functions (using N , Γ
and Exp for continuous and Pos, Geo and Cat for discrete
features); and ii) the corresponding statistical data types (us-
ing POS and REAL for continuous and NUM and NOM for
discrete features).

Furthermore, when forcing a hard decision on distribu-
tions and data types, ABDA delivers accurate predictions. As
shown in the confusion matrices in Fig. 3c, selecting the most
probable likelihood (data type) based on ABDA inference
matches the ground truth up to the expected indiscernibility
due to finite sample size. For further discussions, please refer
to (Valera and Ghahramani 2017).

(Q2) Density estimation and imputation. We evaluate
ABDA both in a transductive scenario, where we aim to
estimate (or even impute) the missing values in the data used
for inference/training; and in an inductive scenario, where we
aim to estimate (impute) data that was not available during
inference/training. We compare against ISLV (Valera and
Ghahramani 2017), which directly accounts for data type
(but not likelihood model) uncertainty, and MSPNs (Molina
et al. 2018), to observe the effect of modeling uncertainty
over the RV dependency structure via an SPN LV hierarchy.

From ISLV and MSPN original works we select 12 real-
world datasets differing w.r.t. size and feature heterogene-
ity. Appendix C reports detailed dataset information, while

5212

Table 1: Density estimation. Mean test log-likelihood on real-world benchmark datasets for trans-/inductive scenarios. Best
values are bold.

transductive setting (10% mv) transductive setting (50% mv) inductive setting

ISLV ABDA MSPN ISLV ABDA MSPN ABDA MSPN
Abalone -1.15±0.12 -0.02±0.03 0.20 -0.89±0.36 -0.05±0.02 0.14 2.22±0.02 9.73

Adult - -0.60±0.02 -3.46 - -0.69±0.01 -5.83 -5.91±0.01 -44.07
Austral. -7.92±0.96 -1.74±0.19 -3.85 -9.37±0.69 -1.63±0.04 -3.76 -16.44±0.04 -36.14
Autism -2.22±0.06 -1.23±0.02 -1.54 -2.67±0.16 -1.24±0.01 -1.57 -27.93±0.02 -39.20
Breast -3.84±0.05 -2.78±0.07 -2.69 -4.29±0.17 -2.85±0.01 -3.06 -25.48±0.05 -28.01
Chess -2.49±0.04 -1.87±0.01 -3.94 -2.58±0.04 -1.87±0.01 -3.92 -12.30±0.00 -13.01

Crx -12.17±1.41 -1.19±0.12 -3.28 -11.96±1.01 -1.20±0.04 -3.51 -12.82±0.07 -36.26
Dermat. -2.44±0.23 -0.96±0.02 -1.00 -3.57±0.32 -0.99±0.01 -1.01 -24.98±0.19 -27.71

Diabetes -10.53±1.51 -2.21±0.09 -3.88 -12.52±0.52 -2.37±0.09 -4.01 -17.48±0.05 -31.22
German -3.49±0.21 -1.54±0.01 -1.58 -4.06±0.28 -1.55±0.01 -1.60 -25.83±0.05 -26.05
Student -2.83±0.27 -1.56±0.03 -1.57 -3.80±0.29 -1.57±0.01 -1.58 -28.73±0.10 -30.18

Wine -1.19±0.02 -0.90±0.02 -0.13 -1.34±0.01 -0.92±0.01 -0.41 -10.12±0.01 -0.13

Table 2: Anomaly detection with ABDA. Mean test log-
likelihood on real-world benchmark datasets for trans-
/inductive scenarios. Best values are bold.

outlier detection

1SVM LOF HBOS ABDA
Aloi 51.71±0.02 74.19±0.70 52.86±0.53 47.20±0.02

Thyroid 46.18±0.39 62.38±1.04 62.77±3.69 84.88±0.96

Breast 45.77±11.1 98.06±0.70 94.47±0.79 98.36±0.07

Kdd99 53.40±3.63 46.39±1.95 87.59±4.70 99.79±0.10

Letter 63.38±17.6 86.55±2.23 60.47±1.80 70.36±0.01

Pen-glo 46.86±1.02 87.25±1.94 71.93±1.68 89.87±2.87

Pen-loc 44.11±6.07 98.72±0.20 64.30±2.70 90.86±0.79

Satellite 52.14±3.08 83.51±11.98 90.92±0.16 94.55±0.68

Shuttle 89.37±5.13 66.29±1.69 98.47±0.24 78.61±0.02

Speech 45.61±3.64 49.37±0.87 47.47±0.10 46.96±0.01

Appendix H contains additional experiments in the MSPN
original setting. Specifically, for the transductive setting, we
randomly remove either 10% or 50% of the data entries,
reserving an additional 2% as a validation set for hyperpa-
rameter tuning (when required), and repeating five times this
process for robust evaluation. For the inductive scenario, we
split the data into train, validation, and test (70%, 10%, and
20% splits).

For ABDA and ISLV, we run 5000 iterations of Gibbs sam-
pling 2, discarding the first 4000 for burn-in. We set for ISLV
the number of latent factors to �D/2�. We learn MSPNs with
the same hyper-parameters as for ABDA structure learning,
i.e., stopping to grow the network when the data to be split is
less than 10% of the dataset, while employing a grid search
in {0.3, 0.5, 0.7} for the RDC dependency test threshold.3

Tab. 1 reports the mean test-log likelihoods–evaluated on
missing values in the transductive or on completely unseen

2On the Adult dataset, ISLV did not converge in 72hr.
3In Appendix H we also evaluate ABDA and MSPN robustness

to overparametrized structures.

test samples in the inductive cases–for all datasets. Here, we
can see that ABDA outperforms both ISLVs and MSPNs in
most cases for both scenarios. Moreover, since aggregated
evaluations of heterogeneous likelihoods might be dominated
by a subset features, we also report in Appendix E the aver-
age test log-likelihood and the normalized root mean squared
error (NRMSE) of the imputed missing values (normalized
by the range of each RV separately) for each feature in the
data. Here, we observe that ABDA is, in general, more ac-
curate and robust across different features and data types
than competitors. We finally remark that due to the piecewise
approximation of the likelihood adopted by the MSPN, eval-
uations of the likelihood provided by this approach might be
boosted by the fact that it renormalizes an infinite support
distribution to a bounded one.

(Q3) Anomaly detection. We follow the unsupervised out-
lier detection experimental setting in (Goldstein and Uchida
2016) to evaluate the ability of ABDA to detect anomalous
samples on a set of standard benchmarks. As a qualitative
example, we can observe in Fig 3d that ABDA either clusters
outliers together or relegates them to leaf distribution tails,
assigning them low probabilities. Tab. 1 compares, in terms
of the mean AUC ROC, ABDA—for which we use the nega-
tive log-likelihood as the outlier score—with staple outlier
detection methods like one-class SVMs (1SVM) (Schölkopf
et al. 2001), local outlier factor (LOF) (Breunig et al. 2000)
and histogram-based outlier score (HBOS) (Goldstein and
Dengel 2012). It is clearly visible that ABDA perform as
good as—or even better—in most cases than methods tai-
lored for outlier detection and not being usable for other data
analysis tasks. Refer to Appendix F for further experimental
details and results.

(Q4) Dependency discovery. Finally, we illustrate how
ABDA may be used to find underlying dependency structure
in the data on the Wine and Abalone datasets as use cases. By
performing marginal inference for each feature, and by col-
lapsing the resulting deep mixture distribution into a shallow
one, with ABDA we can recover the data modes and reason
about the likelihood distributions associated to them.

5213

Figure 5: Data exploration and pattern discovery on the Abalone dataset, comprising physical measurements (e.g. diameter,
height, weight) of different specimens. Each colored density belongs to a unique partition XN discovered by ABDA and here
labeled by an integer indicating the corresponding node N (0 indicates the root of the SPN). Hierarchies over partitions are
shown in the legend as the path connecting the root node to N (e.g., 0 → 1 → 11 → 47 indicates that the partition #11
(green) is responsible for the green densities and it decomposes into the partitions #52 (gray), #53 (yellow) and #47 (pink),
highlighting different correlation patterns across feature intervals). For instance, P1 : 0.088 ≤ Height < 0.224 ∧ 0.158 ≤
ShellWeight < 0.425 (supp(P1) = 0.507) is the green pattern within such a partition, correlating the height and the shell
weight features. Additional patterns, and the other estimates for the dataset features, are reported in Appendix G.

As an example, ABDA is able to discern the two modes in
the Wine data which correspond to the two types of wine, red
and white wines, information not given as input to ABDA
(Fig 4). Moreover, ABDA is also able to assign to the two
modes accurate and meaningful likelihood models: Gamma
and Exponential distributions are generally captured for the
features fixed and citric acidity, since they are a ratio and in-
deed follow a positive distribution, while being more skewed
and decaying than a Gaussian, employed for the fixed acid-
ity of red wines. Note that since ABDA partitions the data
into white and red wines sub-populations, it allows us to
reason about statistical dependencies in the data in the form
of simple conjunctive patterns (see Fig 4), as discussed in
the previous Section. Here, we observe an anti-correlation
between fixed and citric acidity: as the former increases the
latter tends to zero.

A more involved analysis is carried on the Abalone dataset
and summarized in Fig 5. There, retrieved data partitions
clearly highlight correlations across features and samples
of the data. For instance, it is possible to see how abalone
samples differing by weight, height and diameters form neat
sub-populations in the data. See Appendix G in the supple-
mentary for a detailed discussion and more results.

Conclusions
Towards the goal of fully automating exploratory data anal-
ysis via density estimation and probabilistic inference, we
introduced Automatic Bayesian Density Analysis (ABDA).
It automates both data modeling and selection of adequate
likelihood models for estimating densities via joint, robust
and accurate Bayesian inference. We found that the inferred
structures are able of accurately analyzing complex data and
discovering the data types, the likelihood models and feature
interactions. Overall, it outperformed state-of-the-art in dif-
ferent tasks and scenarios in which domain experts would
perform exploratory data analysis by hand.

ABDA opens many interesting avenues for future work.
First, we aim at inferring also prior models in an automatic
way; abstracting from inference implementation details by in-
tegrating probabilistic programming into ABDA; and casting

the LV structure learning as nonparametric Bayesian infer-
ence. Second, we plan on integrating ABDA in a full pipeline
for exploratory data analysis, where probabilistic and logical
reasoning can be performed over the extracted densities and
patterns to generate human-readable reports, and be treated
as input into other ML tasks.

quare id inferam fortasse requiris

Acknowledgements We thank the anonymous reviewers
and Wittawat Jitkrittum for their valuable feedback. IV is
funded by the MPG Minerva Fast Track Program. This work
has benefited from the DFG project CAML (KE 1686/3-1), as
part of the SPP 1999, and from the BMBF project MADESI
(01IS18043B). This project has received funding from the
European Union’s Horizon 2020 research and innovation
programme under the Marie Skłodowska-Curie Grant Agree-
ment No. 797223.

References
Agrawal, R., and Srikant, R. 1994. Fast algorithms for mining
association rules. In Proceedings of VLDB, volume 1215,
487–499.
Breunig, M. M.; Kriegel, H.-P.; Ng, R. T.; and Sander, J.
2000. LOF: identifying density-based local outliers. In ACM
sigmod record, volume 29, 93–104.
Chandola, V.; Banerjee, A.; and Kumar, V. 2009. Anomaly
detection: A survey. ACM Comput. Surv. 41(3):15:1–15:58.
Darwiche, A. 2003. A differential approach to inference in
Bayesian networks. Journal of the ACM (JACM) 50(3):280–
305.
Dennis, A., and Ventura, D. 2012. Learning the architecture
of sum-product networks using clustering on variables. In
Proceedings of NIPS, 2033–2041.
Dennis, A., and Ventura, D. 2015. Greedy structure search for
sum-product networks. In Proceedings of IJCAI, 932–938.
Duvenaud, D. K.; Lloyd, J. R.; Grosse, R. B.; Tenenbaum,
J. B.; and Ghahramani, Z. 2013. Structure discovery in non-
parametric regression through compositional kernel search.
In Proceedings of ICML, 1166–1174.

5214

Gens, R., and Domingos, P. 2012. Discriminative learning of
sum-product networks. In Proceedings of NIPS, 3239–3247.
Gens, R., and Domingos, P. 2013. Learning the structure of
sum-product networks. In Proceedings of ICML, 873–880.
Ghahramani, Z., and Beal, M. J. 2000. Variational inference
for Bayesian mixtures of factor analysers. In Proceedings of
NIPS, 449–455.
Goldstein, M., and Dengel, A. 2012. Histogram-based out-
lier score (HBOS): A fast unsupervised anomaly detection
algorithm. KI-2012 59–63.
Goldstein, M., and Uchida, S. 2016. A comparative eval-
uation of unsupervised anomaly detection algorithms for
multivariate data. PloS one 11(4).
Guyon, I.; Chaabane, I.; Escalante, J. H.; and Escalera, S.
2016. A brief review of the ChaLearn AutoML challenge:
Any-time any-dataset learning without human intervention.
In ICML Workshop on AutoML, 21–30.
Lloyd, J. R.; Duvenaud, D. K.; Grosse, R. B.; Tenenbaum,
J. B.; and Ghahramani, Z. 2014. Automatic construction
and natural-language description of nonparametric regression
models. In Proceedings of AAAI, 1242–1250.
Lopez-Paz, D.; Hennig, P.; and Schölkopf, B. 2013. The
randomized dependence coefficient. In Proceedings of NIPS,
1–9.
Mansinghka, V.; Shafto, P.; Jonas, E.; Petschulat, C.; Gasner,
M.; and Tenenbaum, J. B. 2016. Crosscat: A fully Bayesian
nonparametric method for analyzing heterogeneous, high
dimensional data. JMLR 17(1).
Molina, A.; Vergari, A.; Di Mauro, N.; Natarajan, S.; Espos-
ito, F.; and Kersting, K. 2018. Mixed sum-product networks:
A deep architecture for hybrid domains. In Proceedings of
AAAI.
Molina, A.; Natarajan, S.; and Kersting, K. 2017. Pois-
son sum-product networks: A deep architecture for tractable
multivariate poisson distributions. In Proceedings of AAAI,
2357–2363.
Peharz, R.; Tschiatschek, S.; Pernkopf, F.; and Domingos,
P. 2015. On theoretical properties of sum-product networks.
Proceedings of AISTATS 744–752.
Peharz, R.; Gens, R.; Pernkopf, F.; and Domingos, P. 2017.
On the latent variable interpretation in sum-product networks.
IEEE TPAMI 39(10):2030–2044.
Peharz, R.; Geiger, B.; and Pernkopf, F. 2013. Greedy part-
wise learning of sum-product networks. In Proceedings of
ECML-PKDD, 612–627.
Poon, H., and Domingos, P. 2011. Sum-product networks: a
new deep architecture. In Proceedings of UAI, 337–346.
Pronobis, A.; Riccio, F.; and Rao, R. P. 2017. Deep spa-
tial affordance hierarchy: Spatial knowledge representation
for planning in large-scale environments. In ICAPS 2017
Workshop.
Schölkopf, B.; Platt, J. C.; Shawe-Taylor, J. C.; Smola, A. J.;
and Williamson, R. C. 2001. Estimating the support of a
high-dimensional distribution. Neural Comput. 13(7):1443–
1471.

Trapp, M.; Madl, T.; Peharz, R.; Pernkopf, F.; and Trappl,
R. 2017. Safe semi-supervised learning of sum-product
networks. Proceedings of UAI.
Valera, I., and Ghahramani, Z. 2017. Automatic discovery of
the statistical types of variables in a dataset. In Proceedings
of ICML, 3521–3529.
Valera, I.; Pradier, M. F.; and Ghahramani, Z. 2017. General
Latent Feature Models for Heterogeneous Datasets. ArXiv
e-prints.
Vergari, A.; Peharz, R.; Di Mauro, N.; Molina, A.; Kerst-
ing, K.; and Esposito, F. 2018. Sum-product autoencoding:
Encoding and decoding representations using sum-product
networks. In Proceedings of AAAI.
Vergari, A.; Di Mauro, N.; and Esposito, F. 2015. Simpli-
fying, regularizing and strengthening sum-product network
structure learning. In Proceedings of ECML-PKDD, 343–
358.
Vergari, A.; Di Mauro, N.; and Esposito, F. 2018. Visualizing
and understanding sum-product networks. MLJ.
Zhao, H.; Poupart, P.; and Gordon, G. J. 2016. A unified ap-
proach for learning the parameters of sum-product networks.
In Proceedings of NIPS, 433–441.

5215

