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Abstract

The task of Visual Question Answering (VQA) has emerged
in recent years for its potential applications. To address the
VQA task, the model should fuse feature elements from both
images and questions efficiently. Existing models fuse image
feature element vi and question feature element qi directly,
such as an element product viqi. Those solutions largely ig-
nore the following two key points: 1) Whether vi and qi
are in the same space. 2) How to reduce the observation
noises in vi and qi. We argue that two differences between
those two feature elements themselves, like (vi − vj) and
(qi − qj), are more probably in the same space. And the dif-
ference operation would be beneficial to reduce observation
noise. To achieve this, we first propose Differential Networks
(DN), a novel plug-and-play module which enables differ-
ences between pair-wise feature elements. With the tool of
DN, we then propose DN based Fusion (DF), a novel model
for VQA task. We achieve state-of-the-art results on four pub-
licly available datasets. Ablation studies also show the effec-
tiveness of difference operations in DF model.

1 Introduction
Given an image and a related question, the Visual Ques-
tion Answering (VQA) task requires the machine to deter-
mine the correct answer. From an application perspective,
VQA improves human-computer interaction ability and can
be applied to many scenarios such as smart home manage-
ment systems and private virtual assistant (Kafle and Kanan
2017b). From a research perspective, VQA requires a joint
understanding of images and questions, and can be consid-
ered as a component of Visual Turing Test (Malinowski and
Fritz 2014). As a result, VQA has recently emerged as a
challenging task and received more and more interest from
researchers.

The basic framework of existing VQA models consists of
three stages. First, the image and the question are encoded
respectively. Second, the encoded image and question fea-
ture elements are fused. Third, the fused results are clas-
sified to derive the answer. Among them, the “fusion” in
the second step is the key. Therefore, most studies focus on
this point. Initially, linear models are used to fuse image and
question feature elements (Yang et al. 2016; Lu et al. 2016;
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Figure 1: DN-based Fusion (DF) model for Visual Question
Answering. The image and question feature elements are fed
into the Differential Networks (DN) and then fused to derive
the answer.

Li and Jia 2016; Nam, Ha, and Kim 2017). However, sim-
ple linear operations cannot bring fine-grained fusions be-
tween feature elements. Recently, bilinear models are used
to model the fusion between image and question feature el-
ements (Fukui et al. 2016; Kim et al. 2017; Yu et al. 2017;
Ben-younes et al. 2017).

Note that the fusion in both linear and bilinear models are
between the feature elements themselves, such as viqi for
linear models and viqj for bilinear models. However, for the
VQA problem, we argue that the fusion based on the differ-
ence between feature elements, like (vi−vj)(qi−qj), would
be more reasonable. This can be seen from two perspectives.
For one thing, since vi and qi are from different modalities,
it is unreasonable to fuse them directly. By contrast, after the
difference operation, information from both modalities goes
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to differential representations, and the fusion between them
becomes more relevant. For another, the difference opera-
tion can reduce potential observation noises in vi and qi. For
example, assuming that δ is the noise of the feature elements
vi and vj , then (vi + δ)− (vj + δ) can effectively filter the
noise.

In this paper, we propose Differential Networks (DN), a
novel plug-and-play module which enables differences be-
tween pair-wise feature elements. DN shows an interesting
relation with Fully-Connected Networks (FCN). Then, with
the tool of our DN, a new DN-based Fusion (DF) model for
VQA task is constructed. Intuitively, we show the flowchart
of our model in Fig. 1. Our DF model first makes differ-
ences on image and text feature elements respectively, and
then fuse the differential representations to infer the final an-
swer.

In summary, our contributions are as follows:

• We propose Differential Networks (DN), a novel plug-
and-play module which enables differences between pair-
wise feature elements;

• We propose DN based Fusion (DF), a novel model for
VQA task;

• We achieve state-of-the-art results on all four datasets and
conduct detailed ablation study to verify the effectiveness
of differential networks.

2 Related Work
In this section, we introduce the related work in three
consecutive sections. Firstly, we briefly review the current
models for VQA task. Secondly, we focus on reviewing
attention-based VQA models. Thirdly, we further review the
classical fusion strategies used in these attention models.

2.1 Visual Question Answering (VQA)
Initially, Bayesian-based models were proposed to solve the
VQA task (Malinowski and Fritz 2014; Kafle and Kanan
2016). With the success of deep neural networks, many dif-
ferent methods have been proposed to address the VQA
task. These methods can be divided into five categories:
attention-based models (Yang et al. 2016; Fukui et al. 2016),
memory-based models (Xiong, Merity, and Socher 2016;
Su et al. 2018), module-based models (Andreas et al. 2016;
Hu et al. 2017), relation-based models (Santoro et al. 2017)
and knowledge-based models (Wu et al. 2016; Wang et al.
2017). Among them, attention-based models, which select
the useful part of input information with attention mecha-
nisms, achieve significant performances on the VQA task.

In this paper, we employ the attention-based framework
to validate the effectiveness of differential networks.

2.2 Attention-based VQA models
Due to their superior performances, attention-based VQA
models have been received the most extensive studies. They
focus on locating relevant objects in input features, such as
bounding boxes or image regions.

Initially, (Chen et al. 2015) proposed one-step attention
to locate relevant objects of images. Furthermore, (Yang

et al. 2016; Xu and Saenko 2016) proposed multi-step
attention to update relevant objects of images and infer
the answer progressively. Additionally, (Lu et al. 2016;
Schwartz, Schwing, and Hazan 2017) proposed multi-modal
attention, which finds not only the relevant objects of images
but also questions or answers. Recently, (Fukui et al. 2016;
Kim et al. 2017; Yu et al. 2017; Ben-younes et al. 2017)
used bilinear fusion in attention mechanism to locate more
accurate objects of input features.

In this paper, to validate the effectiveness of differential
networks, we only use a simple one-step visual attention.

2.3 Fusion for Attention Mechanism
Attention mechanisms require fusion to calculate attention
distributions. Therefore, the degree of fusion has a high im-
pact on the quality of attention mechanism.

Existing attention models focusing on fusion can be di-
vided into two categories, linear models and bilinear models.
Initially, linear models are adopted to fuse image and ques-
tion feature elements. (Yang et al. 2016; Lu et al. 2016) used
the element-wise sum to fuse image and question feature el-
ements, (Li and Jia 2016; Nam, Ha, and Kim 2017) used the
element-wise multiplication to fuse image and question fea-
ture elements. Recently, bilinear models were used to model
more fine-grained fusion between image feature and ques-
tion feature elements. (Fukui et al. 2016) used the outer
product to fuse image and question feature elements but re-
sulting in the problem of dimension explosion. To solve the
problem, (Kim et al. 2017) used the element-wise multipli-
cation after the low-rank projection of image and question
features. To further approximate bilinearity, (Yu et al. 2017;
Ben-younes et al. 2017) used the k-calculated sum and sum-
pooling of window k respectively to increase the model ca-
pacity.

In this paper, we first propose DN module, which explic-
itly models the differences between pair-wise feature ele-
ments. Then we propose DF model to fuse the differential
representations.

3 Differential Networks
3.1 Definition and Derivation
Let x = (x1, x2, ..., xm)T be a feature vector. We perform
full pairwise differences between feature elements mapping
x to a new vector y = (y1, y2, ..., yn)

T. Each element in y
is calculated in Eq. (1):

yk =
∑
i,j

(xi − xj)w(k)
ij , (1)

where w(k)
ij ∈ R is a learnable parameter, i, j ∈ [1,m], k ∈

[1, n]. Eq. (1) can be written in the form of a matrix, as de-
noted in Eq. (2):

yk = xTW (k)1− xT(W (k))T1, (2)

where W (k) ∈ Rm×m is the learnable parameter. 1 ∈ Rm
is an all-ones vector.

Unfortunately, W ∈ Rm×m×n is a third-order tensor,
which makes the parameter scales large and difficult to train.
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Figure 2: Comparison of Differential Networks (DN) and Fully-Connected Networks (FCN).

Inspired by Mutan (Ben-younes et al. 2017), we factorize
W (k) as a sum of S low-rank matrices:

W (k) =

S∑
s=1

u(k)s ⊗ v(k)s , (3)

where u(k)s ∈ Rm and v(k)s ∈ Rm are learnable parameters,
S is a hyper-parameter, ⊗ represents the outer product. We
substitute Eq. (3) into Eq. (2), then we have Eq. (4):

yk =

S∑
s=1

[(xTu(k)s )(1Tv(k)s )− (xTv(k)s )(1Tu(k)s )]. (4)

Finally, Eq. (4) can be written in the form of a matrix:

y =

S∑
s=1

[(xTUs)� (1TVs)− (xTVs)� (1TUs)], (5)

where Us ∈ Rm×n, Vs ∈ Rm×n are learnable parameters,
y ∈ Rn. � is the element-wise multiplication.

We call the mapping from x to y Differential Networks
(DN) and denote Eq. (5) by Eq. (6) for simplification:

y = DN(x). (6)

3.2 DN vs. FCN
In this subsection, we compare Differential Networks (DN)
with Fully-Connected Networks (FCN), which is a com-
monly used neural network mapping x to y too.

For convenience of comparison, we rewrite DN as Eq. (7).
It can be also rewritten as an equation in the lower left part
of Fig. 2, and illustrated in the upper left part of Fig. 2. FCN
can be written as Eq. (8) and rewritten as an equation in the
lower right part of Fig. 2, and can be illustrated in the upper
right part of Fig. 2.

y
[DN ]
k =

∑
i,j

(xi − xj)w(k)
ij =

∑
i,j

xi(w
(k)
ij − w

(k)
ji ) (7)

y
[FCN ]
k =

∑
i

xiwik =
∑
i

xiw
(k)
ii , (8)

where in Eq. (8) we view the parameter matrix of sizem×n
in fully connected networks as n diagnoal matrices of size
m×m.

Comparing the illustrations of DN and FCN in the upper
part of Fig. 2, we can see that the biggest difference between
DN and FCN is the differential layer (light green) in the mid-
dle of DN. By the full difference between feature elements,
the differential layer can effectively reduce the noise of the
input information.

Comparing the formulas of DN and FCN in the lower part
of Fig. 2, we have a very interesting finding. FCN has only
weights for the diagonal, and the rest is zero. On the con-
trary, the diagonal of DN is 0, and the rest has weights. This
shows that FCN focuses on the feature element itself while
DN focuses on the interaction between feature elements.

4 Differential Fusion Model for VQA
Our DN based Fusion (DF) model is illustrated in Fig. 3. The
model includes three parts. Data embedding encodes images
and questions respectively. Differential Fusion is the major
part of the model, which implements DN based fusion. De-
cision making predicts final scores of answers.

4.1 Data Embedding
Faster-RCNN (Ren et al. 2015) is used to encode im-
ages with the static features provided by bottom-up-
attention (Anderson et al. 2018), GRU (Cho et al. 2014) is
used to encode text with the parameters initialized with skip-
thoughts (Kiros et al. 2015), as denoted in Eq. (9):

V = RCNN(image), Q = GRU(question), (9)

where V ∈ Rl×dv denotes the visual features of the top-
ranked l detection boxes and Q ∈ Rdq denotes the question
embedding.
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Figure 3: The overall structure of the proposed model for solving the VQA task. It consists of Data Embedding, Differential
Fusion and Decision Making, marked with dash lines respectively.

Then, the visual features and question features are pro-
jected to the same dimension, as denoted in Eq. (10):

V f = relu(VWv), Qf = relu(QWq), (10)
where Wf and Wq are learnable parameters. V f ∈ Rl×d
and Qf ∈ Rd are projected features. We omit the bias b for
simplicity.

4.2 Differential Fusion
Based on DN discussed in Sec. 3, we propose differential
fusion, as denoted in Eq. (11):

H =

R∑
r=1

DNr(V f )�DNr(Qf ), (11)

where � is the element-wise operation, R is a hyperparam-
eter, DNr means the rth DN with different learnable pa-
rameters. H ∈ Rl×dh is the result of the fusion. Then, multi
glimpse attention distributions are calculated in Eq. (12).

α = softmax(HWh), (12)
where Wh ∈ Rdh×g is a learnable parameter, g is the num-
ber of attention glimpses. Note that here softmax is per-
formed on the first dimension of matrix HWh ∈ Rl×g .
α ∈ Rl×g is a matrix representing g attention distributions.
Then, these attentions are used to attend the visual features,
as denoted in Eq. (13):

Ṽ = flatten(relu(αTVWα)), (13)

where Wα ∈ Rdv×
d′
g is a learnable parameter,

relu(αTVWα) ∈ Rg×
d′
g , Ṽ ∈ Rd′ . Then, the decision

maker interacts Ṽ and Qf again as denoted in Eq. (14):

F =

R∑
r=1

DNr(Ṽ )�DNr(Qf ), (14)

where F ∈ Rdf is the result of the fusion.

4.3 Decision Making
In Decision Making process, a linear layer with a softmax
activation function is used to predict the score of the candi-
date answer in Eq. (15):

â = softmax(FWf ), (15)

where Wf ∈ Rdf×|D|is the learnable parmater, â ∈ R|D| is
the predicted answer, D is the answer dictionary, |D| is the
number of candidate answers.

4.4 Training
We first calculate the ground-truth answer distribution in
Eq. (16):

ai =

∑N
j=1 1{uj = i}

N −
∑N
j=1 1{uj /∈ D}

, (16)

where a ∈ R|D| is the ground-truth answer distribution, ui
is the answer given by the ith annotator. N is the number
of annotators. In detail, N is 10 in the VQA 1.0 and VQA
2.0 dataset; N is 1 in the COCO-QA dataset and the TDIUC
dataset.

Finally, we use the KL-divergence as the loss function be-
tween a and â in Eq. (17):

L (â, a) =
|D|∑
i=1

ai log

(
ai
âi

)
. (17)

5 Experiments
5.1 Datasets and evaluation metrics
We evaluate our model on four public datasets: the VQA 1.0
dataset (Antol et al. 2015), the VQA 2.0 dataset (Goyal et al.
2017), the COCO-QA dataset (Ren, Kiros, and Zemel 2015),
and the TDIUC dataset (Kafle and Kanan 2017a). The VQA
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VQA 1.0 Test-dev VQA 1.0 Test-std

Open-Ended MC Open-Ended MC

Method All Y/N Num. Other All All Y/N Num. Other All
HighOrderAtt (Schwartz, Schwing,
and Hazan 2017) - - - - 69.4 - - - - 69.3

MLB(7) (Kim et al. 2017) 66.77 84.54 39.21 57.81 - 66.89 84.61 39.07 57.79 -
Mutan(5) (Ben-younes et al. 2017) 67.42 85.14 39.81 58.52 - 67.36 84.91 39.79 58.35 -
DualMFA (Lu et al. 2018) 66.01 83.59 40.18 56.84 70.04 66.09 83.37 40.39 56.89 69.97
ReasonNet (Ilievski and Feng
2017) - - - - - 67.9 84.0 38.7 60.4 -

DF (36boxes) (ours) 68.62 86.08 43.52 59.38 73.31 68.48 85.81 42.87 59.23 73.05

Table 1: Comparision with the state-of-the-arts on the VQA 1.0 dataset.

VQA 2.0 Test-dev VQA 2.0 Test-std

Method All Y/N Num. Other All Y/N Num. Other
MF-SIG-VG (Zhu et al. 2017) 64.73 81.29 42.99 55.55 - - - -
Up-Down (36 boxes) (Teney et al. 2018) 65.32 81.82 44.21 56.05 65.67 82.20 43.90 56.26
LC Baseline (100 boxes) (Zhang, Hare,
and Prügel-Bennett 2018) 67.50 82.98 46.88 58.99 67.78 83.21 46.60 59.20

LC Counting (100 boxes) (Zhang, Hare,
and Prügel-Bennett 2018) 68.09 83.14 51.62 58.97 68.41 83.56 51.39 59.11

DF (36 boxes) (ours) 67.73 83.91 46.7 58.7 67.86 84.1 46.15 58.7
DF (100 boxes) (ours) 68.31 84.33 48.2 59.22 68.59 84.56 47.1 59.61

Table 2: Comparision with the state-of-the-arts on the VQA 2.0 dataset.

Method All Obj. Num. Color Loc. WUPS0.9 WUPS0.0
QRU (Li and Jia 2016) 62.50 65.06 46.90 60.50 56.99 72.58 91.62
HieCoAtt (Lu et al. 2016) 65.4 68.0 51.0 62.9 58.8 75.1 92.0
Dual-MFA (Lu et al. 2018) 66.49 68.86 51.32 65.89 58.92 76.15 92.29
DF (36 boxes) (ours) 69.36 70.53 54.92 73.67 61.22 78.25 92.99

Table 3: Comparision with the state-of-the-arts on the COCO-QA dataset.

Question Type MCB-A
(Fukui et al. 2016)

RAU
(Kafle and Kanan 2017a)

CATL-QTA-W
(Shi et al. 2018)

DF (36 boxes)
(ours)

Sceen Recognition 93.06 93.96 93.80 94.47
Sport Recognition 92.77 93.47 95.55 95.90
Color Attributes 68.54 66.86 60.16 74.47
Other Attributes 56.72 56.49 54.36 60.82
Activity Recognition 52.35 51.60 60.10 62.01
Positional Reasoning 35.40 35.26 34.71 40.76
Sub. Object Recognition 85.54 86.11 86.98 88.71
Absurd 84.82 96.08 100.00 94.56
Utility and Affordances 35.09 31.58 31.48 41.52
Object Presence 93.64 94.38 94.55 95.58
Counting 51.01 48.43 53.25 58.37
Sentiment Understanding 66.25 60.09 64.38 68.77
Overall(Arithmetric MPT) 67.90 67.81 69.11 72.97
Overall(Harmonic MPT) 60.47 59.00 60.08 65.79
Overall Accuracy 81.86 84.26 85.03 86.73

Table 4: Comparision with the state-of-the-arts on the TDIUC dataset.
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1.0 dataset contains a total of 614,163 samples and is divided
into three splits: train(40.4%), val(19.8%), test(39.8%). Fur-
ther, the test set includes two types: test-dev and test-
std. The dataset has two subtasks: Open-Ended (OE) and
Multiple-Choice (MC). The VQA 2.0 dataset contains a to-
tal of 1,105,904 samples and is divided into three splits:
train(40.1%), val(19.4%), test(40.5%). It is more balanced
compared to the VQA 1.0 dataset. The COCO-QA dataset
contains a total of 117,684 samples and is divided into two
splits: train(66.9%), test(33.1%). The TDIUC dataset con-
tains a total of 1,654,167 samples and is divided into two
splits: train(67.4%), test(32.6%). For the VQA 1.0 and VQA
2.0 dataset, we use the evaluation tool proposed in (Antol et
al. 2015) to evaluate the model, as denoted in Eq. (18):

Acc(ans) = min

{
#humans that said ans

3
, 1

}
. (18)

For the COCO-QA dataset and TDIUC dataset, we evalu-
ate the model in Eq. (19):

Acc(ans) = 1{ans = ground truth}. (19)

5.2 Implementation details
During the data embedding phase, the image features are
mapped to the size of 36 × 2048 and the text features are
mapped to the size of 2400. In the differential fusion phase,
the number of hidden layer in DF is 510; hyperparameter S
is 1, R is 5. The attention hidden unit number is 620. In the
decision making phase, the number of hidden layer in DF is
510. All the nonlinear layers of the model all use the relu ac-
tivation function and dropout (Srivastava et al. 2014) to pre-
vent overfitting. All settings are commonly used in previous
work. We implement the model using Pytorch. We use Adam
(Kingma and Ba 2014) to train the model with a learning
rate of 10−4 and a batch size of 128. More details, including
source codes, will be published in the near future.

5.3 Comparisons with state-of-the-arts
In this section, we compare DF model with the state-of-the-
art models on the VQA 1.0 dataset, the VQA 2.0 dataset,
the COCO-QA dataset and the TDIUC dataset. In the VQA
1.0 dataset and the VQA 2.0 dataset, DF is trained on the
train+val set and tested on the test-dev and test-std set. In the
COCO-QA dataset and the TDIUC dataset, DF is trained on
the train set and tested on the test set.

Firstly, Tab. 1 shows the comparison with the state-of-
the-art models on the VQA 1.0 dataset. DF achieves new
state-of-the-art results in both Multiple-Choice (MC) task
and Open-Ended (OE) task. Using a single image feature,
DF not only outperforms all the models that use single image
feature but also outperforms ReasonNet (Ilievski and Feng
2017), which uses six input image features including face
analysis, object classification, scene classification and so on.
Especially, there is an improvement of 3.08% of MC task in
test-std set.

Secondly, Tab. 2 shows the comparison with the state-of-
the-art models on the VQA 2.0 dataset. Compared with Up-
Down (36boxes) (Teney et al. 2018), which is the winning
model in the VQA challenge 2017, DF (36boxes) achieves

Method Validation
MLB 62.91
Mutan 63.61

DF with
∑R
r=1 V

fW r
vf �DN

r(Qf ) 64.46
DF with

∑R
r=1DN

r(V f )�QfW r
qf 64.58

DF without dropout 61.05
DF with tanh 64.78

DF 64.89

Table 5: Ablation study on the VQA 2.0 Validation.

2.19% higher accuracy. Compared with the most recent
state-of-the-art model LC counting (100boxes) (Zhang,
Hare, and Prügel-Bennett 2018), our single DF (100boxes)
model achieves a new state-of-the-art result of 68.59% in the
test-std set.

Thirdly, Tab. 3 shows the comparison with the state-of-
the-art models on the COCO-QA dataset. DF improves the
overall accuracy of the state-of-the-art Dual-MFA (Lu et al.
2018) from 66.49% to 69.36%. There is an improvement in
accuracy of 3.6% in “Num.” question and 7.78% in “Color”
question.

Fourthly, Tab. 4 shows the comparison with the state-of-
the-art models on the TDIUC dataset. DF improves the over-
all accuracy of the state-of-the-art CATL-QTA-W (Shi et al.
2018) from 85.03% to 86.73%. There is also an improve-
ment of 5.12% in “Counting” question and 5.93% in “Color
Attributes” question.

In summary, the strong capability of the DF is shown in
all four datasets.

5.4 Ablation study

In this section, we conduct some ablation studies. For a fair
comparison, all the data provided in this section are trained
under the VQA 2.0 training set and tested on the VQA 2.0
validation set. All the models use the exact same bottom-up-
attention feature (36 boxes) extracted from faster-rcnn.

The first part of Tab. 5 compares DF with other attention
models. Mutan can be viewed as the fusion between two
FCNs, i.e.

∑R
r=1 V

fW r
vf � Q

fW r
qf . DF outperforms Mu-

tan by 1.28%. This shows the effectiveness of the DN.
To further validate the effectiveness of DN, the models in

the second part of Tab. 5 mix FCN and DN. DF-Q means
using DN only for questions. In detail, DF-Q replaces Eq.
(11) with H =

∑R
r=1 V

fW r
vf � DNr(Qf ) and replaces

Eq. (14) with F =
∑R
r=1 Ṽ W

r
ṽ �DNr(Qf ). Similary, DF-

V means using DN only for images. As we can see, com-
pared with DF, both DF-Q and DF-V lower the performance
(64.89→64.46/64.58).

The third part of the Tab. 5 studies some tips and tricks.
We find that using tanh does not affect performance much,
but using relu does perform better. In addition, we find that
using dropout is crucial — not using dropout will signifi-
cantly lower the performance (64.89→61.05).

9002



Mutan DF-Q DF-V DF
Example 1 Question: How many zebras? Ground-truth: 4

37 37 43 43
Example 2 Question: What is in front the window on a stand? Ground-truth: tv

table 7 tv 3 books 7 tv 3
Example 3 Question: Are there people in the water? Ground-truth: no

yes 7 yes 7 yes 7 no 3
Example 4 Question: How many frames are on the wall? Ground-truth: 7

6 7 4 7 6 7 6 7

Figure 4: Visualization of DF and its comparative models.

5.5 Qualitative evaluation
In this section, we visualize some results of DF model and
its comparative models in Fig. 4. Four examples are given
including three success cases and one failure case of DF
model. Each example compares the visualization of atten-
tions of four models: Mutan, DF-Q, DF-V, and DF. The
probability value of the attention is shown in the box upper
left of each bounding box. For example, in Example 1, al-
though both DF and DF-Q answered correctly, the bounding
box for DF is more accurate and has a high attention prob-
ability of 0.62. As we can see from Example 1∼3, whether
DF-Q or DF-V is wrong or they are both wrong, DF still
answers correctly. This shows that the difference operation
plays an important role. In Example 4, all four models an-
swered incorrectly. This shows that counting is still a chal-
lenge for attention-based models. Even so, the DF model

still boxes all the frames on the wall with a high attention
probability of 0.72. This shows that by reducing the noise
of the input features and map the image and the question
to the same differential space, DF efficiently improves the
attention accuracy and confidence.

6 Conclusion

In this paper, we propose a general DN module. Based on
DN, we propose a new DF model for VQA task. We achieve
state-of-the-art results on four publicly available datasets. In
the future, we plan to use DN for other tasks and validate its
generality and effectiveness.
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