
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

DeepCCFV: Camera Constraint-Free Multi-View
Convolutional Neural Network for 3D Object Retrieval

Zhengyue Huang,1 Zhehui Zhao,1 Hengguang Zhou,2 Xibin Zhao,1∗ Yue Gao1∗
1BNRist, KLISS, School of Software, Tsinghua University, China.

2Department of Computer Science, University of Toronto.
{hzy18, zhao-zh16}@mails.tsinghua.edu.cn, dsvsddr@gmail.com, {zxb, gaoyue}@tsinghua.edu.cn

Abstract
3D object retrieval has a compelling demand in the field of
computer vision with the rapid development of 3D vision
technology and increasing applications of 3D objects. 3D ob-
jects can be described in different ways such as voxel, point
cloud, and multi-view. Among them, multi-view based ap-
proaches proposed in recent years show promising results.
Most of them require a fixed predefined camera position set-
ting which provides a complete and uniform sampling of
views for objects in the training stage. However, this causes
heavy over-fitting problems which make the models failed to
generalize well in free camera setting applications, particu-
larly when insufficient views are provided. Experiments show
the performance drastically drops when the number of views
reduces, hindering these methods from practical applications.
In this paper, we investigate the over-fitting issue and re-
move the constraint of the camera setting. First, two basic fea-
ture augmentation strategies Dropout and Dropview are intro-
duced to solve the over-fitting issue, and a more precise and
more efficient method named DropMax is proposed after ana-
lyzing the drawback of the basic ones. Then, by reducing the
over-fitting issue, a camera constraint-free multi-view con-
volutional neural network named DeepCCFV is constructed.
Extensive experiments on both single-modal and cross-modal
cases demonstrate the effectiveness of the proposed method
in free camera settings comparing with existing state-of-the-
art 3D object retrieval methods.

Introduction
3D object retrieval received growing attention in the field of
computer vision since the rapid development of 3D applica-
tions in recent years. Various methods based on different 3D
object representations, such as voxel, point cloud, and multi-
view, have been investigated (Maturana and Scherer 2015;
Qi et al. 2017a; Su et al. 2015). In multi-view based ap-
proaches, views can be easily captured by cameras or ren-
dered from 3D object models, and these approaches showed
promising results. We noticed that most of the approaches
require a fixed predefined camera position setting which pro-
vides a full and uniform sampling of views for objects in
the training stage. However, in practical applications, cam-
era positions are randomly selected, the information patterns
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Figure 1: The pattern gap between training and test stage.

are different in the training stage and real applications, and
it brings the pattern gap as illustrated in Fig.1. This might
cause heavy over-fitting problems.

One typical multi-view based method is Multi-view Con-
volutional Neural Networks (MVCNN) (Su et al. 2015),
which fused the 2D CNN features extracted from rendered
views captured in a predefined camera setting in both train-
ing and test stage. Since then, more multi-view based neural
network methods (Feng et al. 2018; Kanezaki, Matsushita,
and Nishida 2018) have been introduced for 3D shape recog-
nition and retrieval, which assumed a predefined camera set-
ting in the test stage. However, the requirement for fixed-
camera setting in test stage is impractical for real recogni-
tion tasks, in which the target 3D object may contain any
number of views captured in any position, and it could be
impossible to obtain the views from predefined directions.
Providing insufficient views to MVCNN-like networks at
test stage leads to huge performance drop as the number
of views reduces, which was demonstrated in the experi-
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ments of GVCNN (Feng et al. 2018). It is reasonable that the
performance drops since the input information is partially
missed. However, an experiment in MVCNN revealed that
training plain 2D image CNN for all captured views without
features fusion achieves much better performance compar-
ing to the original MVCNN when testing with single input
view. This suggests that deep learning method itself have the
potential to handle the single-view case, and this motivates
us to make further studies on this issue.

We noticed these works following MVCNN require a pre-
defined camera setting, which is convenient at the training
stage to gather a full and uniform sampling from views of
objects. However, this may cause heavy over-fitting prob-
lems since (1) Views provided in real applications may
be different on camera position in training data (2) Num-
ber of views provided in real applications may be insuffi-
cient. Since the predefined camera positions usually sam-
ple densely enough to cover all positions, we focus on the
second over-fitting problem in this paper. In (Gao et al.
2012), a camera constraint-free view-based 3D object re-
trieval method (CCFV) has been introduced to handle this
situation using a probabilistic approach. With the develop-
ment of deep learning methods in the field of 3D object
retrieval and recognition, existing methods meet new chal-
lenges.

As discussed before, the number of views provided in
actual applications may be insufficient which leads to the
pattern gap between test stage and training stage. Therefore
training on fixed camera setting data may lead to over-fitting
problems and fail to adapt to the gap. In the training stage,
the complete set of information results in the domination of
some strong features in the network. To tackle this problem,
we first introduce Dropout, a widely used feature augmen-
tation method to reduce the domination of some strong fea-
tures. On the other hand, Dropview (Nitish et al. 2014) is
introduced which randomly drops the input views and tries
to minimize the pattern gap between training and test stage.
Both of the methods are proved useful by experiments with
decent results. Moreover, We further propose DeepCCFV,
which is a camera constraint-free multi-view convolutional
neural network assembled with DropMax block which drops
the highest stimulates of a network’s layer output and forces
the network to learn the relatively weak features. Thus the
problem of domination of the strong features is more pre-
cisely located than Dropout and Dropview. Extensive ex-
periments with different CNN backbones i.e. VGG11 (Si-
monyan and Zisserman 2014) with batch normalization and
ResNet50 (He et al. 2016) showed that DeepCCFV has sta-
ble and superior performance than other methods in 3D ob-
ject retrieval tasks. Finally, a trial on cross-modal retrieval
is conducted using a common cross-modal pipeline to prove
further that DeepCCFV can generate robust feature descrip-
tors for 3D objects in multi-view representation. More de-
tails are provided in Section Experiments.

In summary, the main contributions of this paper are listed
as follows:
• We propose a Deep camera constraint-free multi-view

neural network (DeepCCFV) for 3D object retrieval with
a feature augmentation method called DropMax, dropping

high stimulates of the output to force the model to pay
more attention on less stimulative features, which tackles
the over-fitting issue and brings notable improvement of
retrieval performance.

• We conduct cross-modal 3D object retrieval trial between
point cloud and multi-view modalities using the proposed
DeepCCFV model.
The rest of this paper is organized as follows. Firstly,

we introduce the related work on 3D object recognition,
and then we provide a detailed explanation of our proposed
method. After the explanation, experiments are presented.

Related Work
3D object retrieval and recognition tasks based on different
data representations, such as voxel, point cloud, and multi-
view, have been investigated in recent years. In this work,
the proposed DeepCCFV is based on multi-view. Also, in
the cross-modal retrieval trail, we adopt the point cloud rep-
resentation as another modality input. Hence, we will briefly
review the methods based on multi-view and point cloud in
this section.

Multi-view Based Methods
Previous multi-view based methods studied and described
3D objects with a group of projected views from different
angles of the object. One of the pioneer view-based methods
is (Chen et al. 2003), which composed a group of ten views
captured from the vertices of a dodecahedron over a hemi-
sphere. In (Papadakis et al. 2009), a set of panoramic views
are generated to represent the 3D objects. (Gao et al. 2012)
proposed a general framework based on Gaussian models,
which enabled eliminating fixed predefined camera setting
using a probabilistic approach.

With the recent proliferation of deep learning, view-based
models came into the spotlight. An instance used deep learn-
ing method, MVCNN (Su et al. 2015), extracted features
with 2D CNN and then aggregated them through a pooling
structure. Furthermore, Mahalanobis metric was employed
to improve its performance on retrieval task. Input shapes
are assumed to be upright oriented along a consistent axis,
12 rendered views are uniformly sampled around the object
every 30 degrees. In (Xie et al. 2015), a deep auto-encoder
structure was implemented to generate features of 3D ob-
jects. Based on MVCNN, GVCNN (Feng et al. 2018) di-
vided extracted features into groups with different weights,
followed by a weighted-average pooling. A deep embed-
ding network was proposed to solve the complex intra-class
and inter-class variation in (Guo et al. 2016), in which the
deep neural network was jointly supervised by classification
loss and triplet loss. RotationNet (Kanezaki, Matsushita, and
Nishida 2018) treated viewpoints as latent variables; basis
axes was determined with unsupervised learning on view-
points estimation. Instead of preprocessing of normalizing
object dataset, RotationNet learned pose alignment.

Following MVCNN, most of these works adopted a pre-
defined camera setting for training convenience. However,
this may cause a heavy over-fitting problem in the test
stage in free camera settings. As experiments conducted in
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GVCNN (Feng et al. 2018), the performances of MVCNN-
like methods significantly decrease when the number of
views drops. Due to the complex condition in a real-world
environment, missing of views is common in applications,
which limits the applications of view-based models in the
real world. In this paper, we will propose methods to re-
duce the performance drop with insufficient views and ac-
complish camera-constraint-free in the next section.

Point Cloud Based Methods
Point cloud is regarded as an unordered set of 3-dimension
vectors which denote the spatial positions of the captured
object points. Recently, interest in point cloud gradually
increases since the rapid development of sensors like Li-
DAR, which was widely adopted in auto-driving cars. While
3D recognition tasks based on point cloud is getting more
and more attention, the cross-modal retrieval task between
point cloud and multi-view is more or less neglected by the
community, we made an initial trial on this topic using the
proposed DeepCCFV as the feature extractor of multi-view
modality, along with DGCNN for the point cloud modality.

For point cloud based methods, PointNet(Qi et al. 2017a)
is one of the pioneer deep learning work which employed
a spatial transform network to maintain the invariance of
learned representation under transformation. In PointNet,
a structure that aggregates local and global features was
used to describe point-to-point correlation. The extracted
features are processed through symmetric pooling layer to
address the unorderedness of input. PointNet has achieved
outstanding performance in both classification and segmen-
tation tasks, yet the model learned local geometric fea-
tures poorly. Hence, PointNet++ (Qi et al. 2017b) was in-
troduced to address this flaw. PointNet++ built a hierarchi-
cal network structure with PointNet network as its basic
building block. In (Klokov and Lempitsky 2017), the point
cloud data was subdivided by Kd-tree, then features were
extracted and aggregated by Kd-Network. By aggregating
point and its neighbor features and perform edge convolu-
tion alternatively on extracted edge feature in the network,
DGCNN(Wang et al. 2018) utilized both local features and
global features. At the same time, the graph on each layer
was dynamic which enabled observation over the semanti-
cally similar structure in the deeper layer of feature space.
Among these methods, DGCNN was reported to reach the
state-of-the-art performance in 3D object recognition. With
DGCNN as the basic structure, PVNet (You et al. 2018)
proposed an embedding attention fusion scheme, which in-
tegrated and utilized the high-level features of point cloud
data and multi-view data to augment each other in 3D shape
recognition. In the cross-modal retrieval trial, we adopted
DGCNN as the point cloud feature extractor.

Proposed Method
3D object retrieval aroused a great deal of interest in the
last few years. However, most of the previous view-based
methods require a fixed setting of camera positions, which
limits the application of these methods. Therefore, we pro-
pose DeepCCFV to address this issue. Extensive experi-
ments have been conducted to prove its superior and stable

performance in both intra-modal and cross-modal cases. In
the cross-modal retrieval experiment, the widely used point
cloud is adopted as the supplemental modality.

The Problem of Predefined Camera Setting
Most of the recent works based on multi-view representa-
tion of 3D objects are trained with rendered views captured
in a predefined camera setting, which is convenient in the
training stage to gather a full and uniform sampling of views
for objects. However, in such cases the embedding space of
the retrieval network is optimized by a complete set of fea-
tures of 3D objects, some strong features will dominate the
training process and weak features will not be learned. This
will cause the over-fitting problems since the presentation
of strong features in test stage is not guaranteed with free
camera settings.

Tackle the Over-fitting Issue
Basic Feature Augmentation Methods We first intro-
duce two basic feature augmentation methods Dropout(Ni-
tish et al. 2014) and Dropview to overcome the over-
fitting issue. Dropout is a widely used feature augmentation
method which can reduce the domination of some strong
features, but it drops weak features equally. Dropview is
a simple data augmentation strategy introduced in this pa-
per which can also reduce the domination of some strong
features through randomly dropping the input views, but
weaker features in dropped view are lost and cannot be fur-
ther enhanced in the training process.

DropMax Considered the drawback of these methods, we
propose DropMax which drops the topk highest stimulates
of the output layer of the network, and it forces the network
to learn relatively weak features. For the MVCNN-like ar-
chitecture, we add a DropMax block before and after the
aggregation operation as illustrated in Fig.2. In our perspec-
tive, high stimulates correspond to strong features processes
in a network since strong features contribute the most in both
forward and backward processes which may dominate the
training process. Thus dropping strong features instead of
dropping randomly locates the issue of strong features dom-
ination more precisely.

Formally, DropMax, which drops the top-k highest stimu-
lates at the probability of p, is added after a fully-connected
layer of deep neural network after activation function. In the
forward process, the dropped stimulates are set to zero and
therefore zero gradient is passed through these dropped neu-
rons in the backward process. This formula is illustrated as
follows:

m(l) = TopkMask(k, p) (1)

ỹ(l) = (1−m(l)) ∗ y(l) (2)

where TopkMask represents a function to generate the
topk mask at probability p, l denotes the corresponding
layer, y(l) is the original output of layer l, ỹ(l) represents the
masked output after DropMax. In a large range, the selection
of hyper parameters k and p leads to stable performance, fur-
ther discussion is shown in the Experiment Section.
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Figure 2: DeepCCFV architecture, DropMax block is added
before and after the aggregation operation (denoted as M is
this figure), which is the maxpooling layer in MVCNN.

DeepCCFV By reducing the over-fitting issue, which is
the main problem that limits the generalization of current
methods to free camera setting, a camera constraint-free
multi-view convolutional neural network named DeepCCFV
assembled with DropMax block is constructed.

DeepCCFV for Single-modal Retrieval
In single-modal retrieval task, we calculate the cross-entropy
loss on the basic DeepCCFV network to obtain discrimi-
native embedding features. To reach greater robustness in
retrieval, we adopt a common l2-normalization strategy ap-
plied on the raw features generated by the network (Wang et
al. 2017; Song et al. 2016; Parkhi, Vedaldi, and Zisserman
2015; Schroff, Kalenichenko, and Philbin 2015). We con-
duct extensive comparison experiments to prove the effec-
tiveness of DeepCCFV with other augmentation methods.
Details are shown in the Experiment Section.

DeepCCFV for Cross-modal Retrieval
To further test the robustness of the proposed DeepCCFV,
we provide an initial trial of cross-modal experiment be-
tween multi-view and point cloud modalities of 3D objects.
For simplicity, we adopt a common pipeline for cross-modal
retrieval tasks which is illustrated in Fig.3. The inputs of
the retrieval network are the data of two modalities, point
cloud, and multi-view. The point cloud is a set of unordered
points densely sampled from the 3D objects’ faces. The data
of multi-view are rendered images of 3D shapes captured in
predefined camera positions following the (Su et al. 2015)
while the number of views is variable in this experiment.

Taking two modalities’ input at the same time, the feature
extractor networks first extract features of two models si-
multaneously, then pass the output features to the following
embedding network that aims to learn a deep metric trans-
formation for mapping the features of different modalities to
the same embedding space. Finally, Triplet-Center-Loss (He
et al. 2018) is adopted as the retrieval loss calculation on the
embedded features in each mini-batch. Besides, for better
performance, we consider different places to calculate the
cross-entropy loss for each modality; placing it after mlp1
layer in our embedding network leads to the most excellent
performance. The whole pipeline is illustrated in Fig.3.

Experiments
In this section, we provide experiments on 3D object re-
trieval in both single-modal and cross-modal cases which
demonstrated the better and more stable performance com-
paring with other methods particularly when the number of
views is limited. At last, an additional experiment on the
classification task is conducted which also showed the supe-
rior performance of the proposed method DeepCCFV.

Dataset
To validate the performance of the proposed DeepCCFV, we
conduct experiments on Princeton ModelNet dataset (Chang
et al. 2015), which contains 127,915 3D CAD models from
662 categories in total. We applied ModelNet40, a com-
monly used subset of ModelNet that contains 12,311 shapes
from 40 common categories in our experiments. We follow
the same training/test split of ModelNet40 as in MVCNN
(Su et al. 2015).

Single-modal Retrieval
As discussed before, the over-fitting problem comes from
two aspects: (1) camera positions of the query views are dif-
ferent from training data (2) number of query views pro-
vided is insufficient in the test stage. To validate if the pro-
posed method helps the second dilemma and diminish the
over-fitting problem we took the position of the cameras as
the control variable and the quantity and selection of views
as independent variables. Furthermore, to evaluate the per-
formance of our proposed DeepCCFV network in the real-
world situation, in which given queries are randomly cap-
tured in unfixed camera positions, we conduct the same
experiment with views rendered in random angle around
the 3D object. To give a fair comparison with the original
MVCNN, the first camera setting in MVCNN, i.e., 12 pre-
defined camera positions are adopted in the training stage.

To evaluate DropMax’s effectiveness, we compare the
proposed DeepCCFV assembled with DropMax block with
(1) Original MVCNN (2) MVCNN with Dropout (3)
MVCNN with DropView. For details, Dropout is added at
the same place as Dropview with the same drop strength.
DropView is implemented by randomly dropping the input
views and it is insensitive to the drop strength so we set it to
0.5 in the experiments.

Implementation In the predefined camera position set-
ting, the views are rendered around the 3D models in every
30 degrees, 12 views for each object. While in the random
camera position setting, the views are rendered around the
3D models in random angles, and the total number of views
for each object is also 12.

In our experiments, two commonly-used CNN back-
bones, VGG11 (Simonyan and Zisserman 2014) with batch
normalization(Ioffe and Szegedy 2015) and ResNet50 (He et
al. 2016), are implemented as the image feature extractor in
our experiments, which is slightly different from the original
MVCNN (Su et al. 2015) that uses VGG-M. For a fair com-
parison, we re-implement MVCNN with these backbones.
Both of them are pre-trained on ImageNet(Deng et al. 2009).
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Figure 3: The architecture of our cross-modal retrieval network. The input multi-view data and point cloud data is first passed
through the feature extractors. Then the extracted features are passed to the embedding networks to generate two features for
each modality. These features are employed in both single-modal and cross-modal retrieval.

The result showed that using a stronger CNN backbone in
MVCNN leads to better performance.

For the following experiments, the retrieval database con-
tains the features of 3D objects in the test set split of Model-
Net40 which are generated by the network with all 12 views
from predefined positions provided. As for the queries, we
use the number of randomly selected views of 3D objects
ranges from 1 to 12. All these features are extracted from
the output of fc7 layer which is defined in MVCNN, right
before the classifier.

We rank the similarity of the features of queries and the
features in the database by measuring the Euclidean distance
between them, and the top 1000 results with the closest dis-
tance are selected as the retrieval output. Mean average pre-
cision (mAP) is then calculated on this output. For a fair
comparison, mAP is calculated following the previous work
(Chang et al. 2015; Su et al. 2015). Furthermore, since our
query views are randomly selected, we carry out each exper-
iment for ten times and calculate the average value of them.

Parameter Influences There are two hyperparameters in
the Dropmax block, i.e., p and k. We evaluate the influences
of parameters and select the parameters based on the exper-
imental analysis.

In our evaluation, experiments demonstrated that the per-
formance of our model is insensitive with regards to the
value of p. It has stable performance when p ranges from
0.1 to 0.8. Hence, we empirically set p to 0.4 in both of the
DropMax blocks.

To evaluate the parameter k, we denote k1 for the first
DropMax block and k2 for the second. First, we fix k2 to 50
and vary k1 from 100 to 2000. We observed that our method
could achieve stable results when k1 varies in a large range
from 300 to 600. Thus, we set k1 to 500 in all experiments.
To evaluate the parameter k2 for the second DropMax, we
fix k1 to 500 and vary k2 from 0 to 400. We observed that
our method has stable performance when k2 varies in a large

range from 0 to 400, especially when k2 varies from 0 to
100. We then set k2 as 50 in all experiments. All these ex-
periments demonstrated that the proposed method is insensi-
tive to the value of the parameters k and p. Moreover, should
be noticed that we only select the stable parameters in these
experiments, the optimal parameters setting can be further
studied in the future work.

Over-fitting Problem Diminution In this experiment, the
query views are captured in predefined camera positions.
This experiment evaluates the ability of DeepCCFV to di-
minish the over-fitting problem and improve retrieval perfor-
mance in quantity-limited views situation. The experiment
results and comparison among different methods are demon-
strated in Fig.4(a) and Fig.4(b).
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Figure 4: The retrieval mAP of comparing approaches us-
ing VGG11-BN and ResNet50 as the CNN backbone in
predefined camera positions. The proposed DeepCCFV had
the best performance among the methods listed in the fig-
ure. The retrieval mAP of DeepCCFV using single view
achieved 79.57% and 83.25%, which were 17.66% and
35.75% higher than basic MVCNN. The retrieval mAP of
our proposed DeepCCFV model using all 12 views achieved
86.92% and 90.82% ,which were 1.40% and 5.18% higher
than basic MVCNN.
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In the experiment using VGG11-BN as the backbone as
illustrated in Fig.4(a), the result of MVCNN demonstrated
relatively decent result with 1.4% lower than DeepCCFV
in the full-view setting. However, the difference between
the result of MVCNN in a single-view setting and a full-
view setting reached 23.61%, which is extreme. Similar to
MVCNN, MVCNN with Dropout was also sensitive to the
number of views, with 15.07% difference between the worst
and the best cases. In contrast, MVCNN with Dropview
and DeepCCFV were comparatively stable, with 6.89% and
7.35% difference between the worst and the best cases.

A similar pattern can be observed when using Resnet50
as the backbone illustrated in Fig.4(b). Curves of MVCNN
and MVCNN with Dropout were lower than other methods,
and their difference between the highest and lowest points
were 38.14% and 34.47%, while curves of DeepCCFV and
MVCNN with Dropview had the difference of 7.57% and
7.92%. This result implies that MVCNN with Dropview and
DeepCCFV with DropMax as its core is more powerful in
overcoming the over-fitting issue.

In both of the figures, we can see that the performance
curve of MVCNN decreased sharply by dropping the num-
ber of views, while the performance curve of DeepCCFV is
not entirely affected; the fewer views given in queries, the
more significant difference is observed. Plain MVCNN suf-
fered more from over-fitting in full-view training, resulting
in a greater reduction in mAP because of incomplete fea-
ture sets under single-view setting. On the other hand, our
purposed DeepCCFV outperformed other methods in every
setting. All these experiments demonstrated the proposed
method DeepCCFV could reduce the over-fitting problem
effectively and generate more robust and more comprehen-
sive features of multi-view representations of 3D objects.

Besides, we noticed an interesting phenomenon that plain
MVCNN performs better than MVCNN with Dropout and
MVCNN with Dropview when using VGG11-BN as the
backbone, while MVCNN with Dropout and MVCNN with
Dropview performs better when using ResNet50 as the back-
bone. As far as we concerned, this is because VGG11-BN
model already employs Dropout layers, when extra Dropout
layers are added or Dropview is added to drop the input of
views, too much information is dropped, and it becomes a
hinder for the model to learn discriminative features for 3D
objects.

Free Camera Setting In this experiment, the query views
are captured in random camera positions around the object.
This experiment evaluates the performance of DeepCCFV in
a real-world situation. The experiment results and compar-
ison among different methods are demonstrated in Fig.5(a)
and Fig.5(b).

In Fig.5(a), MVCNN, MVCNN with Dropout and
MVCNN with Dropview achieved closed highest result of
75.96%, 74.86%, and 76.52%, while the proposed DeepC-
CFV reached outstanding highest result of 82.87%.

Just like results in Fig.4(b), in Fig.5(b), MVCNN and
MVCNN with Dropout had similar results of 76.23% and
80.03% under full-view setting and difference of extremes
of 29.62% and 27.49%. Difference between the two groups
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Figure 5: The retrieval mAP of comparing approaches using
VGG11-BN and ResNet50 as the CNN backbone in random
camera positions. The proposed DeepCCFV had the best
performance among the methods listed in the figure. The
retrieval mAP of DeepCCFV using single view achieved
74.49% and 78.63%, which were 13.69% and 32.02% higher
than MVCNN. The retrieval mAP of the proposed DeepC-
CFV using 12 views achieved 82.87% and 87.98% ,which
were 6.91% and 11.75% higher than MVCNN.

is even more obvious. DeepCCFV and MVCNN with
Dropview outperformed other two methods with 89.98% and
85.43% result under full-view setting, and they were above
the other group all the time.

In this situation, the query views are rendered in arbitrary
angle around the 3D object; therefore, it is even harder for
MVCNN to generate those strong features which are neces-
sary for retrieval with the given query. Our proposed Deep-
CCFV tackles this issue and provides best retrieval perfor-
mance compared with other methods listed in the figures.
Even if only one or two views are provided in a query, the
retrieval performance is adequate compared to the retrieval
performance when 12 views are provided.

Cross-modal Retrieval
To further evaluate the effectiveness of our proposed
method, we employ point cloud and view based model into a
common pipeline for cross-modal retrieval, i.e., the retrieval
between 3D objects represented by a single view, 12-views
and point cloud. This experiment provides evidence of the
robustness of DeepCCFV in a complex model; at the same
time, it demonstrates the possibility of DeepCCFV as a more
general model for 3D object representation.

Within the cross-modal pipeline, we first compare the
original single-modal retrieval performance of the pro-
posed method DeepCCFV with multi-view based methods
MVCNN, GVCNN and point cloud based method DGCNN
(Wang et al. 2018). There is no retrieval performance of
DGCNN provided. Thus we measure the retrieval mAP of
DGCNN by ourselves. Meanwhile, we compare the cross-
modal retrieval performance of MVCNN, and the proposed
DeepCCFV using VGG11-BN as the backbone.

Implementation In our retrieval network, we employ
MVCNN which is re-implemented with the same network
structure and the proposed method DeepCCFV, as the fea-
ture extractor of multi-view data. We extract the output of

8510



Method Query point
cloud 12views 1view 1view point

cloud 12views 1view

Database point
cloud 12views 1view 12views 12views point

cloud
point
cloud

MVCNN (Su et al. 2015) - 70.10% 61.70% - - - -
MVCNN,metric (Su et al. 2015) - 80.20% - - - - -
GVCNN (Feng et al. 2018) - 81.30% - - - - -
MVCNN1 - 85.52% - 61.91% - - -
DeepCCFV1 - 86.92% - 79.57% - - -
DGCNN 81.60% - - - - - -

MVCNN1+ DGCNN 88.65% 88.17% 61.69% 36.06% 88.48% 83.74% 36.88%
DeepCCFV1+ DGCNN 89.33% 91.35% 80.46% 76.62% 90.24% 88.51% 75.20%

1 Using VGG11-BN as CNN backbone.
All view-based models are trained with all 12 views of 3D objects.

Table 1: The results of cross-modal retrieval experiment in terms of mAP. Above the middle line, results show the original
single-modal retrieval results for different methods. Below the middle line, results show the cross-modal retrieval result. For
all cases, the method with DeepCCFV performs the best.

fc7 layer as the input of the following embedding network.
For point cloud data, we employ Dynamic Graph CNN
(Wang et al. 2018), a point-cloud-based model for 3D object
representation, as the feature extractor. The output of mlp1
layer of DGCNN is extracted to be the input of the following
embedding network. All of these models are pre-trained on
the ModelNet40 dataset.

To narrow down the gap between two modalities and map
features from both modalities into one clustered embed-
ding space for cross-modal retrieval, we implement Triplet-
Center Loss (He et al. 2018) as retrieval loss in our network,
which is calculated in a cross-modal way.

We evaluate the performance of our purposed cross-modal
retrieval model in both single-modal way and cross-modal
way. The retrieval mAPs of the retrieval between 3D objects
represented by point cloud, 12-views and single-view are
measured in our experiments. We use the Euclidean distance
to measure the similarity of 3D objects. For each query, we
select top 1000 results to be our retrieval results.

Results The experimental results of comparisons between
different methods and different input regarding mAP are
demonstrated in Table 1. Compared with the model that uses
MVCNN as the feature extractor of multi-view data, our pro-
posed DeepCCFV present superior performance in all seven
tasks, especially when the queries are single view data.

Classification Performance
We also conduct 3D object classification experiments as a
supplementary experiment. Both VGG11-BN and ResNet50
backbones are evaluated. The results are denoted in Table 2.
We can see that reducing the number of views has a signifi-
cant influence on the original MVCNN model, while it has a
weaker influence on DeepCCFV. This phenomenon implies
that DeepCCFV works well on the classification task since
it is the same over-fitting issue in retrieval task that hinders
the performance of classification.

Backbone Number of views Accuracy

MVCNN DeepCCFV

VGG11-BN

1 64.28% 82.11%
2 76.91% 87.84%
4 86.96% 90.72%
8 91.68% 92.15%

12 92.75% 92.30%

ResNet50

1 48.11% 70.39%
2 62.24% 79.69%
4 76.44% 86.09%
8 87.58% 90.74%

12 91.98% 92.46%

Table 2: The comparison of classification accuracy with dif-
ferent numbers of views between MVCNN and DeepCCFV.

Conclusion
In this paper, we propose a camera constraint-free multi-
view CNN, i.e., DeepCCFV, for 3D object retrieval. A fea-
ture augmentation method, named Dropmax, has been in-
troduced to overcome the over-fitting issue in multi-view
based 3D object representation methods coming from the
fixed camera settings. To evaluate its performance, we have
conducted extensive experiments comparing with traditional
multi-view based methods. At the same time, we also con-
duct a cross-modal retrieval experiment, which evaluates the
performance of the proposed method in a complex model.
Both of the results demonstrate the proposed method can
achieve stable performance in camera constraint-free envi-
ronments, particularly when the number of views varies sig-
nificantly.

In future work, it is worthwhile considering generaliz-
ing the concept of DropMax, which plays a vital role in
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DeepCCFV, to more tasks and more databases. Also, cross-
modal retrieval for point cloud and multi-view modalities is
a poorly investigated aspect that can be further studied.
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