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Abstract

Generating photo-realistic images conditioned on semantic
text descriptions is a challenging task in computer vision
field. Due to the nature of hierarchical representations learned
in CNN, it is intuitive to utilize richer convolutional fea-
tures to improve text-to-image synthesis. In this paper, we
propose Perceptual Pyramid Adversarial Network (PPAN) to
directly synthesize multi-scale images conditioned on texts
in an adversarial way. Specifically, we design one pyramid
generator and three independent discriminators to synthe-
size and regularize multi-scale photo-realistic images in one
feed-forward process. At each pyramid level, our method
takes coarse-resolution features as input, synthesizes high-
resolution images, and uses convolutions for up-sampling to
finer level. Furthermore, the generator adopts the perceptual
loss to enforce semantic similarity between the synthesized
image and the ground truth, while a multi-purpose discrim-
inator encourages semantic consistency, image fidelity and
class invariance. Experimental results show that our PPAN
sets new records for text-to-image synthesis on two bench-
mark datasets: CUB (i.e., 4.38 Inception Score and .290
Visual-semantic Similarity) and Oxford-102 (i.e., 3.52 Incep-
tion Score and .297 Visual-semantic Similarity).

Introduction

Recently, we have witnessed a breakthrough in the applica-
tion of deep learning to generate textual descriptions con-
ditioned on images/videos (Song et al. 2017; Gao et al.
2017). On the other hand, text-to-image synthesis is the re-
verse problem: generating photo-realistic images that match
the given text descriptions. However, there are very few re-
searches on this task. From a high-level perspective, both
tasks are similar. Nevertheless, these problems are entirely
different because text-to-image and image-to-text conver-
sions are highly different cross-modal problems (Bodnar
2018). Particularly, text-to-image synthesis requires the syn-
thesized images to be not only photo-realistic but also se-
mantically consistent, and this task has many practical ap-
plications such as photo editing or multimedia data creation.

The task of text-to-image synthesis is exactly what gener-
ative models attempt to solve, and most of the recent pro-
gresses are obtained by Generative Adversarial Networks
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Text

Very short black bill
with a soft grey
body and very faint
brown flank
coloring, black feet
and tarsus.

A small bird with
yellow and gray
throat and belly
and darker crown,
wings and tail
feathers.

A small bird with
brown wings,
vanilla break and
asmall black beak.

Figure 1: Some experimental results of our method (column
3) for text-to-image synthesis on CUB dataset, and the com-
parison with current state-of-the-art method AttnGAN (col-
umn 2). Each sample shows the input text description and
generated 256 x 256 images. Our generated images are more
realistic and clear. Zoom-in for better observation.

(GANSs) (Goodfellow et al. 2014). GAN s consist of one gen-
erator and one discriminator. The generator is designed to
generate as realistic images as possible to fool the discrim-
inator, and the discriminator is optimized to distinguish be-
tween fake generated images and real ground-truth images.
Recently, GANs have been applied to various applications,
especially in simulating complicated data distributions, like
images (Song et al. 2018a; 2018b), music, texts (Gupta et
al. 2018) and video (Li et al. 2018). More recently, GANs
have been used to generate photo-realistic fine-grained im-
ages conditioned on semantic texts. This task demands the
network to learn a precise mapping from semantic text distri-
bution to visual image distribution. Meanwhile, the network,
as a generative model, is requested to synthesize various and
natural images that match text descriptions, not just like the
ground-truth images in pixel space.

As a pioneering work on text-to-image synthesis, GAN-
INT-CLS (Reed et al. 2016b), firstly introduces a vanilla



GAN to bridge the gap between fine-grained texts space
and visual images space. However, this method synthesizes
only 64 x 64 images, which are very blurred not to maintain
vivid object details. Based on this work, StackGAN (Zhang
et al. 2017a), StackGAN++ (Zhang et al. 2017b) and At-
tnGAN (Xu et al. 2017) are successively proposed. Stack-
GAN decomposes this task into two sub-problems through a
stage-by-stage process. The first-stage GAN in StackGAN
generates a blurred 64 x 64 image with primitive colors
and shapes, then, with fixed this stage, the second-stage
GAN takes the low-resolution image and text to generate
high-resolution images. So StackGAN consists of two sepa-
rated GANSs, which is difficult to train and unstable to eval-
uvate (Huang, Yu, and Wang 2018). Different from Stack-
GAN, StackGAN++ is composed of three pairs of genera-
tors and discriminators arranged in a tree-like struture. Fur-
thermore, StackGAN++ can generate 64 x 64, 128 x 128
and 256 x 256 images from different branches of the tree.
So StackGAN++ jointly approximate multi-scale image dis-
tributions. But three pairs also make StackGAN++ compli-
cated not to converge like StackGAN. Moreover, AttnGAN
further extends the architecture of StackGAN++ by adopting
attention mechanism over images and texts. And AttnGAN
first embeds each sentence into a global sentence feature and
multiple local word features, then uses the global feature to
generate blurred 64 x 64 images, lastly takes the local fea-
tures to progressively generate 128 x 128 and 256 x 256
images. Compared with StackGAN++, the structure of At-
tnGAN is more complex and it is not end-to-end. Different
from above methods, which only take text features, TAC-
GAN (Dash et al. 2017), as a combination of GAN-INT-
CLS (Reed et al. 2016b) and AC-GAN (Odena, Olah, and
Shlens 2016), takes additional image class labels to increase
image diversity. Compared with all above networks, which
generate single-resolution images or multi-resolution im-
ages stage-by-stage, our end-to-end PPAN introduces only
one generator and three discriminators to synthesize di-
rectly multiple-resolution images. Furthermore, the gener-
ator of PPAN applies pyramid framework to enhance multi-
scale feature representations and employs a perceptual loss
to guarantee the image diversity. And the discriminators of
PPAN use matching-aware pair losses (Reed et al. 2016b)
and local image losses (Zhang, Xie, and Yang 2018) to as-
sure semantic consistency. Moreover, the discriminator for
256 x 256 resolution images adopts an additional class in-
formation loss (Dash et al. 2017) to attain class invariance.

Leveraging pyramid framework in CNN enriches effec-
tively multi-scale feature representations on computer vision
tasks, such as semantic segmentation, object detection (Lin
et al. 2017) and super-resolution (Lai et al. 2017). To tackle
these tasks, the networks build a down-to-top pathway and
lateral connections to combine low-resolution, semantically
strong features with high-resolution, semantically weak fea-
tures. Consequently, the networks have rich semantics at all
levels and can be built quickly from a single input image
scale. In our method, PPAN combines features from 32 x 32
to 128 x 128 via three Cumulative Blocks in Fig. 2(b) to en-
rich semantics at all scales. However, as the generator struc-
ture of PPAN gets deeper and deeper, the features, which are
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learned at hidden layers, are not always “transparent” in their
meaning and show reduced discriminability. To solve these
problems and stabilize the training process, PPAN adopts
deep supervision information (Zhang, Xie, and Yang 2018)
for hidden layers. Specifically, PPAN regularizes multi-scale
hidden features with deep adversarial supervision, which
is from three independent discriminators, to encourage the
generator to model multi-scale image distributions.

To guarantee generated image diversity, we adopt a per-
ceptual loss for the generator to attain perceptual similar-
ity not only pixel-level similarity. Specifically, we train the
generator using a perceptual loss (Johnson, Alahi, and Fei-
Fei 2016) based on semantic high-level features extracted
from a pre-trained VGG16 network (Simonyan and Zisser-
man 2014), rather than using a pixel-level loss depending
only on low-level features.Furthermore, the perceptual loss
measures image similarities more robustly than pixel-level
losses during training, and runs more quickly during test-
ing (Johnson, Alahi, and Fei-Fei 2016). In this paper, we
propose a novel end-to-end GAN network that can generate
once multi-resolution photo-realistic images conditioned on
text descriptions.

Our major contributions can be summarized as follow-
ings: 1) We propose Perceptual Pyramid Adversarial Net-
work (PPAN) for text-to-image synthesis task, by directly
generating multi-scale images conditioned on texts in an
adversarial way. Instead of using multiple stages or mul-
tiple GANs, our PPAN has one generator and three inde-
pendent discriminators, to synthesize and regularize multi-
scale photo-realistic images. At each pyramid level, PPAN
utilizes coarse-resolution features to synthesize the high-
resolution images and finer-level feature maps. 2) We define
perceptual loss on the generator to obtain diverse images and
design multi-purpose discriminators to encourage semantic
consistency, image fidelity and class invariance. 3) Exten-
sive experimental results are conducted, and our PPAN sets
new records for text-to-image synthesis on two benchmark
datasets: CUB (i.e., 4.38 Inception Score and .290 Visual-
semantic Similarity) and Oxford-102 (i.e., 3.52 Inception
Score and .297 Visual-semantic Similarity).

Perceptual Generative Pyramid Network
Network Architecture

As shown in Figure 2, PPAN consists of three components:
Conditioning Augmentation, one Generator and three Dis-
criminators. Due to the limited training data, we first use
Conditioning Augmentation to generate more training pairs.
Then a generator is designed to synthesize multi-scale im-
ages conditioned on the input text features. Three discrimi-
nators are designed to regularize output images of the gener-
ator at different pyramid. We describe each of them as well
as the loss functions defined on each component in details in
the remainder of this section.

Conditioning Augmentation In Fig. 2, a text description
t is embedded to an 1024-dim vector ¢, by an encoder
(Reed et al. 2016a). However, this high dimension usually
causes discontinuity in the latent condition manifold, and
this discontinuity is not desirable for training the generator.
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Figure 2: The framework of PPAN, which consists of three key components: (1) a conditioning augmentation module, for
producing additional condition cg (2) a generator consisting of Residual Generative Blocks (RG-Blocks) and Cumulative Blocks
(C-Blocks), for synthesizing images with three resolution and (3) three discriminators, for regularizing the generated images.

To mitigate this issue, we use a Conditioning Augmenta-
tion(CA) (Zhang et al. 2017a) to properly reduce the text
dimension and produce more training pairs given a small
amount of image-text training pairs, so CA encourages ro-
bustness to small perturbations along the condition mani-
fold. Consequently, CA produces conditioning variable cg.
Instead of using once-sampling variable for training and
testing (Zhang et al. 2017a; 2017b; Zhang, Xie, and Yang
2018), we randomly take once sampling to get the condi-
tion variable ¢y from an independent Gaussian distribution
N(p(ot), 2(p4)) during training, where the mean p(p;)
and diagonal covariance matrix X(y;) are functions of the
text embedding ;. And we get condition ¢y by computing:

co = plpt) +0(ps) O )

where §(¢;) are the values in the diagonal of X(¢;), and ®
is the element-wise multiplication and € ~ N (0, I). Further-
more, we randomly take n times sampling to get condition
¢y, during testing, which is computed by:

e @

where c¢; indicates i-th sampling.

Meanwhile, to further enforce the smoothness over the
condition manifold and avoid over-fitting (Doersch 2016),
we add the following regularization to the objective of the
generator during training:

Ly = Dirn(p(et), X(r)) [| N(0, 1)) 3

where Dy is the Kullback-Leibler divergence (KL diver-
gence) between the standard Gaussian distribution and the
conditioning Gaussian distribution.
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Generator In Fig. 2, the generator consists of two compo-
nents: Residual Generative Blocks (RG-Blocks) and Cumu-
lative Blocks (C-Blocks). The RG-Blocks intend to capture
the textual features and the C-Blocks are designed to gener-
ate the visual features.

As can be seen from Fig. 2, when sampling from
N(u(pr), 2(pr)) by CA, we get an 128-dim condition c¢g.
And we concatenate it to an 100-dim noise vector, then re-
shape this feature to the shape of (batch-size, 4, 4, 1024).
Afterwards this feature is fed consecutively into seven RG-
Blocks. As shown in Fig. 2(b), a RG-Block is a combina-
tion of an Upsampling Block and a modified residual block
(He et al. 2016). The Upsampling Block is composed of an
upsampling layer and a 3 X 3 convolutional (conv) layer in-
stead of a deconv layer to avoid “Checkerboard Artifacts”
(Odena, Dumoulin, and Olah 2016). Consequently, A RG-
Block consists of an upsampling layer and 3 conv layers with
batch normalization layers (BN) (Ioffe and Szegedy 2015)
and ReLu to output a high-resolution feature.

To fully use multi-scale features, the outputs of the 5-th
to 7-th RG-Block are fed into C-Blocks to synthesize high-
resolution images (64 x 64, 128 x 128, 256 x 256) and finer-
level features. As shown in Fig. 2(c), each C-Block consists
of an 1 x 1 conv layer, an Upsampling Block and two 3 x 3
conv layers. Afterwards we take images of three resolution
into corresponding discriminators, which regularize the hid-
den features of the generator with adversarial supervision.

Comparing with previous networks (Zhang et al. 2017a;
2017b; Xu et al. 2017), which use multiple GANSs to synthe-
size images, we play the adversarial game along the depth
of the generator G(z, ¢g) and jointly train one generator and



three discriminators. Consequently, the G(z, ¢g) produces
three resolution images in a feed-forward pass:

X =G(z,¢0) 1=1,2,3 “)

where X; is the ¢-th synthesized images with the resolution
of 64 x 64,128 x 128 and 256 x 256, and z is an 100-dim
random noise vector.

Perceptual Loss To synthesize better photo-realistic im-
ages, the definition of image reconstruction losses is very
critical, which steers the whole optimization of generating
images. Thus we use a perceptual loss (L4 in Fig. 2) to at-
tain perceptual similarity between a generated image and
ground-truth image of 256 x 256 resolution. Specifically,
we follow the VGG loss (Ledig et al. 2017) based on the
ReLU activation feature of the pre-trained VGG16 network
(Simonyan and Zisserman 2014). This feature ¢; ;(-) is ex-
tracted from the j-th conv (after activation) before the -
th max-pooling layer in the VGG16. Then we define this
loss using the Euclidean distance between a generated im-
age ¢; ;(X3) and a ground-truth image ¢; ;(I3):

1 1,7 V)
L4:W Z Z(‘f)m’ (Is)ay—0ij(X3ay)® (5
LITLT =1 y=1

where W; ; and H; ; indicate the dimensions of the feature
within the VGG16 network.

The method (Johnson, Alahi, and Fei-Fei 2016) observes
that a generated image minimizing the image reconstruction
loss for lower and higher conv layers tends to be visually
indistinguishable from the real image. Therefore, we use the
intermediate feature ¢o o, which is extracted from the second
conv block before the second maxpooling layer in VGG16,
to preserve color, texture, and exact shape information.

Multi-purpose Discriminator As shown in Fig. 2, there
are three multi-purpose discriminators (i.e., D1, D2 and D3)
defined on the synthesized images and text descriptions. For
each discriminator, we design different branches to achieve
different purposes.

The first branch calculates the matching-aware pair loss
(L1 in Fig. 2) (Zhang et al. 2017a) to encourage semantic
consistency between the texts and generated images. This
branch concatenates an image feature (batch-size, 4, 4, 512)
and a text feature (batch-size, 4, 4, 128), spatially replicated
from a text embedding ;. Then it uses an 1 x 1 conv to fuse
two features together and a 4 x 4 conv to classify a generated
image to be real or fake. The second branch computes the lo-
cal image loss (Lo in Fig. 2) (Zhang, Xie, and Yang 2018) to
guarantee image fidelity. It takes an image feature as input,
produces a H; x H; 2D probability map O; and classifies
every location as real or fake. Moreover, we manage H; ac-
cordingly to tune the receptive field of each element in O;,
and we set H, = 1, Ho = 1 for 64 x 64 and 128 x 128 res-
olution, H3 = 5 for 256 x 256 resolution. The third branch
calculates the class information loss (Ls in Fig. 2) (Dash et
al. 2017) to ensure class invariance. It shares the fused fea-
ture after 1 x 1 conv layer with the first branch. Then this
branch uses a 4 x 4 conv layer and a fully connected layer to
produce a feature (batch-size, C') to classify the object in the
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image, where C' indicates the number of object classes in the
dataset. And we set C' = 200 for CUB dataset and C' = 102
for Oxford-102.

We equip the Dy, Do and D3 with L; and L, losses, and
we further add L3 loss to D3. The reason for only applying
L3 loss to Dj is that higher resolution images have higher
potential to compute more accurate classification scores.

Multi-purpose Losses We define the multi-purpose losses
of three main categories: 1) matching-aware pair losses L;;
2) local image losses Lo; and 3) a class information loss L3,
to encourage semantic consistency, image fidelity and class
invariance respectively. Furthermore, we adopt the LSGANs
(Mao et al. 2017) as our fundamental formulations to rem-
edy the “Vanishing Gradient” problem in training GANs.

The matching-aware pair loss L, (Reed et al. 2016b), one
of the adversarial losses, is designed to guarantee the global
semantic consistency. And during training discriminators,
this loss takes three kinds of image-text pairs: 1)the pair
of a real image I; and a matching text description ¢, which
serves as a positive sample pair (I;, t); 2)a real image I/ and
a mismatching text description ¢, which serves as a negative
sample pair (I/,t); 3)a generated image X; and a matching
text description ¢, which serves also as other negative sam-
ple pair (X, t). And the matching-aware pair loss is defined
as followings:

Ly _Z

where D} is the matching-aware pair loss function for the
i-th discriminator, and I € R? is a vector of ones.

As the resolution goes higher, it becomes more burden-
some for the matching-aware pair losses to capture the local
fine-grained details. Furthermore, the matching-aware pair
losses may over-emphasize certain biased local features and
lead to make artifacts (Shrivastava et al. 2017). So to alle-
viate these issues and guarantee images smooth and natural,
we adopt the local image losses Lo (Zhang, Xie, and Yang
2018), as the other one of the adversarial losses, to guide the
discriminator to differentiate real or fake image patches to
focus on local image details. It is defined as:

L=y %) D

where D? is the local image loss function for the i-th dis-
criminator and E indicates the 2D matrix of ones with the
shape of (batch-size, H;).

Furthermore, to diversify the generated images and im-
prove their structural coherence, we provide the discrimina-
tor D3 with more discriminative information of class labels
(Dash et al. 2017). And we optimize the class information
loss L3 based on a sum of the binary cross entropy as a clas-
sification loss for 256 x 256 resolution. This loss is similar to
the matching-aware pair loss, but takes three kinds of image-
text-class pairs. Inside, the discriminator D3 takes a pair set
{(I3,t,C), (I}, t,C"), (X3,t,C)}, which uses C and C’ to
respectively indicate a right and wrong class label according
to an image. The pair set consists of three tuples, which con-
tains an image, a corresponding text description and class
label. Notice that I} is mismatching to the text description ¢

L (L, t)—1)* D} (I],t)*+D; (X;,1)*) (6)

—E)*H(D}(I}) — E)*+D} (X



but matching to the class label C’. And the class information
loss is defined as followings:

L3 = lOg(Dg(Ig, t, C))+log(D§(Iil3a t, C/))
+ZOQ(D§(X37 tv C))

®)

where D3 is the class information loss function for the third
discriminator.

Optimization

Using the defined loss functions 3, 5, 6, 7 and 8, we train our
network PPAN. The forward propagation is as below. First,
we embed a text to a vector ¢; using a pre-trained encoder
and then adopt CA to output conditioning variable cg:

Co = CA(%;G) 9

where 6 stands for the parameters of CA. Then the feature
concatenating ¢y and noise z is the input for the generator G
to synthesize images X:

X = G(z,co;m) (10)

where 7 stands for the parameters of the generator. Finally,
discriminators D calculates the loss:

where I is the ground truth and v stands for the parameters
of discriminators.

In the network, we have parameters of 6, , ¥ to learn. We
use back propagation to learn and Adam (Kingma and Ba
2014) to minimize the loss. Particularly, we initialize net-
work parameters with normal distribution and use forward
propagation to obtain the value of (Ly;, L1, Lo, L3, Ly). In
each iteration, we sample a mini-batch of text descriptions
from the training set then update each parameter:

0+ 0—7(Ly) (12)
T—T—T\n ()\1L1 —+ /\QLQ —+ >\3L3 —+ )\4Lkl) (13)
Y=Y =7y (B1L1 + BaLlo + B3L3) (14)

where 7 is the learning rate. We train our network until it
converges.

Experiments

We evaluate our Perceptual Pyramid Adversarial Network
(PPAN) for the task of text-to-image synthesis on two
datasets. Specifically, the experiments are designed to study
the following research questions of our methods:

Q1: What is the quantitative performance of PPAN com-
pared with the state-of-the-arts?

Q2: What is the qualitative performance of PPAN compared
with the state-of-the-arts?

Q3: How does each component of PPAN affect the perfor-
mance?

Settings

Datasets Following the experimental setup in (Reed et al.
2016b; Zhang et al. 2017a), we pre-process all images to
ensure that bounding boxes of objects have greater-than-
0.75 object-image size ratios. And we split CUB (Wah et
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al. 2011) and Oxford-102 (Nilsback and Zisserman 2008)
datasets into class-disjoint training and testing sets. The
CUB dataset (Wah et al. 2011) contains 8855 and 2933 im-
ages for training and testing, totally belonging to 200 cat-
egories. The Oxford-102 dataset (Nilsback and Zisserman
2008) consists of 7034 and 1155 images for training and
testing, a total of 102 categories. Each image in both datasets
is provided 10 text descriptions by (Reed et al. 2016b). Be-
cause both datasets are originally used for the fine-grained
classification task, text descriptions are detailed and precise
about the single object, not about backgrounds. Moreover,
we employ the pre-trained char-RNN text encoder provided
by (Reed et al. 2016a) to encode each sentence into an 1024-
dim text embedding vector.

Evaluation Metric We use two quantitative metrics to
evaluate our method.

1) Inception Score (IS) is a measurement of both objec-
tiveness and diversity of images. The intuition behind IS is
that good generative models should synthesize diverse but
meaningful images. Therefore, the KL divergence between
the marginal distribution p(y) and the conditional distribu-
tion p(y|x) should be large. So IS is defined as followings:

IS = exp(E.(Drr(p(ylz) || p(y)))) (15)

In our experiments, we adopt the fine-tune Inception models
(Szegedy et al. 2017) on the training sets of the CUB and
Oxford-102 datasets, provided by (Zhang et al. 2017a).

2) Visual-semantic Similarity(VS) is proposed by (Zhang,
Xie, and Yang 2018) to measure the alignment between syn-
thesized images and the conditioned text. So VS is computed
as followings:

A fol)
1501, @)

where the text encoder f; (-) and the image encoder f (-)
are learned to map both texts ¢ and images x into a common
space in R%12, Higher score indicates better performance.

However, neither IS nor VS assesses realism of details
and intra-class diversity. Therefore we also visualize some
synthesized images for qualitative evaluation.

VS

(16)

Implementation Details By default, we set \y = 1 =
Ao = (B2 =1, A\3 = le — 07, and 83 = 100 for all datasets,
A4 4 for CUB and Oxford-102 dataset. Furthermore,
when computing IS for the CUB dataset, we take 29,330
randomly selected samples for each resolution, which are
from 1 test real image (2,933 in total) to 10 generated im-
ages based on 1 text description. When calculating IS for
the Oxford-102 dataset, we takes 30,030 randomly selected
samples for each image resolution, which are from 1 test real
image (1,155 in total) to 26 generated images based on 1 text
description.

Quantitative Comparison with the State-of-the-arts
QD

To validate our proposed PPAN, in Table 1, we compare our
results with state-of-the-arts: GAN-INT-CLS (Reed et al.
2016b), GAWWN (Reed et al. 2016¢), StackGAN (Zhang et



Table 1: The Inception Score comparison on two datasets.
PPAN outperforms the others on both datasets.

Dataset
Method CUB Oxford-102

GANJINT-CLS  2.880.04 2.66L.03
GAWWN 3.60+.07 -

StackGAN 370404 3.204.01
StackGAN++  4.04+.05 3.26+.01
TAC-GAN ] 3.45+.05
HDGAN 415405 345407
AttnGAN 436103 -

PPAN(ours)  4.385.05 3.52£.02

Table 2: The Visual-semantic Similarity comparison on two
datasets. PPAN outperforms others consistently.

Dataset
Method  —~p OxTford-102
Ground Truth  .302+.151 .336+.138
StackGAN 228+.162 .278+.134
HDGAN 2464+.157  .2964+.131
PPAN(ours) 290+.149  .297+.136

al. 2017a), StackGAN++ (Zhang et al. 2017b), TAC-GAN
(Dash et al. 2017), HDGAN (Zhang, Xie, and Yang 2018)
and AttnGAN (Xu et al. 2017).

As shown in Table 1, PPAN achieves the best perfor-
mance on IS. Compared with HDGAN, which also adopts
one generator and is an end-to-end network, PPAN achieves
0.23 improvement in terms of IS on CUB dataset (from 4.15
to 4.38), and 0.07 improvement on Oxford-102 (from 3.45
to 3.52). This indicates that our PPAN is able to generate
more diverse and realistic images conditioned on text de-
scriptions. Compared with AttnGAN, which employs three
pairs of generators and discriminators and is not an end-to-
end network, PPAN still obtains significant improvements
on CUB dataset (from 4.36 to 4.38), with a highly integrated
network structure and simple training process.

Table 2 compares VS results on two datasets. And the
scores of ground-truth image-text pairs are also computed
for reference. PPAN also achieves best performance on both
CUB and Oxford-102 datasets, which reflects PPAN can
better preserve semantically consistent information between
generated images and text descriptions.

Qualitative Comparison with the State-of-the-arts
(Q2)

Fig. 3 and Fig. 4 compare visual results with StackGAN,
StackGAN++, HDGAN on CUB and Oxford-102 datasets,
especially focusing on semantic details, natural color and
complex shapes. In Fig. 3, our PPAN generates better image
quality and preserves more semantic details than the other
images. For example, the semantics of “black bird”, “short,
slightly curved bill”, and “long legs” in column 3 are much
better represented by our synthesized images, and they are
more photo-realistic than others. Particularly, although there
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Figure 3: Generated images on CUB dataset compares with
StackGAN, StackGAN++ and HDGAN. Each sample shows
the input text description and generated 256 x 256 images.
Zoom-in for better observation.

is no description about feather, eyes and backgrounds, PPAN
still successfully synthesizes smooth feather, vivid eyes and
clear backgrounds like the ground-truth image. However, the
images synthesized by StackGAN++ or HDGAN lack more
or less details, or misrepresent the text description. For ex-
ample, the image generated by StackGAN++ is too blurred
to distinguish eyes, and the image generated by HDGAN
misrepresents “black” color information and has an unnatu-
ral background.

Similar observations can be obtained from Fig. 4. In gen-
eral, the images generated by PPAN are more natural and
usually contain complex flower structures. For example, the
generated image by PPAN have up to 5 vivid flowers in one
image in row 1 of Fig. 4, which provides richer information
than the plain ground-truth image. Particularly, the image
generated by PPAN also can accurately express the seman-
tic content of the text description, such as “pink, white and
yellow in color”, “striped petals”.

By visualizing a large number of images, t-SNE algorithm
(Maaten and Hinton 2008) can effectively evaluate the diver-
sity level and semantic consistency of the synthesized im-
ages. For each model, a large number of images are synthe-
sized and then embedded into the 2D plane by t-SNE. First,
we extract a 2048-dim CNN feature of a generated image
using a pre-trained Inception model. Then, t-SNE is applied
to embed this feature into a 2D plane, leading to an accurate
location for each image in the 2D plane. Fig. 5 shows 50 x 50
grids with compressed images for CUB dataset. And t-SNE
of PPAN has consistent image distribution and rich mor-
phological distribution, so that images generated by PPAN
have various image diversity and consistent semantic infor-
mation. Moreover, t-SNE visualization can easily identify
any collapsed modes. We can easily observe HDGAN(left)
has one collapsed mode marked with a red rectangle and
PPAN (right) has no collapsed mode from Fig. 5.



Text

This flower is
pink, white, and
yellow in color,

and has petals
that are striped

pink stamen

This flower is
white and
yellow in color, 3
with petals that [l ==
are wavy and
smooth

Figure 4: Generated images on Oxford-102 dataset com-
pares with StackGAN, StackGAN++ and HDGAN. Each
sample shows the input text description and generated 256 x
256 images. Zoom-in for better observation.

Figure 5: Utilizing t-SNE algorithm to embed images gener-
ated by HDGAN(left) and our PPAN(right) on CUB dataset.
HDGAN(left) has one collapsed mode marked with a red
rectangle and PPAN(right) has no collapsed mode.

Component Analysis (Q3)

Our PPAN consists of several major components, e.g., the
Cumulative Blocks (CB) which progressively synthesize
multi-scale images, the perceptual loss (L) and the class in-
formation loss (L3). In this sub-section, we study the effect
of each component on the performance. We start from the
basic model (PPAN-CB-L3-L4) by removing CB, L3 and
L, from PPAN, and then progressively add each component
to see their performance. Due to the space limit, we only
report the results on the CUB dataset in Table 3.

As can be observed, with CB, our method (PPAN-L3-L4)
increases the IS scores from 3.27 to 3.62, 3.87 to 4.00, and
4.00 to 4.03 on 64 x 64, 128 x 128 and 256 x 256 resolu-
tion. Also, the VS score is improved from 0.239 to 0.257 on
256 x 256 images. This indicates that CB enriching multi-
scale features can help match visual images and semantic
texts. Furthermore, StackGAN has claimed the difficulty of
generating high-resolution images by GANs, because natu-
ral image distribution and implied model distribution may
not overlap in high dimensional pixel space. But our PPAN
has solved this problem by one highly structured generator.
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Table 3: Component analysis of Cumulative Blocks on CUB
dataset. The IS of 64 x 64, 128 x 128, and 256 x 256 res-
olution are computed. The VS of 256 x 256 resolution are
computed.

IS
Model 6464 [ T28x128] 256x256 V5
PPAN-CB-L;-L; 3.27L.04] 3.87L.05 4.00L.06 239L.158
PPAN-L3-L, 3.624.04) 4.00+.04| 4.03£.06 257+.160
PPAN-L; 380104 427404 415406 2834151
PPAN 3.74L.04] 427504 438505 2901149

By further adding the perceptual loss L, the IS scores are
improved from 3.62 to 3.80, 4.00 to 4.27 and 4.03 to 4.15,
and the VS score is improved from 0.257 to 0.283. This indi-
cates that the perceptual loss plays an important role in im-
proving the quality of image synthesizing. By further adding
the class information loss L3 for Ds, it becomes our final
model PPAN. The IS score of 256 x 256 images are signifi-
cantly improved from 4.15 to 4.38. This demonstrates the ef-
fectiveness of L3 for 256 x 256 images generation. We have
tried to add L4 and L3 on each output but the performance
was not improved. One possible reason is that the gradient
passed by high resolution 256 x 256 images is sufficient to
update the networks with lower resolutions.

Conclusion

In this work, we propose an end-to-end Perceptual Pyra-
mid Adversarial Network (PPAN) to address the problem
of generating photo-realistic images conditioned on text de-
scriptions. Instead of using multiple generators and discrim-
inators in previous works, we explore a new perspective to
play one-vs-three adversarial games along the depth of one
generator using three independent discriminators to synthe-
size and regularize multi-scale photo-realistic images. The
perceptual loss defined on the generator enforces the se-
mantic similarity between the synthesized image and the
ground truth, while multi-purpose discriminators encour-
ages semantic consistency, image fidelity and class invari-
ance. Extensive experiments on evaluation scores and visual
results demonstrate that PPAN can generate photo-realistic
fine-grained images of three resolutions, and perform signif-
icantly better than state-of-the-arts on two public datasets.
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