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Abstract

Learning with noisy labels is imperative in the Big Data era
since it reduces expensive labor on accurate annotations. Pre-
vious method, learning with noise transition, has enjoyed the-
oretical guarantees when it is applied to the scenario with the
class-conditional noise. However, this approach critically de-
pends on an accurate pre-estimated noise transition, which is
usually impractical. Subsequent improvement adapts the pre-
estimation in the form of a Softmax layer along with the train-
ing progress. However, the parameters in the Softmax layer
are highly tweaked for the fragile performance and easily get
stuck into undesired local minimums. To overcome this issue,
we propose a Latent Class-Conditional Noise model (LCCN)
that models the noise transition in a Bayesian form. By pro-
jecting the noise transition into a Dirichlet-distributed space,
the learning is constrained on a simplex instead of some ad-
hoc parametric space. Furthermore, we specially deduce a
dynamic label regression method for LCCN to iteratively in-
fer the latent true labels and jointly train the classifier and
model the noise. Our approach theoretically safeguards the
bounded update of the noise transition, which avoids arbi-
trarily tuning via a batch of samples. Extensive experiments
have been conducted on controllable noise data with CIFAR-
10 and CIFAR-100 datasets, and the agnostic noise data with
Clothing1M and WebVision17 datasets. Experimental results
have demonstrated that the proposed model outperforms sev-
eral state-of-the-art methods.

Introduction

Large-scale datasets with editorial annotations have greatly
driven the success of deep neural networks (DNN5s) in com-
puter vision (Krizhevsky, Sutskever, and Hinton 2012), nat-
ural language processing (Sutskever, Vinyals, and Le 2014)
and speech recognition (Hinton et al. 2012). However, it is
usually expensive to collect the clean data in such large vol-
ume in many real-world applications. As an alternative, the
noisily annotated data on the social websites can be easily
acquired inexhaustibly. For example, there are thousands of
object photos annotated by social users on the Flickr web-
site. This motivates several works devoted to learning with
noisy labels from the deep learning community.

The challenging problem for DNNs in the setting of noisy
labels is that it easily memorizes the clean data and the noise
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simultaneously (Arpit et al. 2017). To overcome this issue,
several methods have been explored respectively in the per-
spective of model regularization, sample re-weighting and
noise transition. Arpit et al.(2017) applied the regularization
in DNNs to limit its speed of memorizing noise, which pre-
vents the classifier from the noise pollution. Ma et al.(2018)
directly corrected the supervision of the classifier by weight-
ing the noisy label with its prediction. However, the methods
via model regularization or sample re-weighting usually re-
quires careful hyperparameter selection or network design.

This paper focuses on learning with noise transition. One
theoretically grounded work (Patrini et al. 2017) constructed
a pre-estimated noise transition on top of the classifier to re-
duce the influence of noise. Subsequent improvement (Gold-
berger and Ben-Reuven 2017) adapts the pre-estimation via
a Softmax layer along with the training progress. Although it
enjoys theoretical guarantees, the model performance via a
Softmax layer depends on highly tweaking and the parame-
ters easily get stuck into undesired local minimums. To over-
come this issue, we propose to model the noise transition in
a Bayesian form. Specifically, the proposed model, Latent
Class-Conditional Noise model (LCCN), embeds the noise
transition into a Dirichlet-distributed space to constrain the
learning on a simplex instead of some ad-hoc parametric
space. Furthermore, a dynamic label regression method is
deduced for LCCN to iteratively infer the latent true labels
and apply them for the classifier training and the noise mod-
eling. It theoretically safeguards the bounded update of the
noise transition to avoid arbitrarily tuning as in (Goldberger
and Ben-Reuven 2017) via a batch of samples.

Figure 1 provides the illustration of our safeguarded dy-
namic label regression for LCCN. As can be seen, images
are first input to the classifier to have the prediction of la-
tent true labels. Noisy labels are also forwarded to Bayesian
noise modeling to compute the conditional transition of la-
tent true labels. Then, the true labels are sampled based on
their product and used to supervise the classifier and refine
the noise modeling. The whole model is trained end-to-end
and scalable to large datasets. In a nutshell, our main contri-
bution can be summarized into the following three points.

e We propose a Latent Class-Conditional Noise model that
embeds the noise transition into a Dirichlet space to avoid
non-trivially tweaking, and deduce a dynamic label re-
gression method for the model learning.
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Figure 1: Safeguarded dynamic label regression for LCCN. The images and noisy labels are respectively input to the classifier
and the safeguarded Bayesian noise modeling to compute the prediction and the conditional transition. Then, the latent true
labels are sampled based on their product and then used for the classifier training and the safeguarded Bayesian noise modeling.

The classifier is trained based on the sampled posterior la-
bels, which resembles asymptotically training with clean
data. Unlike (Goldberger and Ben-Reuven 2017), the op-
timization of noise transition via a batch of samples is the-
oretically bounded to avoid arbitrarily tuning.

We conduct a range of experiments in the small CIFAR-
10, CIFAR-100 datasets and the large real-world noisy
datasets ClothinglM and WebVision17. The comprehen-
sive results demonstrate the superior performance of our
model compared with existing state-of-the-art methods.

Related Work

Recently, several approaches combined with deep learning
have been developed for learning with noisy labels. In this
section, we simply review these works according to noise
transition, sample re-weighting and model regularization.

Learning with Noise Transition This branch of research
models a noise transition on top of the classifier to mini-
mize the influence of label noise. Sukhbaatar et al.(2014)
first introduced a noise transition matrix on top of CNN to
learn with noisy supervision. With a heuristic learning pro-
cedure, they gradually make the transition matrix absorb the
noise among labels. Misra et al.(2016) investigated the “re-
porting bias” phenomenon in human-centric annotations by
a content-based transition, which is a special case of learning
with noisy labels. Patrini et al.(2017) theoretically demon-
strated: the backward correction with the inverse of the noise
transition is unbiased to train the classifier in the presence
of noisy labels; the forward noise transition make the train-
ing share the same minimizer with that on the clean data.
However, the final performance quite depends on the accu-
racy of the pre-estimated noise transition. Subsequent im-
provement in (Goldberger and Ben-Reuven 2017) model the
noise transition with a Softmax layer and tune its parame-
ters along with the training progress. Based on this work,
Yao et al.(2017) introduced an auxiliary variable to augment
the noise transition with more uncertainty. Han et al.(2018a)
further added the structure information to constrain the op-
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timization. Although better performance has been achieved,
these methods depend on the carefully tweaking. However,
our model embeds the noise transition into a Dirichlet space
and naturally constrains its optimization to avoid undesired
minimums via a dynamic label regression method.

Learning with Sample Re-weighting This line of works
weight the contribution of training samples in parameter es-
timation to reduce the effect of noise (Liu and Tao 2016).
It can be implemented by the label or the training pair re-
weighting. For example, Reed et al.(2014) facilitated the
notion of perceptual consistency to linearly combine the la-
bel and the prediction as the new supervision, which shows
the substantial robustness to label noise. Subsequently, Li
et al.(2017b) substituted the prediction with the refined la-
bel by the graph distillation. Wang et al.(2018) leveraged
the measure of local intrinsic dimensionality to design an
self-weighting strategy for the bootstrapping (Reed et al.
2014). Several works like (Jiang et al. 2018; Ren et al. 2018;
Han et al. 2018b) explore to learn a weight or selection for
each training pair and then adjust their contribution to the
training of the classifier. However, these methods critically
depend on the elaborate sample re-weighting strategy.

Learning with Model Regularization This type of meth-
ods explore to regularize the training in the presence of noisy
supervision. Zhang et al.(2016) have shown that DNNs can
easily memorize completely random labels, indicating a se-
rious challenge to learn with noisy labels via DNNs. Their
further study (Zhang et al. 2017) that used the convex com-
binations of images and noisy labels as the data augmenta-
tion, has been demonstrated as an efficient regularization to
prevent DNNs from overfitting. Arpit et al.(2017) investi-
gated the memorization order of DNNs on feature patterns
in noisy datasets and demonstrated dropout can efficiently
limit the speed of memorization on noise in DNNs. Tanaka
et al.(2018) explicitly introduced a regularization term to
prevent the trivial case of assigning all labels to a single class
in label correction. Compared with above methods, we indi-
rectly regularize the training by Bayesian noise modeling.



The Proposed Framework
Preliminaries

In the c-class classification setting, a collection of N noisy
training pairs {(z,,,yn)}2_; is given, where z,, is the raw
input data or the feature vector and y,, € {1,..., K} is the
corresponding noisy label. Assume z, denotes the true la-
bel of x,,, which is unknown in practice. Then the goal in
this task is to train a deep network classifier from the noisy
dataset {(z,,, ¥, )}, analogous to the one trained from the
clean dataset {(x,,, z,) }N_;, so that a good performance can
be achieved in a clean test dataset. As shown in (Zhang et al.
2016), directly minimizing the following equation will make
DNNs memorize both the classification pattern and noise,

— N f ns n 1
fo = argmin — Z Yns foln)), M

n=1

where fy is from the functional space G, which is parame-
terized by 6 via DNNGs, and / is the loss function between y,,
and the prediction fy(x,,). Equation (1) leads to a bad per-
formance in the clean test dataset since it does not squeeze
out the noise influence from fy. Therefore, we follows one
mainstream of approaches to handle this dilemma, which
models a noise transition ¢ in simplex A when learning with
noisy labels. The objective is then mathematically expressed
with the following empirical risk minimization problem

fo,¢ = argmin f—zz YUnr b0 folwn)), ()

fo€EG,pEA

n=1

Patrini et al.(2017) theoretically demonstrate Equation (2)
trained with the noisy data shares the same minimizer with
Equation (1) trained with the clean data, if ¢ is accurately
estimated. Unfortunately, it is usually impractical to acquire
such a ¢ in advance. Thus, subsequent work (Goldberger and
Ben-Reuven 2017) adapts the pre-estimation with a Softmax
layer along with the training progress. Although this shows
a promising performance, expensive tweaking is usually re-
quired due to the brutal-force learning with DNNs.

Latent Class-Conditional Noise model

In this section, we will present our Latent Class-Conditional
Noise model (LCCN). Specifically, it avoids non-trivially
tweaking for the good performance in (Goldberger and Ben-
Reuven 2017) by modeling ¢ in a Bayesian form. The graph-
ical notation is illustrated in Figure 2 and the generative pro-
cedure is summarized as follows,

e The latent true label z,, ~ P(:|z,), where P(-|z,) is a
Categorical distribution modeled by the deep neural net-
work fy and the given x,, is its input feature.

e The transition vector of the kth class ¢y ~ Dirichlet(«),
where « is the parameter of a Dirichlet distribution and
[f1, -, 0 K]T constitutes the noise transition matrix.

e The observed noisy label y,, ~ P(:|¢., ), where P(-|¢.. )
is a Categorical distribution parameterized by ¢, .

The general way to solve such a probabilistic model com-
bined with deep learning is amortized variational inference

@
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Figure 2: Latent Class-Conditional Noise model. x and y is

the observed training pair. z is the latent true label. ¢ is the
unknown noise transition. « is a Dirichlet parameter.

(Kingma and Welling 2014). However, this way for LCCN
will require an approximate Categorical reparameterization
and introduce an unstable Digamma function to optimize. To
avoid this, we deduce a dynamic label regression method for
optimization and demonstrate its safeguarded update for ¢.

Dynamic Label Regression

In the following, we will introduce the dynamic label regres-
sion for LCCN, which stacks Gibbs sampling to infer the
latent true labels and loss minimization for parameter learn-
ing. It naturally suits the case of LCCN and we show its
deduction via a two-step formulation. Simply, the first step
is computing the probability of each z conditional on the
others Z !, i.e., P(2,|Z~™). Then with the samples from
P(z,|Z™™), the classifier training and the noise modeling
can be explicitly decoupled as follows,

mln—fzn 1 0 (zns P(znl|zn))
mln—*zn 162(197“ (Ynl2n))-

£y is the cross-entropy loss and /s is the likelihood loss. Al-
ternating between the sampling of P(z,|Z™") and the op-
timization of Equation (3), we form the algorithm to learn
with noisy supervision. Specifically, when P(z|z) approach
the true distribution of clean labels, the classifier training is
similar to that on the clean dataset. This yields the asymp-
totically unbiased estimation as on the clean datasets.

Firstly, according to the aforementioned generative pro-
cess, we can easily deduce the posterior of z conditioned on
the observed training pair {(z,,yn)})_; and the Dirichlet
parameter . This is implemented by factorizing the target
conditional probability based on Figure 2 and applying the
Bayes theorem as follows,

3)

P(Z|X,Y;«)
N
/¢HP¢>/@, H (zn|Tns Yn, ®)dd
k=1 e}
N
P(zn|n) P(Yn|2n, @) (4)
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where S represents Hﬁ[:l gg;"‘li"; to simplify above equa-

tion. If we use the notation N(.y(.) to represent the confusion

"Note that - means removing the current object statistic from
the whole collection of all object statistics.



matrix of the noisy dataset, then we have S S5 Njp=N
and Hf:;l Gonyn = HkK Hf, ka"}"". Putting the later equa-
tion into Equation (4) and then using the conjugation char-
acteristic between the Dirichlet distribution and the Multi-

nomial distribution, the following form can be deduced,
P(Z|X,Y;a)

/H Zk/ O{k/ H(ZSNkk/-‘rak/ 1 ¢
k’ ak/ Py

Zk’ ) H Hk’ o + Niw)

i ITe Taw) v (e + Niw)
Equation (5) is non-analytlcal and cannot generate the sam-
ples of z directly, which motivates the usage of Gibbs sam-
pling. According to the Gibbs sampling, we need to compute
P(z,|Z™™) first. And then based on P(z,|Z™™), a sequence
of observations can be sampled, which are approximately
from P(zn|%n, Yn, P). The following deduction facilitates
Equation (5) and I'(z + 1) = zI'(z) to acquire the final
conditional probability for Gibbs sampling.

P(Z|X,Y;a)

P(Z"[X,Y;0)

_ P(znlzn)
= Plynlen) SE (o + N7
oy, + N0y,
—— Y (aw + N

Conditional transition

With Equation (6), we can sample a collection of latent true
labels {z,}. Such samples are then used to solve the opti-
mization problem in Equation (3). Iterating the procedure of
Equation (6) and Equation (3), we gradually approach the
true latent label, and at the same time train the classifier and
estimate the noise transition. The total algorithm is summa-
rized in Algorithm 1. Note that, we summarize the complete
implementation including some details, e.g., pretraining and
warming-up, used in the experiments in Algorithm 1.

&)
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P(z,|Z7", X, Y;0) =
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X

P(zn|zn)
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Safeguarded Transition Update

In this section, we present our analysis to show that our
method safeguards the bounded update of the noise transi-
tion via a batch of samples, avoiding the arbitrarily tuning
with a Softmax layer (Goldberger and Ben-Reuven 2017).

Theorem 1. Suppose «; is a positive smoothing scalar, N; is
the current sample number of the ith category (i=1,...,K),
M; is the sum of the sample numbers newly allocated into
(positive) and removed from (negative) the ith category after

a batch of training samples, and M; is its absolute sum of
such two cases. Then, for the transition vector ¢; of the ith
category, its variation via a training batch is characterized
by the following equation,

new old ‘Ti| + 7
— & 7
oo < 1L 0
o M; P i
where r; 7S 3 and T N +ZJ T . According

to the definition, we have r; > —1, 7; > 0 and 7; > |ry].
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Algorithm 1 Dynamic Label Regression for LCCN

Require: A noisy dataset D = {(z,,,yn)}_;, a classifier
P(-|z) modeled by DNN fy, warming-up steps 9, the
running epoch number L and the batch-size M.

1: Directly pretrain the classifier fy on the noisy dataset D.
2: Compute the warming-up noise transition matrix ¢'.
3: for epoch¢ =1to L do
4:  for batch j = 1to [N/M] do
5: Let step=ix|[N/M]+j and hook a batch of sam-
ples.
6: if step < 0 then
7: Substitute the transition in Equation (6) with ¢/,
and then sample z,, for each z,, in the batch.
8: else
9: Sample z,, with Equation (6) for the batch.
10: end if
11: Update the confusion matrix N(.)..) based on the
existing sampling observations {(zn, ¥ )}
12: Optimize Equation (3) to learn the classifier fy and
estimate the noise transition matrix ¢.
13:  end for
14: end for

15: Output the classifier fy and the noise transition ¢.

Proof. The variation of ¢; after a training batch is,

|¢7_zew _ ¢Qld|

K
Z ’¢new old

. Nij + a; + M, Nij + a;
:; N"‘Z' Loy + M 7N+Z' 19y
o 30 |0t Ty M| £y bt O

SN+ ) (Ni+ i ay + M)
(W +Z' laJ)M+(N+Z’ 1 0| M|
N S ) (Vi Sy o+ M)
_ il 4T

147

O

Corollary 1.1. Suppose M is the batch size in the training.
If it satisfies the condition M < N;, we have 1; < % ina
small scale. Then the variation of ¢; after a training batch

will be bounded by ‘711‘:;“ < 12“

The core drawback in (Goldberger and Ben-Reuven 2017)
is that the noise transition modeled by a Softmax layer can
be arbitrarily updated via a batch of samples. It is because
the gradients of the parameters in the Softmax layer can be
arbitrarily large according to the standard backpropagation.
Then, the noise transition might be pushed into a bad local
minimum by some extreme noise in a batch of noisy train-
ing samples, yielding a serious harm on the classifier train-

~ 27; in a small scale.



ing. The later experimental analysis in Figure 4 can con-
firm this point. Compared with the way in (Goldberger and
Ben-Reuven 2017), our dynamic label regression theoreti-
cally safeguards the bounded update of the noise transition
via a batch of samples. Specifically, with the bounded up-
date, the conditional transition in Equation (6) is gradually
changing towards at a true distribution when the classifier
is well trained. Similarly, with more reliable sampled labels,
the classifier is better trained and the noise modeling is re-
fined. Finally, we acquire a virtuous cycle for optimization.

Complexity Analysis

Stochastic training a DNN model involves two steps, the for-
ward and backward computations. In each mini-batch up-
date, its time complexity is O(MA), where M is the mini-
batch size and A is the parameter size. Here, in Algorithm 1,
we additionally add a sampling operation via Equation (6)
whose complexity is O(M + K?) (K is the class size). Note
that, the first term in the RHS of Equation (6) has been com-
puted in the forward procedure. So the extra cost for the
sampling is negligible compared to O(MA). An optimiza-
tion for noise modeling is also negligible, which involves the
normalization of a confusion matrix only and the complex-
ity is O(K?). Since the big-O complexity of each mini-batch
remains the same, our method is scalable to big data.

Experiments

The experiments involve both the simulated noisy datasets
and the real-world noisy datasets. We verify the performance
of our model by comparing with state-of-the-art methods.

Datasets and Baselines

Datasets We conduct experiments on CIFAR-10, CIFAR-
100, ClothinglM and WebVision datasets. CIFAR-10 and
CIFAR-100 (Krizhevsky and Hinton 2009) consist of 60,000
32x32 color images respectively from 10 and 100 categories.
Both of them contain 50,000 training images and 10,000 test
images. We inject the asymmetric noise to disturb their la-
bels to form the noisy datasets. Concretely, on CIFAR-10,
we set a probability 7 to disturb the label to its similar class,
i.e., truck — automobile, bird — airplane, deer — horse, cat
— dog. For CIFAR-100, a similar 7 is set but the label flip
only happens in each super-class. The label is randomly dis-
turbed into the next class circularly within the super-classes.
Clothing 1M (Xiao et al. 2015) dataset has 1 million images
of clothes collected from shopping websites. It has 14 pre-
defined classes and the labels of images are roughly spec-
ified based on the surrounding text of images provided by
the sellers, thus are very noisy. According to (Xiao et al.
2015), about 61.54% labels are reliable. Besides, this dataset
has additional 50k, 14k and 10k clean data respectively for
training, validation and test. WebVision? (Li et al. 2017a) is
a more challenging noisy dataset, which contains more than
2.4 million images crawled from the Internet by using the
1,000 concepts in ILSVRC 2012 as queries. A validation set

*In this paper, we only use the original WebVision 1.0 dataset.
The newest version contains more images and more classes.
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Figure 3: The training loss and the test accuracy of LCCN
on CIFAR-10 with the noise level » = 0.1,0.3,0.5,0.7,0.9.

and a test set, each containing 50,000 annotated images, are
also provided to facilitate algorithmic development.

Baselines We compare LCCN with the model that directly
train the classifier on the dataset (termed as CE), the method
Bootstrapping proposed in (Reed et al. 2014), the transition
based method Forward (Patrini et al. 2017) and the method
that fine-tunes the transition S-adaptation (Goldberger and
Ben-Reuven 2017). Note that, we choose the hard mode for
Bootstrapping, since it is empirically better than the soft
mode. For most of the experiments, we apply these four
methods as baselines, except that on ClothinglM, we also
report the result of Joint Optimization (Tanaka et al. 2018),
since we adopt the same network configuration and similar
learning settings without expensive labor to reproduce.

Implementation

For CIFAR-10 and CIFAR-100, the PreAct ResNet-32 (He
et al. 2016) is adopted as the classifier. The image data is
augmented by horizontal random flip and 32x32 random
crops after padding with 4 pixels. Then the per-image stan-
dardization is used to normalize pixel values. For the opti-
mizer, we deploy SGD with a momentum of 0.9 and a weight
decay of 0.0005. The batch size is set to 128. The training
runs totally 120 epochs and is separated into three phases
in 40 and 80 epochs. Among three phases, we respectively
use the learning rates 0.5, 0.1 and 0.01. Note that, the rea-
son that we keep the large learning rate (others may set the
learning rate smaller than 0.001), is that the small learning
rate will lead to overfitting noise as claimed in (Arpit et al.
2017). Following the way in (Patrini et al. 2017), we use CE
to initialize the classifier in other baselines and LCCN. For
S-adaptation, the following transition is computed to warm-
up the transition parameters in the first 80 epochs.

¢, = Etly,=jp(ze = ilz)
Y Eip(ze = ilay)

)

Similarly on CIFAR-10, we use above transition to warm
up the sampling procedure in LCCN for first 20,000 steps.
However, on CIFAR-100, we set ¢',; = 1[i = j] instead
since Equation (9) will induce high sampling variance and
need long time to converge when there are many classes.
For Clothing1M and WebVision, the ResNet-50 is lever-
aged as the classifier. We resize the short side of their images
to 224 and do the random crop of 224x224. The training



Dataset | CIFAR-10 | CIFAR-100

# | Method \ Noise Ratio 0.1 0.3 0.5 0.7 0.9 0.1 0.2 0.3 04 0.5
1 CE 90.10 88.12 76.93 59.01 56.85 | 66.15 6431 60.11 51.68 33.37
2 Bootstrapping 90.73 88.12 76.29 57.04 56.79 | 66.48 64.61 63.01 5527 34.52
3 Forward 90.86 89.03 8247 67.11 57.29 | 6543 6272 61.28 52.64 33.82
4 S-adaptation 91.02 88.83 86.79 72.74 60.92 | 65.52 64.11 6239 5274 30.07
5 LCCN 91.35 89.33 88.41 79.48 6482 | 67.83 67.63 6686 65.52 33.71
6 | CE with the clean data | 91.63 | 69.41

Table 1: The average accuracy (%) over 5 trials on CIFAR-10 and CIFAR-100 with different noise levels.
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Figure 4: Test accuracy of LCCN and S-adaptation on
CIFAR-10 with r=0.5 (left), and the corresponding his-
togram (right) for the variation of ¢ via a batch of samples.

images are augmented with random flip, whiteness and sat-
uration. For the optimizer, we use SGD with a momentum
of 0.9 with a weight decay of 10~3. Same to (Patrini et al.
2017), the batch size for Clothing 1M is set to 32 and the cor-
responding learning rate is initialized with 0.01 for the first 5
epochs and then decreases to 0.001 for the second 5 epochs.
Besides, we both validate the performance with warming-up
of provided transition (Xiao et al. 2015) and Equation (9).
On WebVision, the batch size is set to 128, and the learning
rate is initialized with 0.1 is divided by 10 every 30 epochs
until 90 epochs. We use the diagonal transition for 10,000
steps of warming-up and then update the confusion matrix
to the end, since it contains 1,000 categories.

Results on CIFAR10 and CIFAR-100

Table 1 summarizes the performance of LCCN and baselines
on two datasets by averaging their accuracies over 5 trials.
From the results, LCCN achieves the best performance at
most noise levels. Specifically, even with large r, our model
still shows the competitive classification accuracy. For ex-
ample, when r=0.7 on CIFAR-10 and r=0.4 on CIFAR-100,
LCCN reaches 79.48% and 65.52%, outperforming the best
results of baselines by about 7% and 13% respectively. This
demonstrates that our model is significantly better than base-
lines. Regarding r=0.5 on CIFAR-100, the way to disturb
the labels (Patrini et al. 2017) leads that there is one unde-
sired minimum, since two classes are mixed into one class
by equal quota after injecting noise. In this case, it is hard to
say which model can achieve the best result. In total, Table 1
shows the superiority of LCCN compared with baselines.
In Figure 3, we trace the training of LCCN on CIFAR-
10 with different r to visualize its convergence and robust-
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Figure 5: Label correction ratio on CIFAR-10 with r=0.5 and
some negative (red box) and positive (green box) correction
examples with high probabilities in the training of LCCN.

ness. According to Figure 3, we find: /) in most cases, i.e.,
r=0.1, 0.3, 0.5, the relative training loss increases as r in-
creases, while the loss shows attenuation as r>0.5. It is be-
cause with the low-level noise, the model can easily correct
the labels via the sampling in LCCN. However, when the ex-
treme noise is involved in the dataset, it is more challenging
to stop the model from overfitting on noise; 2) With the train-
ing progress, the test accuracy approximately increases and
persists to the end of the training. Actually, it is not a com-
mon phenomenon for previous methods to own this merit,
since all baselines tends to overfitting on noise more or less
in the final few epochs. This demonstrates the robustness of
LCCN even when training long time with the noisy dataset.

To show LCCN safeguards the noise adaptation compared
to S-adaptation, we compute the statistics about their update
of noise transition on CIFAR-10 at »=0.5, and illustrate the
histogram of changes in Figure 4. Firstly, from the left panel
of Figure 4, we can see that there is a significant perfor-
mance drop in the training of S-adaptation. The clue can be
found by inspecting the update of noise transition. As shown
in the right panel of Figure 4, the change magnitude of ¢ in
S-adaptation is quite high than that of LCCN. This leads to
a high risk of over-tuning to undesired local minimums in
the presence of noise. Instead, according to the histogram
of LCCN, our model updates the noise transition in a small
scale, which gradually approaches to a good minimum.

Figure 5 and Figure 6 respectively plot the label correc-
tion ratio and the colormap of the confusion matrix when
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Figure 6: The colormap for the confusion matrix on CIFAR-10 with r=0.5. We use the log-scale of each entry in the confusion
matrix for fine-grained visualization. The left three maps are gradually learned by LCCN and the right one is the groudtruth.

# ] Method | Accuracy
1 CE 68.94
2 Bootstrapping 69.12
3 Forward 69.84
4 S-adaptation 70.36
5 Joint Optimization 72.23
6 LCCN 73.07
7 | CE with the clean data [ 75.28

Table 2: The average accuracy over 5 trials on Clothing 1 M.
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Figure 7: Exemplars between dress and vest on Clothing 1 M.
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training LCCN on CIFAR-10 with r=0.5. As shown in Fig-
ure 5, the ratio of the image with the correct label in-
creases along with the training progress. This reflects LCCN
successfully models the class-conditional noise and gradu-
ally infer the true labels. Specially, by visualizing the mis-
corrected examples in the training process, we can find that
the classifier at first make mistakes in some simple samples,
while finally only has the wrong classification in the hard ex-
amples. Besides, as can be seen in Figure 6, the initial con-
fusion matrix does not approach the true matrix. However,
as the training progresses, the matrix is gradually corrected
and at the end of training, it is approximately similar to
the ground-truth. These two figures visualize how the safe-
guarded dynamic label regression method optimizes LCCN.

Results on ClothinglM and Web Vision

Table 2 lists the performance of LCCN and baselines on the
large-scale Clothing]lM. According to the results, we can
see that Forward does not show the significant improvement
in this dataset, even though they use the manually provided
noise transition matrix (Patrini et al. 2017). S-adaptation im-
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# [ Method [ Accuracy@l [ Accuracy@5
1 CE 63.11 83.69
2 | Bootstrapping 63.20 83.81
3 Forward 63.10 83.78
4 | S-adaptation 62.54 81.73
5 LCCN 63.52 84.27

Table 3: The average accuracy over 5 trials on Web Vision.

proves the performance compared with Forward, but only
increases by 0.5%. The method that trains the classifier with
label correction (Tanaka et al. 2018) has better results than
other baselines. However, since they do not model the noise
explicitly in their framework, the label correction quite de-
pends on the regularizers to prevent degeneration. Instead,
our model that combines the label correction with Bayesian
noise modeling, achieves the best performance. Neverthe-
less, as all baselines facilitate the human auxiliary informa-
tion, i.e., a manually provided transition matrix or the man-
ually estimated class distribution, it might not be the prac-
tical training choice. Thus, we validate our model without
the warming-up of the manually estimated transition matrix,
where LCCN achieves 71.63%. Furthermore, with a slightly
tempering effect of classifier prediction in the sampling, we
get 72.92%, which is close to the results with the auxiliary
information of LCCN in Table 2. This demonstrates the po-
tential of LCCN in handling the real-world noisy dataset. We
present some examples of “dress” and “vest” in Figure 7 to
show that images with wrong labels are resigned correctly.
As can be seen, the photos of “dress” and “vest” are sim-
ilar in lack of sleeves, but different in the range to cover
the lower body. After training, LCCN successfully learns the
difference and infers the corresponding labels for them.

In Table 3, we present the results of LCCN and baselines
on a more challenging real-world noisy dataset. Both Top-1
and Top-5 accuracies are reported. According to the results,
either in the perspective of Top-1 accuracy or Top-5 accu-
racy, LCCN achieves the best performance, although the re-
sults of all methods do not present the significant gap. One
possible reason is in this dataset, there are too many im-
ages not belonging to these pre-defined 1000 classes, e.g.,
images of background noise or crowded scene. Directly im-
parting these obstacles into the model will seriously disturb
the training especially in the presence of so many classes.



Conclusion and Future Work

In this paper, we present a Latent Class-Conditional Noise
model to learn with the noisy supervision. Besides, a dy-
namic label regression method is deployed for LCCN to it-
eratively infer the latent true labels and jointly train the clas-
sifier and model the noise. We theoretically demonstrate that
our method safeguards the bounded update of the noise tran-
sition to avoid the arbitrarily tuning via a batch of samples.
A range of experiments are conducted on both controllable
CIFAR-10 and CIFAR-100 datasets and the real-world noisy
datasets. Comprehensive results confirm the superior perfor-
mance of our model compared with existing methods.
Although we have shown the advantages of LCCN in the
case of the class-conditional noise, other settings that con-
siders more complex noise should be further explored. This
is important since in many applications, the label noise is
not only from the known classes, but also from other open
set classes. Besides, it is also common that some noise may
depend on the content information. To the end, more works
based on LCCN can be extended to train with noisy datasets.

Acknowledgements

This work was supported in part by the High Tech-
nology Research and Development Program of China
(2015AA015801), NSFC (61521062) and STCSM
(18DZ2270700), and Australian Research Council grants
FT130100746, DP180100106 and LP150100671.

References

Arpit, D.; Jastrzebski, S.; Ballas, N.; Krueger, D.; Bengio,
E.; Kanwal, M. S.; Maharaj, T.; Fischer, A.; Courville, A.;
Bengio, Y.; et al. 2017. A closer look at memorization in
deep networks. In ICML.

Goldberger, J., and Ben-Reuven, E. 2017. Training deep
neural-networks using a noise adaptation layer. ICLR.

Han, B.; Yao, J.; Niu, G.; Zhou, M.; Tsang, I. W.; Zhang, Y.;
and Sugiyama, M. 2018a. Masking: A new perspective of
noisy supervision. In NIPS.

Han, B.; Yao, Q.; Yu, X.; Niu, G.; Xu, M.; Hu, W.; Tsang,
I. W.; and Sugiyama, M. 2018b. Co-teaching: Robust train-
ing deep neural networks with extremely noisy labels. In
NIPS.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual
learning for image recognition. In CVPR.

Hinton, G.; Deng, L.; Yu, D.; Dahl, G. E.; Mohamed, A.-r.;
Jaitly, N.; Senior, A.; Vanhoucke, V.; Nguyen, P.; Sainath,
T. N.; et al. 2012. Deep neural networks for acoustic model-
ing in speech recognition: The shared views of four research
groups. IEEE Signal processing magazine 29(6):82-97.
Jiang, L.; Zhou, Z.; Leung, T.; Li, L.-J.; and Fei-Fei, L.
2018. Mentornet: Regularizing very deep neural networks
on corrupted labels. In CVPR.

Kingma, D. P,, and Welling, M. 2014. Auto-encoding vari-
ational bayes. ICLR.

Krizhevsky, A., and Hinton, G. 2009. Learning multiple lay-
ers of features from tiny images. Technical report, Citeseer.

9110

Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012.
Imagenet classification with deep convolutional neural net-
works. In NIPS.

Li, W.; Wang, L.; Li, W.; Agustsson, E.; and Van Gool, L.
2017a. Webvision database: Visual learning and understand-
ing from web data. arXiv preprint arXiv:1708.02862.

Li, Y.; Yang, J.; Song, Y.; Cao, L.; Luo, J.; and Li, L.-J.
2017b. Learning from noisy labels with distillation. In
ICCV.

Liu, T., and Tao, D. 2016. Classification with noisy labels
by importance reweighting. IEEE Transactions on pattern
analysis and machine intelligence 38(3):447—461.

Ma, X.; Wang, Y.; Houle, M. E.; Zhou, S.; Erfani, S. M.;
Xia, S.-T.; Wijewickrema, S.; and Bailey, J. 2018.
Dimensionality-driven learning with noisy labels. In ICML.
Misra, 1.; Zitnick, C. L.; Mitchell, M.; and Girshick, R.
2016. Seeing through the Human Reporting Bias: Visual
Classifiers from Noisy Human-Centric Labels. In CVPR.
Patrini, G.; Rozza, A.; Menon, A. K.; Nock, R.; and Qu, L.
2017. Making deep neural networks robust to label noise: A
loss correction approach. In CVPR.

Reed, S.; Lee, H.; Anguelov, D.; Szegedy, C.; Erhan, D.;
and Rabinovich, A. 2014. Training deep neural networks on
noisy labels with bootstrapping. ICLR.

Ren, M.; Zeng, W.; Yang, B.; and Urtasun, R. 2018. Learn-
ing to reweight examples for robust deep learning. In ICML.
Sukhbaatar, S.; Bruna, J.; Paluri, M.; Bourdev, L.; and Fer-
gus, R. 2014. Training convolutional networks with noisy
labels. ICLR.

Sutskever, I.; Vinyals, O.; and Le, Q. V. 2014. Sequence to
sequence learning with neural networks. In NIPS.

Tanaka, D.; Ikami, D.; Yamasaki, T.; and Aizawa, K. 2018.
Joint optimization framework for learning with noisy labels.
In CVPR.

Wang, Y.; Liu, W.; Ma, X.; Bailey, J.; Zha, H.; Song, L.;
and Xia, S.-T. 2018. Iterative learning with open-set noisy
labels. In CVPR.

Xiao, T.; Xia, T.; Yang, Y.; Huang, C.; and Wang, X. 2015.
Learning from massive noisy labeled data for image classi-
fication. In CVPR.

Yao, J.; Wang, J.; Tsang, I.; Zhang, Y.; Sun, J.; Zhang, C.;
and Zhang, R. 2017. Deep learning from noisy image la-
bels with quality embedding. IEEE Transactions on Image
Processing.

Zhang, C.; Bengio, S.; Hardt, M.; Recht, B.; and Vinyals,
0. 2016. Understanding deep learning requires rethinking
generalization. ICLR.

Zhang, H.; Cisse, M.; Dauphin, Y. N.; and Lopez-Paz, D.
2017. mixup: Beyond empirical risk minimization. /CLR.



