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Abstract

Recently, attention mechanism has been successfully applied
in image captioning, but the existing attention methods are
only established on low-level spatial features or high-level
text features, which limits richness of captions. In this pa-
per, we propose a Hierarchical Attention Network (HAN) that
enables attention to be calculated on pyramidal hierarchy of
features synchronously. The pyramidal hierarchy consists of
features on diverse semantic levels, which allows predicting
different words according to different features. On the other
hand, due to the different modalities of features, a Multivari-
ate Residual Module (MRM) is proposed to learn the joint
representations from features. The MRM is able to model
projections and extract relevant relations among different fea-
tures. Furthermore, we introduce a context gate to balance the
contribution of different features. Compared with the exist-
ing methods, our approach applies hierarchical features and
exploits several multimodal integration strategies, which can
significantly improve the performance. The HAN is verified
on benchmark MSCOCO dataset, and the experimental re-
sults indicate that our model outperforms the state-of-the-art
methods, achieving a BLEU1 score of 80.9 and a CIDEr score
of 121.7 in the Karpathy’s test split.

Introduction

Image captioning, which aims to describe the content of
an image, has emerged as a prominent attractive research
problem in both academia and industry. It is a multidisci-
plinary task involving computer vision and natural language
processing. Image captioning is difficult for machine since
it not only requires a comprehensive understanding of ob-
jects, scene and their mutual relations, but also needs to de-
scribe the content of an image with semantically and syn-
tactically correct sentence. In real life, image captioning has
a wide range of applications, ranging from helping visually
impaired people to personal assistants.

Recently, attention mechanism, which plays an impor-
tant role in image captioning, has been developed into di-
verse forms. For example, (Xu et al. 2015; Lu et al. 2017;
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[Text]
A desk with a computer and a keyboard.

[Text, Patch]

A desk with a laptop and a monitor.

[Text, Patch, Object]

A desk with two monitors and two laptops on it.
(a)

[Text]

A man on skis in the snow.

[Text, Patch]

A man and a women standng on a mountain.

[Text, Patch, Object]

Two people on skis standing on top of a snowy mountain.

NG o)

Figure 1: The illustration of captions generated by features
of different levels. Text, Patch and Object indicate the se-
mantically strong text features, semantically weak patch fea-
tures and semantically moderate features respectively.

Wang et al. 2017) produce a spatial mask via calculat-
ing the similarity between image patches and generated
words at each time step. (Anderson et al. 2018) generates
bounding boxes with an object detector and highlights re-
gions associated with the generated words. (You et al. 2016;
Wau et al. 2016; Gan et al. 2017) apply the soft attention to
selectively focus on visual concepts. These attention mecha-
nisms are used to distill more discriminative visual informa-
tion to improve generated sentences. In the aforementioned
methods, the attention mechanisms are based on single level
features, such as semantically weak patch features, seman-
tically moderate object features or semantically strong text
features. However, different words in description sentence
are relevant to features of different levels. Figure 1 illustrates
captions generated by leveraging visual features of different
levels. In Figure 1(a), the model applying text features at-
tends to describe all objects in the image without focusing
on salient objects. With both text features and patch features,
the model prefers to describe objects with higher salience,
but the quantity of described objects is inaccurate. When
leveraging text features, object features and patch features
simultaneously, the model counts objects in images accu-
rately, which indicates different words are relevant to fea-



tures of different levels, and it is of great significance to
incorporate features of different levels to predict sentences.
In this paper, we propose a novel features hierarchy, which
consists of features on diverse semantic levels. On top of
this hierarchical structure, we construct several independent
parallel attention modules to refine the features of different
levels, which allow us to leverage different features as the
dominant role to predict words at different time steps.

Since features from different attention networks are in dif-
ferent modalities, it is necessary to explore a multimodal
embedding strategy to combine them. However, most ex-
isting image captioning models (You et al. 2016; Rennie et
al. 2017), directly integrate features of different modalities
via addition or concatenation, which is unable to fully cap-
ture the complex correlations between features of different
modalities. Motivated by the researches (Kim et al. 2016;
2017; Ben-younes et al. 2017) in Visual Question Answer
(VQA), in this paper, we propose a novel Multivariate Resid-
ual Module (MRM) to model the richer multimodal repre-
sentation. MRM is able to project features of each modality
into the target space and exploit the relevant relations among
source spaces. Compared with the traditional methods, the
MRM preserves valuable information of each modality and
extracts more discriminative multimodal features. On the
other hand, inspired by the neuroscience researches (Unger-
leider and Haxby 1994; Lu et al. 2018b), we further design a
parallel MRM (pMRM) for integrating features of different
levels gradually.

Since the importance of the features generated by MRM
varies from word to word at the different time step, we intro-
duce a context gate structure to adaptively balance the con-
tribution of features of different levels.

Overall, the contributions of this paper are four fold:

In order to generate accurate and informative sentences,
we construct a feature pyramid leveraging patch features,
object features and text features, and build an attention
network to refine features.

We propose a parallel Multivariate Residual Network to
integrate features of different levels, which aims at pro-
jecting features into a unified target space and exploring
the intrinsic relationship between different source spaces.

A context gate mechanism is introduced into our model to
adaptively balance the contribution of features on differ-
ent levels.

We conduct a number of experiments on the MSCOCO
dataset and the results show that our model outperforms
the state-of-the-art approaches, achieving a BLEU1 score
of 80.9 and a CIDEr score of 121.7 in the Karpathy’s test
split.

Related Work

Attention mechanism Recently, plenty of researchers are
devoted to studying diverse attention mechanisms in order
to refine visual information for image captioning. (Xu et al.
2015) presents a spatial attention mechanism to focus on the
fixed-size patches which are most relevant to the generated
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words. (You et al. 2016) applies an attribute predictor to pro-
pose semantic concepts which are selectively attended and
combined with the semantic information of recurrent neural
network to predict words. (Anderson et al. 2018) proposes
a bottom-up and top-down attention mechanism that com-
putes the relevance between the generated words and salient
objects. Although these attention mechanisms are effective,
they have the deficiency of predicting words by using only
one kind of features. In a sentence, different words could be
determined by the features of different levels. For example,
the color words could be predicted by low-level features and
the quantifier could be generated by mid-level features. Pre-
dicting on one-level features may generate words that are
inconsistent with the content of images.

Multimodal embedding In the previous works (You et
al. 2016; Rennie et al. 2017) in image captioning, features of
different modalities are usually integrated by the concatena-
tion or addition operators. However, in the Visual Question
Answering (VQA), Kim (Kim et al. 2016) proposes Mul-
timodal Residual Network (MRN) for multimodal residual
learning, which adopts Hadamard multiplication for the joint
residual mappings. Kim (Kim et al. 2017) further presents a
Multimodal Low-rank Bilinear Attention Networks (MLB)
S0 as to approximate bilinear pooling to learn the multimodal
features. It is beneficial to introduce these achievements into
the image captioning task.

Methodology
Overall

Given an image I, the image captioning model needs to gen-
erate a caption sequence w = {wy, ws,...,wr}, wy € D,
where D is the vocabulary dictionary and 7' is the sequence
length. We adopt the variant CNN-RNN architecture for im-
age captioning. In particular, CNN, which plays the role of
an visual encoder, extracts four different features including
global features V;, patch features V,, object features V,, and
text features V; to establish hierarchical features. As a se-
mantic decoder, RNN is leveraged to guide the generation
of attention and caption sequences. In order to alleviate the
vanishing gradient problem, we adopt LSTM (Hochreiter
and Schmidhuber 1997) as a decoder in this paper.

To decouple attention guidance and sequence generation,
we construct a cascaded LSTM structure that includes a vi-
sual LSTM and a language LSTM. The former is applied
to perceive global information of images and guide dif-
ferent attention mechanisms to generate attention features
Ap, Ao, Ay, while the latter guides caption generation. In or-
der to better integrate attention features of different levels,
we construct MRM to extract the internal relationship be-
tween features.

The overall structure of our model is shown in Figure 2.
During the generation process, the visual encoder extracts
different features. The visual LSTM reviews the global in-
formation of the image at each moment and guides attention
models to refine features. The attention features of different
levels are input into pMRM to project into a unified target
space for integration. The language LSTM generates a word
at each moment given last word and multimodal features.
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Figure 2: The illustration of the overall structure of HAN, which is composed of Encoder module, Attention module, parallel
MRM and Decoder module. The model takes the images and the words generated at last time step as input and outputs the next

words.

The process can be defined by the following formulas:

Vg, Vp, Vo, Vi = Detectors(I) 1))

W = LSTMy (i, Vy, E(w)) @)
Ay, Ay, Ay = Attentions(hy , Vy, Vo, Vi) 3)
M = pMRM (A, Ay, Ay) )

hE = LSTMp (M) (5)

w; ~ Softmaz(hl) (6)

where Detectors() represents feature extractors and E() is
the embedding function which maps the one-hot represen-
tation into the embedding space. LST My, Attentions(),
pMRM() and LST M, represent visual LSTM, attention
module, pMRM and language LSTM, respectively.

Given an image I and the corresponding caption w =
{wy,ws, ..., wr}, the model aims to maximize the follow-
ing loss function:

0" = argmax Z log p(y|I;0)
(y)

where 6 is the parameters of our model. Applying chain
rule, we can model the joint probability on w
{w1,ws, ..., wr} and the cross entropy loss function (XE)
is adopted to minimize a negative log-likelihood:

)

T
L= _ZIng(wt|w17~--7wt—laI) ®

t=1

Hierarchy feature pyramid

In the previous work, most attention mechanisms are based
on only one-level features. For example, (Xu et al. 2015)
is based on semantically weak patch features. (Anderson et
al. 2018) is established on semantically moderate object fea-
tures and (You et al. 2016) leverages semantically strong text
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features. However, as shown in Figure 1, different words are
associated with features of different levels. To leverage dif-
ferent features to generate words synchronously, we propose
a hierarchy feature pyramid structure. The bottom, middle
and top layers of the hierarchy are the patch features, object
features and text features respectively.

Patch features Patch features refer to the abstract feature
expression of each patch in an image. We utilize a Resnet-
101 pre-trained on ImageNet to extract features of the last
convolution layer as patch features V,, € R"™"*? In par-
ticular, Vp = [V;D(l), Vp(g), ey Vp(rxr)], Vp(i) € Rlisa
d-dimensional visual patch vector and the number of patch
features is Np =7 x r = 196.

Object features Object features refer to the feature rep-
resentation of salient objects. In order to accurately capture
objects, we introduce the Faster RCNN into our model. In
our work, we take N, object features V, with the high-
est confidence, where N, 15. In particular, V,
Vo), Vo@)s - - -» Vo(wvo))s Voriy € R* is a d-dimensional vi-
sual object vector.

Text features Text features refer to semantic concepts
related to images, including adjectives, verbs, and nouns.
In order to obtain the text features, we construct a X =
2000 classification text predictor, where the K represents
the number of the most frequent words in the dataset. We
take Ny = 10 text concepts T' = [T1,Ts, ..., T,] with the
highest score. In particular, when constructing feature hier-
archy, the semantic concepts are converted to text features
V; € RNt*4 via the Embedding function, where V;(;) € R?
is a d-dimensional text vector.

The text predictor, composed of the backbone of
ResNet101 and three novel fully connected layers, is shown
in Figure 3. In training stage, we fix the parameters of the
ResNet and only optimize the fully connected layers to pre-
dict the texts that are related to the input image. The objec-
tive function we adopted is defined as follows:
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Figure 3: The illustration of text predictor based on
Resnet101 with three fully connected layers.

1 N
L=-% > [p}log(pi) + (1 = p})log(1 —p;)] ()
i=1

where N represents the number of texts and the pj is 1 if the
corresponding word exists in the groundtruth.

Attention module

In order to focus on the features that are most relevant to
words at the current time step, the soft attention mechanism
(Xu et al. 2015) is introduced into our framework. We con-
struct three independent attention networks on three levels
for refining features. Given the features V' of one level and
the output h}” of the visual LSTM, we apply a neural net-
work to normalize attention weights:

(10)

a(t) = softmax(z(t)) (11)
where Wy, W), € R4*? and W,, € R**" are the trainable
matrices and «(t) € RY are the attention weights. Based on

the weight matrix, attention features A(¢) can be calculated
by weighted sum at the current time step ¢:

2(t) = WE tanh(Wy 'V + Wihy)

N
Alt) =D ait)Vi (12)
=1

Specially, non-visual words in captions are not relevant to
object and text features. Thus, we concatenate object fea-
tures with global features, text features with semantic fea-
tures of the Language LSTM at the last time step in order to
provide the extra global information to attend.

Multivariate Residual Module

The existing image captioning methods do not employ the
strategy of combining various features, but directly fuse fea-
tures with concatenation or addition operators. Motivated by
the researches (Kim et al. 2016)(Kim et al. 2017), we pro-
pose a novel Multivariate Residual Module (MRM) to inte-
grate information of different modalities. The MRM consists
of a projection part and a relation part.

Projection Inspired by ResNet (He et al. 2016), the pro-
jection part (show in Figure 4(a)) is proposed to learn the
relationship between the input data and nonlinear residual
function, rather than directly learn the desired mapping.
Thus, we construct two independent residual networks to
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Figure 4: The illustration of Multivariate Residual Module
and parallel Multivariate Residual Module.

project the patch attention feature and the text attention fea-
ture into the object space:

H, = A, + ReLU (W, A,) (13)
Ht = At + ReLU(WmtAt) (14)

where A, and A, are the patch attention feature and text at-
tention feature respectively. ReLU is a nonlinear activation
function and the overall projected feature H defined as

H=A,+H,+H, (15)

where A, is the object attention feature.

Relation Motivated by (Kim et al. 2016)(Kim et al. 2017),
the relation part is proposed to apply the multimodal bilin-
ear strategy to exploit the inherent relationship among di-
verse spaces. The relation network is shown in Figure 4(b).
Given the patch attention feature A, € R™ and object fea-
ture A, € R", multimodal bilinear strategy is defined as
follows:

Zi = AW, A, (16)

where W; € R™*"™ is the weight matrix. In order to ob-
tain the output Z € R°, we need to learn o matrices W =
[W1,..., W,] € R™*"™*°_ According to (Kim et al. 2017),
we can rewrite the above formula to decrease the dimensions
of parameter matrices:

Z; = AlWiA, = ATUV A, =UT A, o VA, (17)

Z=UTA,oVTA, (18)

where U = (U7, ...,U,) € R™*°,V = [V4,...,V,] € R**°,
and o represents the Hadamard product. Further, we can ex-
tend this strategy to merge the features of three modalities
and rewrite it as follows:

Z=UTA,0VTA, o WT A, (19)

where A; represents text attention feature. U, V, W are
weight matrices. Finally, we apply an average pooling layer
to condense relation features:

R = AvgPool(Z) (20)



MRM The MRM is shown in Figure 4(c). The output of
the multivariate residual module is determined by projection
features H (refers to the equation (15)) and relation features
R (refers to the equation (20)), which is defined as:

M=H+R 1)

PMRM (parallel MRM) The neuroscience (Ungerleider
and Haxby 1994) proves that there is a content pathway in
the brain for responding selectively to relevant object iden-
tification, and a position pathway for responding selectively
to spatial aspects of stimuli. Furthermore, the latest research
(Lu et al. 2018b) indicates that there is a cluster of neurons
in the brain that provides fine-grained object information to
the pathways when identifying objects. In our work, similar
to these research, we propose a parallel MRM to integrate
features of different levels. The pMRM first provide the ob-
ject information to the text features and the patch features
respectively. Then a context gate is introduced to selectively
focus on high-level content features and low-level position
features. The pMRM is shown in Figure 4(d).

Context Gating

Inspired by the gating mechanism in LSTM (Hochreiter and
Schmidhuber 1997) and the work (Wang et al. 2018) in
dense video captioning, we introduce a context gating mech-
anism into our model to balance the contribution of low-
level context and high-level context. When obtaining the
low-level attended features M, and the high-level attended
features My;, we learn a context gate to balance them. We
project the two different features into the same space:

My, = tanh(Wg M) (22)

MH = tcmh(WHMH) (23)
where W, Wy are the projection matrices. The context gate
is then calculated by a nonlinear sigmoid function:

Gete = o(Wy[Mp, My, b)) (24)

where h} is the previous visual LSTM state and g, is a
512-d weight vector. We could fuse the low-level features
and the high-level features as follows:

M = [(1 - gctm) o Mr, geta © MH} (25)
Objective

Firstly, we adopt the usual cross entropy loss (XE) to opti-
mize our model. Considering the XE may result in the dis-
crepancy of evaluation between training and inference, we
further adopt the CIDEr (Rennie et al. 2017) as the objective
function to finetune our model. Specially, we minimize the
negative expectation score of CIDEr as follows:

L(0) = —E\ysmp, [CIDET(w®)] (26)

According to (Rennie et al. 2017), the expected gradient for
single sample w® ~ py is:

VoL(0) = —(CIDEr(w®) — CIDEr(w)) /¢ log pg(w®)

(27)
where w® = (wf$, ..., w$), w§ is the word sampled at time ¢
and CIDEr(w) is the baseline score obtained by greedily
decoding the current model.
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Experiment

Datasets and Evaluation metrics

The MSCOCO dataset (Lin et al. 2014) is the bench-
mark dataset for image captioning, which contains 82,783,
40,504, and 40775 images for training, validation and test re-
spectively. For offline evalution, we employ the Karpathy’s
splits (Karpathy and Li 2015) which contain 113,287 images
for training, 5,000 images for validation and 5,000 images
for test. For fair comparison, we also report the results of the
online MSCOCO testing server. To evaluate the quality of
captioning, we adopt the evaluation criteria widely applied
in previous works: BLEU (Papineni et al. 2002), METEOR
(Denkowski and Lavie 2011), ROUGEL (Lin 2004), CIDEr
(Vedantam, Zitnick, and Parikh 2015) and SPICE (Anderson
et al. 2016).

Implement details

We use the ResNetl01 pretrained on ImageNet to extract
global feature and patch features, and use the Faster RCNN
pretrained on MSCOCO object detection dataset to obtain
object features, and train another ResNet101 to predict vi-
sual concepts. The dimension of these features are reduced
to 512. Due to the limitation of the hardware, we only adopt
196 patch features, 15 object features and 10 text features
for each image. The dimensions of embedding layers and
both LSTMs are set to 512. Firstly, we train our model under
cross entropy (XE) loss using ADAM optimizer with a learn-
ing rate S5e-4 and do not finetune the CNN. Afterwards, we
perform the CIDEr standard optimization on the XE-trained
model, and also use the Adam optimizer. In the decoding
process, we use beam search and set beam size to 3.

Comparison with the state-of-the-art methods

For offline evaluation on MSCOCO dataset, we compare our
model with the current state-of-the-art methods: Adaptive
(Lu et al. 2017), Att2in (Rennie et al. 2017), Updown (An-
derson et al. 2018) and NeuralBabyTalk (Lu et al. 2018a) on
MSCOCO. The Adaptive method proposes an adaptive at-
tention to decide where and when to attend. Att2in modifies
the architecture of the traditional spatial attention mecha-
nism and optimizes the model with reinforcement learning.
Updown proposes a bottom-up mechanism to detect image
regions, and a top-down mechanism to determine feature
weightings. NBT combines the patch attention with object
attention, and generates sentences template with slots, which
are then filled in by visual concepts. Table 1 shows the re-
sults on the Karpathy’s test split. From the table we can find
that our model achieves the best performances in all metrics.
With XE objective, our model has an superiority over NBT
model with an improvement of 7.1% in terms of the CIDEr
metric. With CIDEr objective, our model improves 9.2% rel-
ative to att2in model. Considering the fact that Updown ap-
plies the object detector trained on Visual Genome dataset
(Krishna et al. 2017) and thus obtains better object features,
we do not compare its performance with other models.

We further report the results on the official MSCOCO
evaluation server in Table 2. The models in first row are op-
timized with XE, and the one in second row are finetuned



Table 1: The performance of HAN on the MSCOCO Karpathy’s test split. The XE is the cross entropy objective and the RL is
the reinforcement learning objective. * uses better object features, and are thus not directly comparable.

Dataset Objectvie Models B1 B2 B3 B4 M R C S
Att2in(Rennie et al. 2017) - - - 31.3  26.0 543 101.3 -
Adaptive(Lu et al. 2017) 742 58.0 439 332 26.6 - 108.5 19.5
XE NBT(Lu et al. 2018a) 75.5 - - 347 27.1 - 107.2  20.1
MSCOCO Updown*(Anderson et al. 2018)  77.2 - - 36.2 27.0 564 1135 203
ours 772 612 47.7 362 275 56.6 1148 20.6
Att2in(Rennie et al. 2017) - - - 333 263 553 1114 -
RL Updown*(Anderson et al. 2018)  79.8 - - 36.3 277 569 120.1 214
ours 809 646 498 376 278 58.1 121.7 215

Table 2: Comparison with the state-of-the-art methods on the online MSCOCO test server. | indicates the results of ensemble
models.

Models B1 B2 B4 M R C
c5 40 c5 40 c5 40 c5 40 c5 40 c5 40

SCA(Chen et al. 2017) 72.5 89.2 556 803 306 582 246 329 528 672 9l1.1 924
NIC(Vinyals et al. 2015) 713 895 542 80.2 309 587 254 346 53.0 682 943 94.6
ATT(You et al. 2016) 73.1 90.0 565 81.5 316 599 250 335 535 682 943 95.8
Adaptive(Lu et al. 2017) 748 920 584 845 336 637 264 359 550 705 1042 1059
MIXER(Ranzato et al. 2016) 74.7 909 579 827 31.7 60.0 258 340 545 686 99.1 101.2
SPIDEr(Liu et al. 2017) 754 918 59.1 84.1 332 624 257 340 550 695 101.3 103.2
AC(Zhang et al. 2017) 77.8 929 612 855 337 625 264 344 554 69.1 1102 112.1
SCSTT(Rennie et al. 2017) 78.1 931 619 860 352 645 270 355 563 707 1147 116.7
HAN 804 945 638 877 365 668 274 361 573 719 1152 118.2
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with CIDEr. We can find that HAN outperforms other mod-
els, and achieves an impressive result.

Ablation study

To better understand the effect of our hierarchical features
strategy, we conduct experiments on a unified framework to
compare the model leveraging hierarchical features by con-
catenation (Hierarchy) with three models leveraging patch
features (Patch), object features (Object) and text features
(Text) respectively. In particular, the framework mainly con-
sists of Visual LSTM, Attention module and Language
LSTM. The MRM is removed in order to provide the same
experimental conditions. The results are shown in Table 3.
The Hierarchy model achieves an improvement of 5.2%,
3.8% and 18.6% in terms of the CIDEr metric compared
with the Patch model, Object model and Text model. Bet-
ter performance can be attributed to the fact that Hierar-

tion(bottom) and our generated concepts(left).

chy model can provide more extensive features for Attention
module.

To illustrate the effect of our multivariate residual embed-
ding strategy, we further carry out another ablation study and
the results are exhibited in Table 4. Compared with the pre-
vious methods that apply concatenation or addition to inte-
grate features, our MRM achieves an improvement of 3.2%
and 3.1% in terms of the CIDEr metric. This indicates that
our MRM is able to learn the valuable representations from
features of different levels. Moveover, the pMRM network
promotes the CIDEr score from 114.2 to 114.8, because it
integrates different features and introduces the gate mech-
anism to adaptively adjust the contribution of features on
different levels.
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Figure 8: The visualization of the context gate. The red and
blue colors represent the highest and lowest score respec-
tively.

Qualitative Analysis

In order to qualitatively analyze our model, we first ex-
hibit the categories proposed by Faster RCNN trained on
MSCOCO and the texts generated by our text predictor in
Figure 5. The results reveal that the texts proposed by our
predictor are more related to image content. Secondly, we
visualize the attention masks of features of different levels
for each word in the generated caption. The visualization
of text attention is shown in Figure 6, and the visualization
of patch and object attention are shown in Figure 7. In Fig-
ure 6, when inputting the word “baseball”, the text attention
assigns the highest confidence to the concrete concepts for
guiding the next word “bat”. In Figure 7, when predicting the
word “bat”, our patch attention focuses on the area around
the baseball bat, and the object attention can accurately at-
tend to the region of “bat”. Figure 8 exhibits the visualiza-
tions of the context gate when predicting the words “boy”
and “bat”. Each row represents a weight vector, and the red
and blue colors denote the highest and lowest score respec-
tively. When predicting different words, the context gate can
adaptively focus on the different channels of the high-level
feature and the low-level feature.

Conclusions

In this paper, we propose a Hierarchical Attention Network
(HAN) for image captioning. The key of our work is adopt-
ing semantically weak patch features, semantically moder-
ate object features and semantically strong text features to
construct a pyramidal hierarchy of features, which allows
predicting different words according to different features.
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Table 3: The performance of the ablation experiment on sin-
gle feature and hierarchical features.

Model B1 B2 B4 M R C
Patch 752 59.1 344 262 553 106.8
Object 75.5 593 349 264 556 1083
Text 712 543 308 247 528 948
Hierarchy 763 604 355 271 564 1124

Table 4: The performance of the ablation experiment on hi-
erarchical features with different combination.

Model Bl B2 B4 M R C

Add 764 602 353 272 563 111.2
Concat 763 604 355 27.1 564 1124
Projection 76.5 60.6 357 272 563 1123
Relation 767 60.8 358 273 565 1132
MRM 76.8 60.7 36.1 275 56.6 1142
pPMRM 772 612 362 27.5 56.6 114.8

We also propose an MRM to model projections and extract
relevant relations among different features. Inspired by the
latest research in neuroscience, we further construct the par-
allel MRM to combine features gradually. Moreover, a con-
text gate is introduced to balance the contribution of differ-
ent features. We verify our model on the benchmark datasets
MSCOCO, and achieve the state-of-the-art results.

Acknowledgement
This work was supported in part by the NSFC (61673402),
the NSF of Guangdong Province (2017A030311029),
the Science and Technology Program of Guangzhou
(201704020180), and the Fundamental Research Funds for
the Central Universities of China.

References

Anderson, P.; Fernando, B.; Johnson, M.; and Gould, S.
2016. Spice: Semantic propositional image caption evalu-
ation. In ECCV, 382-398.

Anderson, P.; He, X.; Buehler, C.; Teney, D.; Johnson, M.;
Gould, S.; and Zhang, L. 2018. Bottom-up and top-down at-

tention for image captioning and visual question answering.
In CVPR, 6077-6086.



Ben-younes, H.; Cadene, R.; Cord, M.; and Thome, N. 2017.
Mutan: Multimodal tucker fusion for visual question an-
swering. In ICCV, 2631-2639.

Chen, L.; Zhang, H.; Xiao, J.; Nie, L.; Shao, J.; Liu, W.;
and Chua, T.-S. 2017. Sca-cnn: Spatial and channel-wise
attention in convolutional networks for image captioning. In
CVPR, 6298-6306.

Denkowski, M., and Lavie, A. 2011. Meteor 1.3: Automatic
metric for reliable optimization and evaluation of machine
translation systems. In Proceedings of the Sixth Workshop
on Statistical Machine Translation, 85-91. Association for
Computational Linguistics.

Gan, Z.; Gan, C.; He, X.; Pu, Y.; Tran, K.; Gao, J.; Carin, L.;
and Deng, L. 2017. Semantic compositional networks for
visual captioning. In CVPR, 1141-1150.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual
learning for image recognition. In CVPR, 770-778.

Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural Computation 9(8):1735-1780.

Karpathy, A., and Li, F. F. 2015. Deep visual-semantic align-
ments for generating image descriptions. In CVPR, 3128
3137.

Kim, J.-H.; Lee, S.-W.; Kwak, D.; Heo, M.-O.; Kim, J.; Ha,
J.-W.; and Zhang, B.-T. 2016. Multimodal residual learning
for visual qa. In NIPS, 361-369.

Kim, J.; On, K. W.; Lim, W.; Kim, J.; Ha, J.; and Zhang, B.
2017. Hadamard product for low-rank bilinear pooling. In
ICLR.

Krishna, R.; Zhu, Y.; Groth, O.; Johnson, J.; Hata, K.;
Kravitz, J.; Chen, S.; Kalantidis, Y.; Li, L.-J.; Shamma,
D. A.;etal. 2017. Visual genome: Connecting language and
vision using crowdsourced dense image annotations. Inter-
national Journal of Computer Vision 123(1):32-73.

Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ra-
manan, D.; Dollar, P.; and Zitnick, C. L. 2014. Microsoft
coco: Common objects in context. In ECCV, 740-755.

Lin, C. 2004. Rouge: A package for automatic evaluation of
summaries. In Workshop on Text Summarization Branches
Out.

Liu, S.; Zhu, Z.; Ye, N.; Guadarrama, S.; and Murphy, K.
2017. Improved image captioning via policy gradient opti-
mization of spider. In ICCV, 873-881.

Lu, J.; Xiong, C.; Parikh, D.; and Socher, R. 2017. Knowing
when to look: Adaptive attention via a visual sentinel for
image captioning. In CVPR, 3242-3250.

Lu, J.; Yang, J.; Batra, D.; and Parikh, D. 2018a. Neural
baby talk. In CVPR, 7219-7228.

Lu, Y;; Yin, J.; Chen, Z.; Gong, H.; Liu, Y.; Qian, L.; Li, X.;
Liu, R.; Andolina, I. M.; and Wang, W. 2018b. Revealing

detail along the visual hierarchy: neural clustering preserves
acuity from v1 to v4. Neuron 98(2):417-428.

Papineni, K.; Roukos, S.; Ward, T.; and Zhu, W.-J. 2002.
Bleu: a method for automatic evaluation of machine transla-
tion. In Proceedings of the 40th annual meeting on associa-

8964

tion for computational linguistics, 311-318. Association for
Computational Linguistics.

Ranzato, M.; Chopra, S.; Auli, M.; and Zaremba, W. 2016.

Sequence level training with recurrent neural networks. In
ICLR.

Rennie, S. J.; Marcheret, E.; Mroueh, Y.; Ross, J.; and Goel,
V. 2017. Self-critical sequence training for image caption-
ing. In CVPR, 1179-1195.

Ungerleider, L. G., and Haxby, J. V. 1994. ‘what’ and
‘where’ in the human brain. Current Opinion in Neurobi-
ology 4(2):157-165.

Vedantam, R.; Zitnick, C. L.; and Parikh, D. 2015. Cider:
Consensus-based image description evaluation. In CVPR,
45664575.

Vinyals, O.; Toshev, A.; Bengio, S.; and Erhan, D. 2015.
Show and tell: A neural image caption generator. In CVPR,
3156-3164.

Wang, Y.; Lin, Z.; Shen, X.; Cohen, S.; and Cottrell, G. W.
2017. Skeleton key: Image captioning by skeleton-attribute
decomposition. In CVPR, 7378-7387.

Wang, J.; Jiang, W.; Ma, L.; Liu, W.; and Xu, Y. 2018. Bidi-
rectional attentive fusion with context gating for dense video
captioning. In CVPR, 7190-7198.

Wu, Q.; Shen, C.; Liu, L.; Dick, A.; and Hengel, A. V. D.
2016. What value do explicit high level concepts have in
vision to language problems? In CVPR, 203-212.

Xu, K.; Ba, J.; Kiros, R.; Cho, K.; Courville, A.; Salakhudi-
nov, R.; Zemel, R.; and Bengio, Y. 2015. Show, attend and
tell: Neural image caption generation with visual attention.
In ICML, 2048-2057.

You, Q.; Jin, H.; Wang, Z.; Fang, C.; and Luo, J. 2016.
Image captioning with semantic attention. In CVPR, 4651—
4659.

Zhang, L.; Sung, F.; Liu, F;; Xiang, T.; Gong, S.; Yang, Y.;
and Hospedales, T. M. 2017. Actor-critic sequence training
for image captioning. In CVPR.



